1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* AFS File Server client stubs 3 * 4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/circ_buf.h> 12 #include <linux/iversion.h> 13 #include "internal.h" 14 #include "afs_fs.h" 15 #include "xdr_fs.h" 16 #include "protocol_yfs.h" 17 18 static inline void afs_use_fs_server(struct afs_call *call, struct afs_cb_interest *cbi) 19 { 20 call->cbi = afs_get_cb_interest(cbi); 21 } 22 23 /* 24 * decode an AFSFid block 25 */ 26 static void xdr_decode_AFSFid(const __be32 **_bp, struct afs_fid *fid) 27 { 28 const __be32 *bp = *_bp; 29 30 fid->vid = ntohl(*bp++); 31 fid->vnode = ntohl(*bp++); 32 fid->unique = ntohl(*bp++); 33 *_bp = bp; 34 } 35 36 /* 37 * Dump a bad file status record. 38 */ 39 static void xdr_dump_bad(const __be32 *bp) 40 { 41 __be32 x[4]; 42 int i; 43 44 pr_notice("AFS XDR: Bad status record\n"); 45 for (i = 0; i < 5 * 4 * 4; i += 16) { 46 memcpy(x, bp, 16); 47 bp += 4; 48 pr_notice("%03x: %08x %08x %08x %08x\n", 49 i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3])); 50 } 51 52 memcpy(x, bp, 4); 53 pr_notice("0x50: %08x\n", ntohl(x[0])); 54 } 55 56 /* 57 * decode an AFSFetchStatus block 58 */ 59 static int xdr_decode_AFSFetchStatus(const __be32 **_bp, 60 struct afs_call *call, 61 struct afs_status_cb *scb) 62 { 63 const struct afs_xdr_AFSFetchStatus *xdr = (const void *)*_bp; 64 struct afs_file_status *status = &scb->status; 65 bool inline_error = (call->operation_ID == afs_FS_InlineBulkStatus); 66 u64 data_version, size; 67 u32 type, abort_code; 68 int ret; 69 70 abort_code = ntohl(xdr->abort_code); 71 72 if (xdr->if_version != htonl(AFS_FSTATUS_VERSION)) { 73 if (xdr->if_version == htonl(0) && 74 abort_code != 0 && 75 inline_error) { 76 /* The OpenAFS fileserver has a bug in FS.InlineBulkStatus 77 * whereby it doesn't set the interface version in the error 78 * case. 79 */ 80 status->abort_code = abort_code; 81 scb->have_error = true; 82 goto good; 83 } 84 85 pr_warn("Unknown AFSFetchStatus version %u\n", ntohl(xdr->if_version)); 86 goto bad; 87 } 88 89 if (abort_code != 0 && inline_error) { 90 status->abort_code = abort_code; 91 scb->have_error = true; 92 goto good; 93 } 94 95 type = ntohl(xdr->type); 96 switch (type) { 97 case AFS_FTYPE_FILE: 98 case AFS_FTYPE_DIR: 99 case AFS_FTYPE_SYMLINK: 100 status->type = type; 101 break; 102 default: 103 goto bad; 104 } 105 106 status->nlink = ntohl(xdr->nlink); 107 status->author = ntohl(xdr->author); 108 status->owner = ntohl(xdr->owner); 109 status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */ 110 status->anon_access = ntohl(xdr->anon_access); 111 status->mode = ntohl(xdr->mode) & S_IALLUGO; 112 status->group = ntohl(xdr->group); 113 status->lock_count = ntohl(xdr->lock_count); 114 115 status->mtime_client.tv_sec = ntohl(xdr->mtime_client); 116 status->mtime_client.tv_nsec = 0; 117 status->mtime_server.tv_sec = ntohl(xdr->mtime_server); 118 status->mtime_server.tv_nsec = 0; 119 120 size = (u64)ntohl(xdr->size_lo); 121 size |= (u64)ntohl(xdr->size_hi) << 32; 122 status->size = size; 123 124 data_version = (u64)ntohl(xdr->data_version_lo); 125 data_version |= (u64)ntohl(xdr->data_version_hi) << 32; 126 status->data_version = data_version; 127 scb->have_status = true; 128 good: 129 ret = 0; 130 advance: 131 *_bp = (const void *)*_bp + sizeof(*xdr); 132 return ret; 133 134 bad: 135 xdr_dump_bad(*_bp); 136 ret = afs_protocol_error(call, -EBADMSG, afs_eproto_bad_status); 137 goto advance; 138 } 139 140 static time64_t xdr_decode_expiry(struct afs_call *call, u32 expiry) 141 { 142 return ktime_divns(call->reply_time, NSEC_PER_SEC) + expiry; 143 } 144 145 static void xdr_decode_AFSCallBack(const __be32 **_bp, 146 struct afs_call *call, 147 struct afs_status_cb *scb) 148 { 149 struct afs_callback *cb = &scb->callback; 150 const __be32 *bp = *_bp; 151 152 bp++; /* version */ 153 cb->expires_at = xdr_decode_expiry(call, ntohl(*bp++)); 154 bp++; /* type */ 155 scb->have_cb = true; 156 *_bp = bp; 157 } 158 159 /* 160 * decode an AFSVolSync block 161 */ 162 static void xdr_decode_AFSVolSync(const __be32 **_bp, 163 struct afs_volsync *volsync) 164 { 165 const __be32 *bp = *_bp; 166 u32 creation; 167 168 creation = ntohl(*bp++); 169 bp++; /* spare2 */ 170 bp++; /* spare3 */ 171 bp++; /* spare4 */ 172 bp++; /* spare5 */ 173 bp++; /* spare6 */ 174 *_bp = bp; 175 176 if (volsync) 177 volsync->creation = creation; 178 } 179 180 /* 181 * encode the requested attributes into an AFSStoreStatus block 182 */ 183 static void xdr_encode_AFS_StoreStatus(__be32 **_bp, struct iattr *attr) 184 { 185 __be32 *bp = *_bp; 186 u32 mask = 0, mtime = 0, owner = 0, group = 0, mode = 0; 187 188 mask = 0; 189 if (attr->ia_valid & ATTR_MTIME) { 190 mask |= AFS_SET_MTIME; 191 mtime = attr->ia_mtime.tv_sec; 192 } 193 194 if (attr->ia_valid & ATTR_UID) { 195 mask |= AFS_SET_OWNER; 196 owner = from_kuid(&init_user_ns, attr->ia_uid); 197 } 198 199 if (attr->ia_valid & ATTR_GID) { 200 mask |= AFS_SET_GROUP; 201 group = from_kgid(&init_user_ns, attr->ia_gid); 202 } 203 204 if (attr->ia_valid & ATTR_MODE) { 205 mask |= AFS_SET_MODE; 206 mode = attr->ia_mode & S_IALLUGO; 207 } 208 209 *bp++ = htonl(mask); 210 *bp++ = htonl(mtime); 211 *bp++ = htonl(owner); 212 *bp++ = htonl(group); 213 *bp++ = htonl(mode); 214 *bp++ = 0; /* segment size */ 215 *_bp = bp; 216 } 217 218 /* 219 * decode an AFSFetchVolumeStatus block 220 */ 221 static void xdr_decode_AFSFetchVolumeStatus(const __be32 **_bp, 222 struct afs_volume_status *vs) 223 { 224 const __be32 *bp = *_bp; 225 226 vs->vid = ntohl(*bp++); 227 vs->parent_id = ntohl(*bp++); 228 vs->online = ntohl(*bp++); 229 vs->in_service = ntohl(*bp++); 230 vs->blessed = ntohl(*bp++); 231 vs->needs_salvage = ntohl(*bp++); 232 vs->type = ntohl(*bp++); 233 vs->min_quota = ntohl(*bp++); 234 vs->max_quota = ntohl(*bp++); 235 vs->blocks_in_use = ntohl(*bp++); 236 vs->part_blocks_avail = ntohl(*bp++); 237 vs->part_max_blocks = ntohl(*bp++); 238 vs->vol_copy_date = 0; 239 vs->vol_backup_date = 0; 240 *_bp = bp; 241 } 242 243 /* 244 * deliver reply data to an FS.FetchStatus 245 */ 246 static int afs_deliver_fs_fetch_status_vnode(struct afs_call *call) 247 { 248 const __be32 *bp; 249 int ret; 250 251 ret = afs_transfer_reply(call); 252 if (ret < 0) 253 return ret; 254 255 /* unmarshall the reply once we've received all of it */ 256 bp = call->buffer; 257 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 258 if (ret < 0) 259 return ret; 260 xdr_decode_AFSCallBack(&bp, call, call->out_scb); 261 xdr_decode_AFSVolSync(&bp, call->out_volsync); 262 263 _leave(" = 0 [done]"); 264 return 0; 265 } 266 267 /* 268 * FS.FetchStatus operation type 269 */ 270 static const struct afs_call_type afs_RXFSFetchStatus_vnode = { 271 .name = "FS.FetchStatus(vnode)", 272 .op = afs_FS_FetchStatus, 273 .deliver = afs_deliver_fs_fetch_status_vnode, 274 .destructor = afs_flat_call_destructor, 275 }; 276 277 /* 278 * fetch the status information for a file 279 */ 280 int afs_fs_fetch_file_status(struct afs_fs_cursor *fc, struct afs_status_cb *scb, 281 struct afs_volsync *volsync) 282 { 283 struct afs_vnode *vnode = fc->vnode; 284 struct afs_call *call; 285 struct afs_net *net = afs_v2net(vnode); 286 __be32 *bp; 287 288 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 289 return yfs_fs_fetch_file_status(fc, scb, volsync); 290 291 _enter(",%x,{%llx:%llu},,", 292 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 293 294 call = afs_alloc_flat_call(net, &afs_RXFSFetchStatus_vnode, 295 16, (21 + 3 + 6) * 4); 296 if (!call) { 297 fc->ac.error = -ENOMEM; 298 return -ENOMEM; 299 } 300 301 call->key = fc->key; 302 call->out_scb = scb; 303 call->out_volsync = volsync; 304 305 /* marshall the parameters */ 306 bp = call->request; 307 bp[0] = htonl(FSFETCHSTATUS); 308 bp[1] = htonl(vnode->fid.vid); 309 bp[2] = htonl(vnode->fid.vnode); 310 bp[3] = htonl(vnode->fid.unique); 311 312 afs_use_fs_server(call, fc->cbi); 313 trace_afs_make_fs_call(call, &vnode->fid); 314 315 afs_set_fc_call(call, fc); 316 afs_make_call(&fc->ac, call, GFP_NOFS); 317 return afs_wait_for_call_to_complete(call, &fc->ac); 318 } 319 320 /* 321 * deliver reply data to an FS.FetchData 322 */ 323 static int afs_deliver_fs_fetch_data(struct afs_call *call) 324 { 325 struct afs_read *req = call->read_request; 326 const __be32 *bp; 327 unsigned int size; 328 int ret; 329 330 _enter("{%u,%zu/%llu}", 331 call->unmarshall, iov_iter_count(call->iter), req->actual_len); 332 333 switch (call->unmarshall) { 334 case 0: 335 req->actual_len = 0; 336 req->index = 0; 337 req->offset = req->pos & (PAGE_SIZE - 1); 338 call->unmarshall++; 339 if (call->operation_ID == FSFETCHDATA64) { 340 afs_extract_to_tmp64(call); 341 } else { 342 call->tmp_u = htonl(0); 343 afs_extract_to_tmp(call); 344 } 345 /* Fall through */ 346 347 /* extract the returned data length */ 348 case 1: 349 _debug("extract data length"); 350 ret = afs_extract_data(call, true); 351 if (ret < 0) 352 return ret; 353 354 req->actual_len = be64_to_cpu(call->tmp64); 355 _debug("DATA length: %llu", req->actual_len); 356 req->remain = min(req->len, req->actual_len); 357 if (req->remain == 0) 358 goto no_more_data; 359 360 call->unmarshall++; 361 362 begin_page: 363 ASSERTCMP(req->index, <, req->nr_pages); 364 if (req->remain > PAGE_SIZE - req->offset) 365 size = PAGE_SIZE - req->offset; 366 else 367 size = req->remain; 368 call->bvec[0].bv_len = size; 369 call->bvec[0].bv_offset = req->offset; 370 call->bvec[0].bv_page = req->pages[req->index]; 371 iov_iter_bvec(&call->def_iter, READ, call->bvec, 1, size); 372 ASSERTCMP(size, <=, PAGE_SIZE); 373 /* Fall through */ 374 375 /* extract the returned data */ 376 case 2: 377 _debug("extract data %zu/%llu", 378 iov_iter_count(call->iter), req->remain); 379 380 ret = afs_extract_data(call, true); 381 if (ret < 0) 382 return ret; 383 req->remain -= call->bvec[0].bv_len; 384 req->offset += call->bvec[0].bv_len; 385 ASSERTCMP(req->offset, <=, PAGE_SIZE); 386 if (req->offset == PAGE_SIZE) { 387 req->offset = 0; 388 if (req->page_done) 389 req->page_done(req); 390 req->index++; 391 if (req->remain > 0) 392 goto begin_page; 393 } 394 395 ASSERTCMP(req->remain, ==, 0); 396 if (req->actual_len <= req->len) 397 goto no_more_data; 398 399 /* Discard any excess data the server gave us */ 400 afs_extract_discard(call, req->actual_len - req->len); 401 call->unmarshall = 3; 402 /* Fall through */ 403 404 case 3: 405 _debug("extract discard %zu/%llu", 406 iov_iter_count(call->iter), req->actual_len - req->len); 407 408 ret = afs_extract_data(call, true); 409 if (ret < 0) 410 return ret; 411 412 no_more_data: 413 call->unmarshall = 4; 414 afs_extract_to_buf(call, (21 + 3 + 6) * 4); 415 /* Fall through */ 416 417 /* extract the metadata */ 418 case 4: 419 ret = afs_extract_data(call, false); 420 if (ret < 0) 421 return ret; 422 423 bp = call->buffer; 424 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 425 if (ret < 0) 426 return ret; 427 xdr_decode_AFSCallBack(&bp, call, call->out_scb); 428 xdr_decode_AFSVolSync(&bp, call->out_volsync); 429 430 req->data_version = call->out_scb->status.data_version; 431 req->file_size = call->out_scb->status.size; 432 433 call->unmarshall++; 434 435 case 5: 436 break; 437 } 438 439 for (; req->index < req->nr_pages; req->index++) { 440 if (req->offset < PAGE_SIZE) 441 zero_user_segment(req->pages[req->index], 442 req->offset, PAGE_SIZE); 443 if (req->page_done) 444 req->page_done(req); 445 req->offset = 0; 446 } 447 448 _leave(" = 0 [done]"); 449 return 0; 450 } 451 452 static void afs_fetch_data_destructor(struct afs_call *call) 453 { 454 struct afs_read *req = call->read_request; 455 456 afs_put_read(req); 457 afs_flat_call_destructor(call); 458 } 459 460 /* 461 * FS.FetchData operation type 462 */ 463 static const struct afs_call_type afs_RXFSFetchData = { 464 .name = "FS.FetchData", 465 .op = afs_FS_FetchData, 466 .deliver = afs_deliver_fs_fetch_data, 467 .destructor = afs_fetch_data_destructor, 468 }; 469 470 static const struct afs_call_type afs_RXFSFetchData64 = { 471 .name = "FS.FetchData64", 472 .op = afs_FS_FetchData64, 473 .deliver = afs_deliver_fs_fetch_data, 474 .destructor = afs_fetch_data_destructor, 475 }; 476 477 /* 478 * fetch data from a very large file 479 */ 480 static int afs_fs_fetch_data64(struct afs_fs_cursor *fc, 481 struct afs_status_cb *scb, 482 struct afs_read *req) 483 { 484 struct afs_vnode *vnode = fc->vnode; 485 struct afs_call *call; 486 struct afs_net *net = afs_v2net(vnode); 487 __be32 *bp; 488 489 _enter(""); 490 491 call = afs_alloc_flat_call(net, &afs_RXFSFetchData64, 32, (21 + 3 + 6) * 4); 492 if (!call) 493 return -ENOMEM; 494 495 call->key = fc->key; 496 call->out_scb = scb; 497 call->out_volsync = NULL; 498 call->read_request = afs_get_read(req); 499 500 /* marshall the parameters */ 501 bp = call->request; 502 bp[0] = htonl(FSFETCHDATA64); 503 bp[1] = htonl(vnode->fid.vid); 504 bp[2] = htonl(vnode->fid.vnode); 505 bp[3] = htonl(vnode->fid.unique); 506 bp[4] = htonl(upper_32_bits(req->pos)); 507 bp[5] = htonl(lower_32_bits(req->pos)); 508 bp[6] = 0; 509 bp[7] = htonl(lower_32_bits(req->len)); 510 511 afs_use_fs_server(call, fc->cbi); 512 trace_afs_make_fs_call(call, &vnode->fid); 513 afs_set_fc_call(call, fc); 514 afs_make_call(&fc->ac, call, GFP_NOFS); 515 return afs_wait_for_call_to_complete(call, &fc->ac); 516 } 517 518 /* 519 * fetch data from a file 520 */ 521 int afs_fs_fetch_data(struct afs_fs_cursor *fc, 522 struct afs_status_cb *scb, 523 struct afs_read *req) 524 { 525 struct afs_vnode *vnode = fc->vnode; 526 struct afs_call *call; 527 struct afs_net *net = afs_v2net(vnode); 528 __be32 *bp; 529 530 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 531 return yfs_fs_fetch_data(fc, scb, req); 532 533 if (upper_32_bits(req->pos) || 534 upper_32_bits(req->len) || 535 upper_32_bits(req->pos + req->len)) 536 return afs_fs_fetch_data64(fc, scb, req); 537 538 _enter(""); 539 540 call = afs_alloc_flat_call(net, &afs_RXFSFetchData, 24, (21 + 3 + 6) * 4); 541 if (!call) 542 return -ENOMEM; 543 544 call->key = fc->key; 545 call->out_scb = scb; 546 call->out_volsync = NULL; 547 call->read_request = afs_get_read(req); 548 549 /* marshall the parameters */ 550 bp = call->request; 551 bp[0] = htonl(FSFETCHDATA); 552 bp[1] = htonl(vnode->fid.vid); 553 bp[2] = htonl(vnode->fid.vnode); 554 bp[3] = htonl(vnode->fid.unique); 555 bp[4] = htonl(lower_32_bits(req->pos)); 556 bp[5] = htonl(lower_32_bits(req->len)); 557 558 afs_use_fs_server(call, fc->cbi); 559 trace_afs_make_fs_call(call, &vnode->fid); 560 afs_set_fc_call(call, fc); 561 afs_make_call(&fc->ac, call, GFP_NOFS); 562 return afs_wait_for_call_to_complete(call, &fc->ac); 563 } 564 565 /* 566 * deliver reply data to an FS.CreateFile or an FS.MakeDir 567 */ 568 static int afs_deliver_fs_create_vnode(struct afs_call *call) 569 { 570 const __be32 *bp; 571 int ret; 572 573 ret = afs_transfer_reply(call); 574 if (ret < 0) 575 return ret; 576 577 /* unmarshall the reply once we've received all of it */ 578 bp = call->buffer; 579 xdr_decode_AFSFid(&bp, call->out_fid); 580 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 581 if (ret < 0) 582 return ret; 583 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb); 584 if (ret < 0) 585 return ret; 586 xdr_decode_AFSCallBack(&bp, call, call->out_scb); 587 xdr_decode_AFSVolSync(&bp, call->out_volsync); 588 589 _leave(" = 0 [done]"); 590 return 0; 591 } 592 593 /* 594 * FS.CreateFile and FS.MakeDir operation type 595 */ 596 static const struct afs_call_type afs_RXFSCreateFile = { 597 .name = "FS.CreateFile", 598 .op = afs_FS_CreateFile, 599 .deliver = afs_deliver_fs_create_vnode, 600 .destructor = afs_flat_call_destructor, 601 }; 602 603 static const struct afs_call_type afs_RXFSMakeDir = { 604 .name = "FS.MakeDir", 605 .op = afs_FS_MakeDir, 606 .deliver = afs_deliver_fs_create_vnode, 607 .destructor = afs_flat_call_destructor, 608 }; 609 610 /* 611 * create a file or make a directory 612 */ 613 int afs_fs_create(struct afs_fs_cursor *fc, 614 const char *name, 615 umode_t mode, 616 struct afs_status_cb *dvnode_scb, 617 struct afs_fid *newfid, 618 struct afs_status_cb *new_scb) 619 { 620 struct afs_vnode *dvnode = fc->vnode; 621 struct afs_call *call; 622 struct afs_net *net = afs_v2net(dvnode); 623 size_t namesz, reqsz, padsz; 624 __be32 *bp; 625 626 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)){ 627 if (S_ISDIR(mode)) 628 return yfs_fs_make_dir(fc, name, mode, dvnode_scb, 629 newfid, new_scb); 630 else 631 return yfs_fs_create_file(fc, name, mode, dvnode_scb, 632 newfid, new_scb); 633 } 634 635 _enter(""); 636 637 namesz = strlen(name); 638 padsz = (4 - (namesz & 3)) & 3; 639 reqsz = (5 * 4) + namesz + padsz + (6 * 4); 640 641 call = afs_alloc_flat_call( 642 net, S_ISDIR(mode) ? &afs_RXFSMakeDir : &afs_RXFSCreateFile, 643 reqsz, (3 + 21 + 21 + 3 + 6) * 4); 644 if (!call) 645 return -ENOMEM; 646 647 call->key = fc->key; 648 call->out_dir_scb = dvnode_scb; 649 call->out_fid = newfid; 650 call->out_scb = new_scb; 651 652 /* marshall the parameters */ 653 bp = call->request; 654 *bp++ = htonl(S_ISDIR(mode) ? FSMAKEDIR : FSCREATEFILE); 655 *bp++ = htonl(dvnode->fid.vid); 656 *bp++ = htonl(dvnode->fid.vnode); 657 *bp++ = htonl(dvnode->fid.unique); 658 *bp++ = htonl(namesz); 659 memcpy(bp, name, namesz); 660 bp = (void *) bp + namesz; 661 if (padsz > 0) { 662 memset(bp, 0, padsz); 663 bp = (void *) bp + padsz; 664 } 665 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME); 666 *bp++ = htonl(dvnode->vfs_inode.i_mtime.tv_sec); /* mtime */ 667 *bp++ = 0; /* owner */ 668 *bp++ = 0; /* group */ 669 *bp++ = htonl(mode & S_IALLUGO); /* unix mode */ 670 *bp++ = 0; /* segment size */ 671 672 afs_use_fs_server(call, fc->cbi); 673 trace_afs_make_fs_call1(call, &dvnode->fid, name); 674 afs_set_fc_call(call, fc); 675 afs_make_call(&fc->ac, call, GFP_NOFS); 676 return afs_wait_for_call_to_complete(call, &fc->ac); 677 } 678 679 /* 680 * Deliver reply data to any operation that returns directory status and volume 681 * sync. 682 */ 683 static int afs_deliver_fs_dir_status_and_vol(struct afs_call *call) 684 { 685 const __be32 *bp; 686 int ret; 687 688 ret = afs_transfer_reply(call); 689 if (ret < 0) 690 return ret; 691 692 /* unmarshall the reply once we've received all of it */ 693 bp = call->buffer; 694 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb); 695 if (ret < 0) 696 return ret; 697 xdr_decode_AFSVolSync(&bp, call->out_volsync); 698 699 _leave(" = 0 [done]"); 700 return 0; 701 } 702 703 /* 704 * FS.RemoveDir/FS.RemoveFile operation type 705 */ 706 static const struct afs_call_type afs_RXFSRemoveFile = { 707 .name = "FS.RemoveFile", 708 .op = afs_FS_RemoveFile, 709 .deliver = afs_deliver_fs_dir_status_and_vol, 710 .destructor = afs_flat_call_destructor, 711 }; 712 713 static const struct afs_call_type afs_RXFSRemoveDir = { 714 .name = "FS.RemoveDir", 715 .op = afs_FS_RemoveDir, 716 .deliver = afs_deliver_fs_dir_status_and_vol, 717 .destructor = afs_flat_call_destructor, 718 }; 719 720 /* 721 * remove a file or directory 722 */ 723 int afs_fs_remove(struct afs_fs_cursor *fc, struct afs_vnode *vnode, 724 const char *name, bool isdir, struct afs_status_cb *dvnode_scb) 725 { 726 struct afs_vnode *dvnode = fc->vnode; 727 struct afs_call *call; 728 struct afs_net *net = afs_v2net(dvnode); 729 size_t namesz, reqsz, padsz; 730 __be32 *bp; 731 732 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 733 return yfs_fs_remove(fc, vnode, name, isdir, dvnode_scb); 734 735 _enter(""); 736 737 namesz = strlen(name); 738 padsz = (4 - (namesz & 3)) & 3; 739 reqsz = (5 * 4) + namesz + padsz; 740 741 call = afs_alloc_flat_call( 742 net, isdir ? &afs_RXFSRemoveDir : &afs_RXFSRemoveFile, 743 reqsz, (21 + 6) * 4); 744 if (!call) 745 return -ENOMEM; 746 747 call->key = fc->key; 748 call->out_dir_scb = dvnode_scb; 749 750 /* marshall the parameters */ 751 bp = call->request; 752 *bp++ = htonl(isdir ? FSREMOVEDIR : FSREMOVEFILE); 753 *bp++ = htonl(dvnode->fid.vid); 754 *bp++ = htonl(dvnode->fid.vnode); 755 *bp++ = htonl(dvnode->fid.unique); 756 *bp++ = htonl(namesz); 757 memcpy(bp, name, namesz); 758 bp = (void *) bp + namesz; 759 if (padsz > 0) { 760 memset(bp, 0, padsz); 761 bp = (void *) bp + padsz; 762 } 763 764 afs_use_fs_server(call, fc->cbi); 765 trace_afs_make_fs_call1(call, &dvnode->fid, name); 766 afs_set_fc_call(call, fc); 767 afs_make_call(&fc->ac, call, GFP_NOFS); 768 return afs_wait_for_call_to_complete(call, &fc->ac); 769 } 770 771 /* 772 * deliver reply data to an FS.Link 773 */ 774 static int afs_deliver_fs_link(struct afs_call *call) 775 { 776 const __be32 *bp; 777 int ret; 778 779 _enter("{%u}", call->unmarshall); 780 781 ret = afs_transfer_reply(call); 782 if (ret < 0) 783 return ret; 784 785 /* unmarshall the reply once we've received all of it */ 786 bp = call->buffer; 787 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 788 if (ret < 0) 789 return ret; 790 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb); 791 if (ret < 0) 792 return ret; 793 xdr_decode_AFSVolSync(&bp, call->out_volsync); 794 795 _leave(" = 0 [done]"); 796 return 0; 797 } 798 799 /* 800 * FS.Link operation type 801 */ 802 static const struct afs_call_type afs_RXFSLink = { 803 .name = "FS.Link", 804 .op = afs_FS_Link, 805 .deliver = afs_deliver_fs_link, 806 .destructor = afs_flat_call_destructor, 807 }; 808 809 /* 810 * make a hard link 811 */ 812 int afs_fs_link(struct afs_fs_cursor *fc, struct afs_vnode *vnode, 813 const char *name, 814 struct afs_status_cb *dvnode_scb, 815 struct afs_status_cb *vnode_scb) 816 { 817 struct afs_vnode *dvnode = fc->vnode; 818 struct afs_call *call; 819 struct afs_net *net = afs_v2net(vnode); 820 size_t namesz, reqsz, padsz; 821 __be32 *bp; 822 823 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 824 return yfs_fs_link(fc, vnode, name, dvnode_scb, vnode_scb); 825 826 _enter(""); 827 828 namesz = strlen(name); 829 padsz = (4 - (namesz & 3)) & 3; 830 reqsz = (5 * 4) + namesz + padsz + (3 * 4); 831 832 call = afs_alloc_flat_call(net, &afs_RXFSLink, reqsz, (21 + 21 + 6) * 4); 833 if (!call) 834 return -ENOMEM; 835 836 call->key = fc->key; 837 call->out_dir_scb = dvnode_scb; 838 call->out_scb = vnode_scb; 839 840 /* marshall the parameters */ 841 bp = call->request; 842 *bp++ = htonl(FSLINK); 843 *bp++ = htonl(dvnode->fid.vid); 844 *bp++ = htonl(dvnode->fid.vnode); 845 *bp++ = htonl(dvnode->fid.unique); 846 *bp++ = htonl(namesz); 847 memcpy(bp, name, namesz); 848 bp = (void *) bp + namesz; 849 if (padsz > 0) { 850 memset(bp, 0, padsz); 851 bp = (void *) bp + padsz; 852 } 853 *bp++ = htonl(vnode->fid.vid); 854 *bp++ = htonl(vnode->fid.vnode); 855 *bp++ = htonl(vnode->fid.unique); 856 857 afs_use_fs_server(call, fc->cbi); 858 trace_afs_make_fs_call1(call, &vnode->fid, name); 859 afs_set_fc_call(call, fc); 860 afs_make_call(&fc->ac, call, GFP_NOFS); 861 return afs_wait_for_call_to_complete(call, &fc->ac); 862 } 863 864 /* 865 * deliver reply data to an FS.Symlink 866 */ 867 static int afs_deliver_fs_symlink(struct afs_call *call) 868 { 869 const __be32 *bp; 870 int ret; 871 872 _enter("{%u}", call->unmarshall); 873 874 ret = afs_transfer_reply(call); 875 if (ret < 0) 876 return ret; 877 878 /* unmarshall the reply once we've received all of it */ 879 bp = call->buffer; 880 xdr_decode_AFSFid(&bp, call->out_fid); 881 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 882 if (ret < 0) 883 return ret; 884 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb); 885 if (ret < 0) 886 return ret; 887 xdr_decode_AFSVolSync(&bp, call->out_volsync); 888 889 _leave(" = 0 [done]"); 890 return 0; 891 } 892 893 /* 894 * FS.Symlink operation type 895 */ 896 static const struct afs_call_type afs_RXFSSymlink = { 897 .name = "FS.Symlink", 898 .op = afs_FS_Symlink, 899 .deliver = afs_deliver_fs_symlink, 900 .destructor = afs_flat_call_destructor, 901 }; 902 903 /* 904 * create a symbolic link 905 */ 906 int afs_fs_symlink(struct afs_fs_cursor *fc, 907 const char *name, 908 const char *contents, 909 struct afs_status_cb *dvnode_scb, 910 struct afs_fid *newfid, 911 struct afs_status_cb *new_scb) 912 { 913 struct afs_vnode *dvnode = fc->vnode; 914 struct afs_call *call; 915 struct afs_net *net = afs_v2net(dvnode); 916 size_t namesz, reqsz, padsz, c_namesz, c_padsz; 917 __be32 *bp; 918 919 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 920 return yfs_fs_symlink(fc, name, contents, dvnode_scb, 921 newfid, new_scb); 922 923 _enter(""); 924 925 namesz = strlen(name); 926 padsz = (4 - (namesz & 3)) & 3; 927 928 c_namesz = strlen(contents); 929 c_padsz = (4 - (c_namesz & 3)) & 3; 930 931 reqsz = (6 * 4) + namesz + padsz + c_namesz + c_padsz + (6 * 4); 932 933 call = afs_alloc_flat_call(net, &afs_RXFSSymlink, reqsz, 934 (3 + 21 + 21 + 6) * 4); 935 if (!call) 936 return -ENOMEM; 937 938 call->key = fc->key; 939 call->out_dir_scb = dvnode_scb; 940 call->out_fid = newfid; 941 call->out_scb = new_scb; 942 943 /* marshall the parameters */ 944 bp = call->request; 945 *bp++ = htonl(FSSYMLINK); 946 *bp++ = htonl(dvnode->fid.vid); 947 *bp++ = htonl(dvnode->fid.vnode); 948 *bp++ = htonl(dvnode->fid.unique); 949 *bp++ = htonl(namesz); 950 memcpy(bp, name, namesz); 951 bp = (void *) bp + namesz; 952 if (padsz > 0) { 953 memset(bp, 0, padsz); 954 bp = (void *) bp + padsz; 955 } 956 *bp++ = htonl(c_namesz); 957 memcpy(bp, contents, c_namesz); 958 bp = (void *) bp + c_namesz; 959 if (c_padsz > 0) { 960 memset(bp, 0, c_padsz); 961 bp = (void *) bp + c_padsz; 962 } 963 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME); 964 *bp++ = htonl(dvnode->vfs_inode.i_mtime.tv_sec); /* mtime */ 965 *bp++ = 0; /* owner */ 966 *bp++ = 0; /* group */ 967 *bp++ = htonl(S_IRWXUGO); /* unix mode */ 968 *bp++ = 0; /* segment size */ 969 970 afs_use_fs_server(call, fc->cbi); 971 trace_afs_make_fs_call1(call, &dvnode->fid, name); 972 afs_set_fc_call(call, fc); 973 afs_make_call(&fc->ac, call, GFP_NOFS); 974 return afs_wait_for_call_to_complete(call, &fc->ac); 975 } 976 977 /* 978 * deliver reply data to an FS.Rename 979 */ 980 static int afs_deliver_fs_rename(struct afs_call *call) 981 { 982 const __be32 *bp; 983 int ret; 984 985 ret = afs_transfer_reply(call); 986 if (ret < 0) 987 return ret; 988 989 /* If the two dirs are the same, we have two copies of the same status 990 * report, so we just decode it twice. 991 */ 992 bp = call->buffer; 993 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb); 994 if (ret < 0) 995 return ret; 996 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 997 if (ret < 0) 998 return ret; 999 xdr_decode_AFSVolSync(&bp, call->out_volsync); 1000 1001 _leave(" = 0 [done]"); 1002 return 0; 1003 } 1004 1005 /* 1006 * FS.Rename operation type 1007 */ 1008 static const struct afs_call_type afs_RXFSRename = { 1009 .name = "FS.Rename", 1010 .op = afs_FS_Rename, 1011 .deliver = afs_deliver_fs_rename, 1012 .destructor = afs_flat_call_destructor, 1013 }; 1014 1015 /* 1016 * Rename/move a file or directory. 1017 */ 1018 int afs_fs_rename(struct afs_fs_cursor *fc, 1019 const char *orig_name, 1020 struct afs_vnode *new_dvnode, 1021 const char *new_name, 1022 struct afs_status_cb *orig_dvnode_scb, 1023 struct afs_status_cb *new_dvnode_scb) 1024 { 1025 struct afs_vnode *orig_dvnode = fc->vnode; 1026 struct afs_call *call; 1027 struct afs_net *net = afs_v2net(orig_dvnode); 1028 size_t reqsz, o_namesz, o_padsz, n_namesz, n_padsz; 1029 __be32 *bp; 1030 1031 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1032 return yfs_fs_rename(fc, orig_name, 1033 new_dvnode, new_name, 1034 orig_dvnode_scb, 1035 new_dvnode_scb); 1036 1037 _enter(""); 1038 1039 o_namesz = strlen(orig_name); 1040 o_padsz = (4 - (o_namesz & 3)) & 3; 1041 1042 n_namesz = strlen(new_name); 1043 n_padsz = (4 - (n_namesz & 3)) & 3; 1044 1045 reqsz = (4 * 4) + 1046 4 + o_namesz + o_padsz + 1047 (3 * 4) + 1048 4 + n_namesz + n_padsz; 1049 1050 call = afs_alloc_flat_call(net, &afs_RXFSRename, reqsz, (21 + 21 + 6) * 4); 1051 if (!call) 1052 return -ENOMEM; 1053 1054 call->key = fc->key; 1055 call->out_dir_scb = orig_dvnode_scb; 1056 call->out_scb = new_dvnode_scb; 1057 1058 /* marshall the parameters */ 1059 bp = call->request; 1060 *bp++ = htonl(FSRENAME); 1061 *bp++ = htonl(orig_dvnode->fid.vid); 1062 *bp++ = htonl(orig_dvnode->fid.vnode); 1063 *bp++ = htonl(orig_dvnode->fid.unique); 1064 *bp++ = htonl(o_namesz); 1065 memcpy(bp, orig_name, o_namesz); 1066 bp = (void *) bp + o_namesz; 1067 if (o_padsz > 0) { 1068 memset(bp, 0, o_padsz); 1069 bp = (void *) bp + o_padsz; 1070 } 1071 1072 *bp++ = htonl(new_dvnode->fid.vid); 1073 *bp++ = htonl(new_dvnode->fid.vnode); 1074 *bp++ = htonl(new_dvnode->fid.unique); 1075 *bp++ = htonl(n_namesz); 1076 memcpy(bp, new_name, n_namesz); 1077 bp = (void *) bp + n_namesz; 1078 if (n_padsz > 0) { 1079 memset(bp, 0, n_padsz); 1080 bp = (void *) bp + n_padsz; 1081 } 1082 1083 afs_use_fs_server(call, fc->cbi); 1084 trace_afs_make_fs_call2(call, &orig_dvnode->fid, orig_name, new_name); 1085 afs_set_fc_call(call, fc); 1086 afs_make_call(&fc->ac, call, GFP_NOFS); 1087 return afs_wait_for_call_to_complete(call, &fc->ac); 1088 } 1089 1090 /* 1091 * deliver reply data to an FS.StoreData 1092 */ 1093 static int afs_deliver_fs_store_data(struct afs_call *call) 1094 { 1095 const __be32 *bp; 1096 int ret; 1097 1098 _enter(""); 1099 1100 ret = afs_transfer_reply(call); 1101 if (ret < 0) 1102 return ret; 1103 1104 /* unmarshall the reply once we've received all of it */ 1105 bp = call->buffer; 1106 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 1107 if (ret < 0) 1108 return ret; 1109 xdr_decode_AFSVolSync(&bp, call->out_volsync); 1110 1111 _leave(" = 0 [done]"); 1112 return 0; 1113 } 1114 1115 /* 1116 * FS.StoreData operation type 1117 */ 1118 static const struct afs_call_type afs_RXFSStoreData = { 1119 .name = "FS.StoreData", 1120 .op = afs_FS_StoreData, 1121 .deliver = afs_deliver_fs_store_data, 1122 .destructor = afs_flat_call_destructor, 1123 }; 1124 1125 static const struct afs_call_type afs_RXFSStoreData64 = { 1126 .name = "FS.StoreData64", 1127 .op = afs_FS_StoreData64, 1128 .deliver = afs_deliver_fs_store_data, 1129 .destructor = afs_flat_call_destructor, 1130 }; 1131 1132 /* 1133 * store a set of pages to a very large file 1134 */ 1135 static int afs_fs_store_data64(struct afs_fs_cursor *fc, 1136 struct address_space *mapping, 1137 pgoff_t first, pgoff_t last, 1138 unsigned offset, unsigned to, 1139 loff_t size, loff_t pos, loff_t i_size, 1140 struct afs_status_cb *scb) 1141 { 1142 struct afs_vnode *vnode = fc->vnode; 1143 struct afs_call *call; 1144 struct afs_net *net = afs_v2net(vnode); 1145 __be32 *bp; 1146 1147 _enter(",%x,{%llx:%llu},,", 1148 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 1149 1150 call = afs_alloc_flat_call(net, &afs_RXFSStoreData64, 1151 (4 + 6 + 3 * 2) * 4, 1152 (21 + 6) * 4); 1153 if (!call) 1154 return -ENOMEM; 1155 1156 call->key = fc->key; 1157 call->mapping = mapping; 1158 call->first = first; 1159 call->last = last; 1160 call->first_offset = offset; 1161 call->last_to = to; 1162 call->send_pages = true; 1163 call->out_scb = scb; 1164 1165 /* marshall the parameters */ 1166 bp = call->request; 1167 *bp++ = htonl(FSSTOREDATA64); 1168 *bp++ = htonl(vnode->fid.vid); 1169 *bp++ = htonl(vnode->fid.vnode); 1170 *bp++ = htonl(vnode->fid.unique); 1171 1172 *bp++ = htonl(AFS_SET_MTIME); /* mask */ 1173 *bp++ = htonl(vnode->vfs_inode.i_mtime.tv_sec); /* mtime */ 1174 *bp++ = 0; /* owner */ 1175 *bp++ = 0; /* group */ 1176 *bp++ = 0; /* unix mode */ 1177 *bp++ = 0; /* segment size */ 1178 1179 *bp++ = htonl(pos >> 32); 1180 *bp++ = htonl((u32) pos); 1181 *bp++ = htonl(size >> 32); 1182 *bp++ = htonl((u32) size); 1183 *bp++ = htonl(i_size >> 32); 1184 *bp++ = htonl((u32) i_size); 1185 1186 trace_afs_make_fs_call(call, &vnode->fid); 1187 afs_set_fc_call(call, fc); 1188 afs_make_call(&fc->ac, call, GFP_NOFS); 1189 return afs_wait_for_call_to_complete(call, &fc->ac); 1190 } 1191 1192 /* 1193 * store a set of pages 1194 */ 1195 int afs_fs_store_data(struct afs_fs_cursor *fc, struct address_space *mapping, 1196 pgoff_t first, pgoff_t last, 1197 unsigned offset, unsigned to, 1198 struct afs_status_cb *scb) 1199 { 1200 struct afs_vnode *vnode = fc->vnode; 1201 struct afs_call *call; 1202 struct afs_net *net = afs_v2net(vnode); 1203 loff_t size, pos, i_size; 1204 __be32 *bp; 1205 1206 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1207 return yfs_fs_store_data(fc, mapping, first, last, offset, to, scb); 1208 1209 _enter(",%x,{%llx:%llu},,", 1210 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 1211 1212 size = (loff_t)to - (loff_t)offset; 1213 if (first != last) 1214 size += (loff_t)(last - first) << PAGE_SHIFT; 1215 pos = (loff_t)first << PAGE_SHIFT; 1216 pos += offset; 1217 1218 i_size = i_size_read(&vnode->vfs_inode); 1219 if (pos + size > i_size) 1220 i_size = size + pos; 1221 1222 _debug("size %llx, at %llx, i_size %llx", 1223 (unsigned long long) size, (unsigned long long) pos, 1224 (unsigned long long) i_size); 1225 1226 if (pos >> 32 || i_size >> 32 || size >> 32 || (pos + size) >> 32) 1227 return afs_fs_store_data64(fc, mapping, first, last, offset, to, 1228 size, pos, i_size, scb); 1229 1230 call = afs_alloc_flat_call(net, &afs_RXFSStoreData, 1231 (4 + 6 + 3) * 4, 1232 (21 + 6) * 4); 1233 if (!call) 1234 return -ENOMEM; 1235 1236 call->key = fc->key; 1237 call->mapping = mapping; 1238 call->first = first; 1239 call->last = last; 1240 call->first_offset = offset; 1241 call->last_to = to; 1242 call->send_pages = true; 1243 call->out_scb = scb; 1244 1245 /* marshall the parameters */ 1246 bp = call->request; 1247 *bp++ = htonl(FSSTOREDATA); 1248 *bp++ = htonl(vnode->fid.vid); 1249 *bp++ = htonl(vnode->fid.vnode); 1250 *bp++ = htonl(vnode->fid.unique); 1251 1252 *bp++ = htonl(AFS_SET_MTIME); /* mask */ 1253 *bp++ = htonl(vnode->vfs_inode.i_mtime.tv_sec); /* mtime */ 1254 *bp++ = 0; /* owner */ 1255 *bp++ = 0; /* group */ 1256 *bp++ = 0; /* unix mode */ 1257 *bp++ = 0; /* segment size */ 1258 1259 *bp++ = htonl(pos); 1260 *bp++ = htonl(size); 1261 *bp++ = htonl(i_size); 1262 1263 afs_use_fs_server(call, fc->cbi); 1264 trace_afs_make_fs_call(call, &vnode->fid); 1265 afs_set_fc_call(call, fc); 1266 afs_make_call(&fc->ac, call, GFP_NOFS); 1267 return afs_wait_for_call_to_complete(call, &fc->ac); 1268 } 1269 1270 /* 1271 * deliver reply data to an FS.StoreStatus 1272 */ 1273 static int afs_deliver_fs_store_status(struct afs_call *call) 1274 { 1275 const __be32 *bp; 1276 int ret; 1277 1278 _enter(""); 1279 1280 ret = afs_transfer_reply(call); 1281 if (ret < 0) 1282 return ret; 1283 1284 /* unmarshall the reply once we've received all of it */ 1285 bp = call->buffer; 1286 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 1287 if (ret < 0) 1288 return ret; 1289 xdr_decode_AFSVolSync(&bp, call->out_volsync); 1290 1291 _leave(" = 0 [done]"); 1292 return 0; 1293 } 1294 1295 /* 1296 * FS.StoreStatus operation type 1297 */ 1298 static const struct afs_call_type afs_RXFSStoreStatus = { 1299 .name = "FS.StoreStatus", 1300 .op = afs_FS_StoreStatus, 1301 .deliver = afs_deliver_fs_store_status, 1302 .destructor = afs_flat_call_destructor, 1303 }; 1304 1305 static const struct afs_call_type afs_RXFSStoreData_as_Status = { 1306 .name = "FS.StoreData", 1307 .op = afs_FS_StoreData, 1308 .deliver = afs_deliver_fs_store_status, 1309 .destructor = afs_flat_call_destructor, 1310 }; 1311 1312 static const struct afs_call_type afs_RXFSStoreData64_as_Status = { 1313 .name = "FS.StoreData64", 1314 .op = afs_FS_StoreData64, 1315 .deliver = afs_deliver_fs_store_status, 1316 .destructor = afs_flat_call_destructor, 1317 }; 1318 1319 /* 1320 * set the attributes on a very large file, using FS.StoreData rather than 1321 * FS.StoreStatus so as to alter the file size also 1322 */ 1323 static int afs_fs_setattr_size64(struct afs_fs_cursor *fc, struct iattr *attr, 1324 struct afs_status_cb *scb) 1325 { 1326 struct afs_vnode *vnode = fc->vnode; 1327 struct afs_call *call; 1328 struct afs_net *net = afs_v2net(vnode); 1329 __be32 *bp; 1330 1331 _enter(",%x,{%llx:%llu},,", 1332 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 1333 1334 ASSERT(attr->ia_valid & ATTR_SIZE); 1335 1336 call = afs_alloc_flat_call(net, &afs_RXFSStoreData64_as_Status, 1337 (4 + 6 + 3 * 2) * 4, 1338 (21 + 6) * 4); 1339 if (!call) 1340 return -ENOMEM; 1341 1342 call->key = fc->key; 1343 call->out_scb = scb; 1344 1345 /* marshall the parameters */ 1346 bp = call->request; 1347 *bp++ = htonl(FSSTOREDATA64); 1348 *bp++ = htonl(vnode->fid.vid); 1349 *bp++ = htonl(vnode->fid.vnode); 1350 *bp++ = htonl(vnode->fid.unique); 1351 1352 xdr_encode_AFS_StoreStatus(&bp, attr); 1353 1354 *bp++ = htonl(attr->ia_size >> 32); /* position of start of write */ 1355 *bp++ = htonl((u32) attr->ia_size); 1356 *bp++ = 0; /* size of write */ 1357 *bp++ = 0; 1358 *bp++ = htonl(attr->ia_size >> 32); /* new file length */ 1359 *bp++ = htonl((u32) attr->ia_size); 1360 1361 afs_use_fs_server(call, fc->cbi); 1362 trace_afs_make_fs_call(call, &vnode->fid); 1363 afs_set_fc_call(call, fc); 1364 afs_make_call(&fc->ac, call, GFP_NOFS); 1365 return afs_wait_for_call_to_complete(call, &fc->ac); 1366 } 1367 1368 /* 1369 * set the attributes on a file, using FS.StoreData rather than FS.StoreStatus 1370 * so as to alter the file size also 1371 */ 1372 static int afs_fs_setattr_size(struct afs_fs_cursor *fc, struct iattr *attr, 1373 struct afs_status_cb *scb) 1374 { 1375 struct afs_vnode *vnode = fc->vnode; 1376 struct afs_call *call; 1377 struct afs_net *net = afs_v2net(vnode); 1378 __be32 *bp; 1379 1380 _enter(",%x,{%llx:%llu},,", 1381 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 1382 1383 ASSERT(attr->ia_valid & ATTR_SIZE); 1384 if (attr->ia_size >> 32) 1385 return afs_fs_setattr_size64(fc, attr, scb); 1386 1387 call = afs_alloc_flat_call(net, &afs_RXFSStoreData_as_Status, 1388 (4 + 6 + 3) * 4, 1389 (21 + 6) * 4); 1390 if (!call) 1391 return -ENOMEM; 1392 1393 call->key = fc->key; 1394 call->out_scb = scb; 1395 1396 /* marshall the parameters */ 1397 bp = call->request; 1398 *bp++ = htonl(FSSTOREDATA); 1399 *bp++ = htonl(vnode->fid.vid); 1400 *bp++ = htonl(vnode->fid.vnode); 1401 *bp++ = htonl(vnode->fid.unique); 1402 1403 xdr_encode_AFS_StoreStatus(&bp, attr); 1404 1405 *bp++ = htonl(attr->ia_size); /* position of start of write */ 1406 *bp++ = 0; /* size of write */ 1407 *bp++ = htonl(attr->ia_size); /* new file length */ 1408 1409 afs_use_fs_server(call, fc->cbi); 1410 trace_afs_make_fs_call(call, &vnode->fid); 1411 afs_set_fc_call(call, fc); 1412 afs_make_call(&fc->ac, call, GFP_NOFS); 1413 return afs_wait_for_call_to_complete(call, &fc->ac); 1414 } 1415 1416 /* 1417 * set the attributes on a file, using FS.StoreData if there's a change in file 1418 * size, and FS.StoreStatus otherwise 1419 */ 1420 int afs_fs_setattr(struct afs_fs_cursor *fc, struct iattr *attr, 1421 struct afs_status_cb *scb) 1422 { 1423 struct afs_vnode *vnode = fc->vnode; 1424 struct afs_call *call; 1425 struct afs_net *net = afs_v2net(vnode); 1426 __be32 *bp; 1427 1428 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1429 return yfs_fs_setattr(fc, attr, scb); 1430 1431 if (attr->ia_valid & ATTR_SIZE) 1432 return afs_fs_setattr_size(fc, attr, scb); 1433 1434 _enter(",%x,{%llx:%llu},,", 1435 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 1436 1437 call = afs_alloc_flat_call(net, &afs_RXFSStoreStatus, 1438 (4 + 6) * 4, 1439 (21 + 6) * 4); 1440 if (!call) 1441 return -ENOMEM; 1442 1443 call->key = fc->key; 1444 call->out_scb = scb; 1445 1446 /* marshall the parameters */ 1447 bp = call->request; 1448 *bp++ = htonl(FSSTORESTATUS); 1449 *bp++ = htonl(vnode->fid.vid); 1450 *bp++ = htonl(vnode->fid.vnode); 1451 *bp++ = htonl(vnode->fid.unique); 1452 1453 xdr_encode_AFS_StoreStatus(&bp, attr); 1454 1455 afs_use_fs_server(call, fc->cbi); 1456 trace_afs_make_fs_call(call, &vnode->fid); 1457 afs_set_fc_call(call, fc); 1458 afs_make_call(&fc->ac, call, GFP_NOFS); 1459 return afs_wait_for_call_to_complete(call, &fc->ac); 1460 } 1461 1462 /* 1463 * deliver reply data to an FS.GetVolumeStatus 1464 */ 1465 static int afs_deliver_fs_get_volume_status(struct afs_call *call) 1466 { 1467 const __be32 *bp; 1468 char *p; 1469 u32 size; 1470 int ret; 1471 1472 _enter("{%u}", call->unmarshall); 1473 1474 switch (call->unmarshall) { 1475 case 0: 1476 call->unmarshall++; 1477 afs_extract_to_buf(call, 12 * 4); 1478 /* Fall through */ 1479 1480 /* extract the returned status record */ 1481 case 1: 1482 _debug("extract status"); 1483 ret = afs_extract_data(call, true); 1484 if (ret < 0) 1485 return ret; 1486 1487 bp = call->buffer; 1488 xdr_decode_AFSFetchVolumeStatus(&bp, call->out_volstatus); 1489 call->unmarshall++; 1490 afs_extract_to_tmp(call); 1491 /* Fall through */ 1492 1493 /* extract the volume name length */ 1494 case 2: 1495 ret = afs_extract_data(call, true); 1496 if (ret < 0) 1497 return ret; 1498 1499 call->count = ntohl(call->tmp); 1500 _debug("volname length: %u", call->count); 1501 if (call->count >= AFSNAMEMAX) 1502 return afs_protocol_error(call, -EBADMSG, 1503 afs_eproto_volname_len); 1504 size = (call->count + 3) & ~3; /* It's padded */ 1505 afs_extract_to_buf(call, size); 1506 call->unmarshall++; 1507 /* Fall through */ 1508 1509 /* extract the volume name */ 1510 case 3: 1511 _debug("extract volname"); 1512 ret = afs_extract_data(call, true); 1513 if (ret < 0) 1514 return ret; 1515 1516 p = call->buffer; 1517 p[call->count] = 0; 1518 _debug("volname '%s'", p); 1519 afs_extract_to_tmp(call); 1520 call->unmarshall++; 1521 /* Fall through */ 1522 1523 /* extract the offline message length */ 1524 case 4: 1525 ret = afs_extract_data(call, true); 1526 if (ret < 0) 1527 return ret; 1528 1529 call->count = ntohl(call->tmp); 1530 _debug("offline msg length: %u", call->count); 1531 if (call->count >= AFSNAMEMAX) 1532 return afs_protocol_error(call, -EBADMSG, 1533 afs_eproto_offline_msg_len); 1534 size = (call->count + 3) & ~3; /* It's padded */ 1535 afs_extract_to_buf(call, size); 1536 call->unmarshall++; 1537 /* Fall through */ 1538 1539 /* extract the offline message */ 1540 case 5: 1541 _debug("extract offline"); 1542 ret = afs_extract_data(call, true); 1543 if (ret < 0) 1544 return ret; 1545 1546 p = call->buffer; 1547 p[call->count] = 0; 1548 _debug("offline '%s'", p); 1549 1550 afs_extract_to_tmp(call); 1551 call->unmarshall++; 1552 /* Fall through */ 1553 1554 /* extract the message of the day length */ 1555 case 6: 1556 ret = afs_extract_data(call, true); 1557 if (ret < 0) 1558 return ret; 1559 1560 call->count = ntohl(call->tmp); 1561 _debug("motd length: %u", call->count); 1562 if (call->count >= AFSNAMEMAX) 1563 return afs_protocol_error(call, -EBADMSG, 1564 afs_eproto_motd_len); 1565 size = (call->count + 3) & ~3; /* It's padded */ 1566 afs_extract_to_buf(call, size); 1567 call->unmarshall++; 1568 /* Fall through */ 1569 1570 /* extract the message of the day */ 1571 case 7: 1572 _debug("extract motd"); 1573 ret = afs_extract_data(call, false); 1574 if (ret < 0) 1575 return ret; 1576 1577 p = call->buffer; 1578 p[call->count] = 0; 1579 _debug("motd '%s'", p); 1580 1581 call->unmarshall++; 1582 1583 case 8: 1584 break; 1585 } 1586 1587 _leave(" = 0 [done]"); 1588 return 0; 1589 } 1590 1591 /* 1592 * FS.GetVolumeStatus operation type 1593 */ 1594 static const struct afs_call_type afs_RXFSGetVolumeStatus = { 1595 .name = "FS.GetVolumeStatus", 1596 .op = afs_FS_GetVolumeStatus, 1597 .deliver = afs_deliver_fs_get_volume_status, 1598 .destructor = afs_flat_call_destructor, 1599 }; 1600 1601 /* 1602 * fetch the status of a volume 1603 */ 1604 int afs_fs_get_volume_status(struct afs_fs_cursor *fc, 1605 struct afs_volume_status *vs) 1606 { 1607 struct afs_vnode *vnode = fc->vnode; 1608 struct afs_call *call; 1609 struct afs_net *net = afs_v2net(vnode); 1610 __be32 *bp; 1611 1612 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1613 return yfs_fs_get_volume_status(fc, vs); 1614 1615 _enter(""); 1616 1617 call = afs_alloc_flat_call(net, &afs_RXFSGetVolumeStatus, 2 * 4, 1618 max(12 * 4, AFSOPAQUEMAX + 1)); 1619 if (!call) 1620 return -ENOMEM; 1621 1622 call->key = fc->key; 1623 call->out_volstatus = vs; 1624 1625 /* marshall the parameters */ 1626 bp = call->request; 1627 bp[0] = htonl(FSGETVOLUMESTATUS); 1628 bp[1] = htonl(vnode->fid.vid); 1629 1630 afs_use_fs_server(call, fc->cbi); 1631 trace_afs_make_fs_call(call, &vnode->fid); 1632 afs_set_fc_call(call, fc); 1633 afs_make_call(&fc->ac, call, GFP_NOFS); 1634 return afs_wait_for_call_to_complete(call, &fc->ac); 1635 } 1636 1637 /* 1638 * deliver reply data to an FS.SetLock, FS.ExtendLock or FS.ReleaseLock 1639 */ 1640 static int afs_deliver_fs_xxxx_lock(struct afs_call *call) 1641 { 1642 const __be32 *bp; 1643 int ret; 1644 1645 _enter("{%u}", call->unmarshall); 1646 1647 ret = afs_transfer_reply(call); 1648 if (ret < 0) 1649 return ret; 1650 1651 /* unmarshall the reply once we've received all of it */ 1652 bp = call->buffer; 1653 xdr_decode_AFSVolSync(&bp, call->out_volsync); 1654 1655 _leave(" = 0 [done]"); 1656 return 0; 1657 } 1658 1659 /* 1660 * FS.SetLock operation type 1661 */ 1662 static const struct afs_call_type afs_RXFSSetLock = { 1663 .name = "FS.SetLock", 1664 .op = afs_FS_SetLock, 1665 .deliver = afs_deliver_fs_xxxx_lock, 1666 .done = afs_lock_op_done, 1667 .destructor = afs_flat_call_destructor, 1668 }; 1669 1670 /* 1671 * FS.ExtendLock operation type 1672 */ 1673 static const struct afs_call_type afs_RXFSExtendLock = { 1674 .name = "FS.ExtendLock", 1675 .op = afs_FS_ExtendLock, 1676 .deliver = afs_deliver_fs_xxxx_lock, 1677 .done = afs_lock_op_done, 1678 .destructor = afs_flat_call_destructor, 1679 }; 1680 1681 /* 1682 * FS.ReleaseLock operation type 1683 */ 1684 static const struct afs_call_type afs_RXFSReleaseLock = { 1685 .name = "FS.ReleaseLock", 1686 .op = afs_FS_ReleaseLock, 1687 .deliver = afs_deliver_fs_xxxx_lock, 1688 .destructor = afs_flat_call_destructor, 1689 }; 1690 1691 /* 1692 * Set a lock on a file 1693 */ 1694 int afs_fs_set_lock(struct afs_fs_cursor *fc, afs_lock_type_t type, 1695 struct afs_status_cb *scb) 1696 { 1697 struct afs_vnode *vnode = fc->vnode; 1698 struct afs_call *call; 1699 struct afs_net *net = afs_v2net(vnode); 1700 __be32 *bp; 1701 1702 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1703 return yfs_fs_set_lock(fc, type, scb); 1704 1705 _enter(""); 1706 1707 call = afs_alloc_flat_call(net, &afs_RXFSSetLock, 5 * 4, 6 * 4); 1708 if (!call) 1709 return -ENOMEM; 1710 1711 call->key = fc->key; 1712 call->lvnode = vnode; 1713 call->out_scb = scb; 1714 1715 /* marshall the parameters */ 1716 bp = call->request; 1717 *bp++ = htonl(FSSETLOCK); 1718 *bp++ = htonl(vnode->fid.vid); 1719 *bp++ = htonl(vnode->fid.vnode); 1720 *bp++ = htonl(vnode->fid.unique); 1721 *bp++ = htonl(type); 1722 1723 afs_use_fs_server(call, fc->cbi); 1724 trace_afs_make_fs_calli(call, &vnode->fid, type); 1725 afs_set_fc_call(call, fc); 1726 afs_make_call(&fc->ac, call, GFP_NOFS); 1727 return afs_wait_for_call_to_complete(call, &fc->ac); 1728 } 1729 1730 /* 1731 * extend a lock on a file 1732 */ 1733 int afs_fs_extend_lock(struct afs_fs_cursor *fc, struct afs_status_cb *scb) 1734 { 1735 struct afs_vnode *vnode = fc->vnode; 1736 struct afs_call *call; 1737 struct afs_net *net = afs_v2net(vnode); 1738 __be32 *bp; 1739 1740 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1741 return yfs_fs_extend_lock(fc, scb); 1742 1743 _enter(""); 1744 1745 call = afs_alloc_flat_call(net, &afs_RXFSExtendLock, 4 * 4, 6 * 4); 1746 if (!call) 1747 return -ENOMEM; 1748 1749 call->key = fc->key; 1750 call->lvnode = vnode; 1751 call->out_scb = scb; 1752 1753 /* marshall the parameters */ 1754 bp = call->request; 1755 *bp++ = htonl(FSEXTENDLOCK); 1756 *bp++ = htonl(vnode->fid.vid); 1757 *bp++ = htonl(vnode->fid.vnode); 1758 *bp++ = htonl(vnode->fid.unique); 1759 1760 afs_use_fs_server(call, fc->cbi); 1761 trace_afs_make_fs_call(call, &vnode->fid); 1762 afs_set_fc_call(call, fc); 1763 afs_make_call(&fc->ac, call, GFP_NOFS); 1764 return afs_wait_for_call_to_complete(call, &fc->ac); 1765 } 1766 1767 /* 1768 * release a lock on a file 1769 */ 1770 int afs_fs_release_lock(struct afs_fs_cursor *fc, struct afs_status_cb *scb) 1771 { 1772 struct afs_vnode *vnode = fc->vnode; 1773 struct afs_call *call; 1774 struct afs_net *net = afs_v2net(vnode); 1775 __be32 *bp; 1776 1777 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1778 return yfs_fs_release_lock(fc, scb); 1779 1780 _enter(""); 1781 1782 call = afs_alloc_flat_call(net, &afs_RXFSReleaseLock, 4 * 4, 6 * 4); 1783 if (!call) 1784 return -ENOMEM; 1785 1786 call->key = fc->key; 1787 call->lvnode = vnode; 1788 call->out_scb = scb; 1789 1790 /* marshall the parameters */ 1791 bp = call->request; 1792 *bp++ = htonl(FSRELEASELOCK); 1793 *bp++ = htonl(vnode->fid.vid); 1794 *bp++ = htonl(vnode->fid.vnode); 1795 *bp++ = htonl(vnode->fid.unique); 1796 1797 afs_use_fs_server(call, fc->cbi); 1798 trace_afs_make_fs_call(call, &vnode->fid); 1799 afs_set_fc_call(call, fc); 1800 afs_make_call(&fc->ac, call, GFP_NOFS); 1801 return afs_wait_for_call_to_complete(call, &fc->ac); 1802 } 1803 1804 /* 1805 * Deliver reply data to an FS.GiveUpAllCallBacks operation. 1806 */ 1807 static int afs_deliver_fs_give_up_all_callbacks(struct afs_call *call) 1808 { 1809 return afs_transfer_reply(call); 1810 } 1811 1812 /* 1813 * FS.GiveUpAllCallBacks operation type 1814 */ 1815 static const struct afs_call_type afs_RXFSGiveUpAllCallBacks = { 1816 .name = "FS.GiveUpAllCallBacks", 1817 .op = afs_FS_GiveUpAllCallBacks, 1818 .deliver = afs_deliver_fs_give_up_all_callbacks, 1819 .destructor = afs_flat_call_destructor, 1820 }; 1821 1822 /* 1823 * Flush all the callbacks we have on a server. 1824 */ 1825 int afs_fs_give_up_all_callbacks(struct afs_net *net, 1826 struct afs_server *server, 1827 struct afs_addr_cursor *ac, 1828 struct key *key) 1829 { 1830 struct afs_call *call; 1831 __be32 *bp; 1832 1833 _enter(""); 1834 1835 call = afs_alloc_flat_call(net, &afs_RXFSGiveUpAllCallBacks, 1 * 4, 0); 1836 if (!call) 1837 return -ENOMEM; 1838 1839 call->key = key; 1840 1841 /* marshall the parameters */ 1842 bp = call->request; 1843 *bp++ = htonl(FSGIVEUPALLCALLBACKS); 1844 1845 /* Can't take a ref on server */ 1846 afs_make_call(ac, call, GFP_NOFS); 1847 return afs_wait_for_call_to_complete(call, ac); 1848 } 1849 1850 /* 1851 * Deliver reply data to an FS.GetCapabilities operation. 1852 */ 1853 static int afs_deliver_fs_get_capabilities(struct afs_call *call) 1854 { 1855 u32 count; 1856 int ret; 1857 1858 _enter("{%u,%zu}", call->unmarshall, iov_iter_count(call->iter)); 1859 1860 switch (call->unmarshall) { 1861 case 0: 1862 afs_extract_to_tmp(call); 1863 call->unmarshall++; 1864 /* Fall through */ 1865 1866 /* Extract the capabilities word count */ 1867 case 1: 1868 ret = afs_extract_data(call, true); 1869 if (ret < 0) 1870 return ret; 1871 1872 count = ntohl(call->tmp); 1873 1874 call->count = count; 1875 call->count2 = count; 1876 afs_extract_discard(call, count * sizeof(__be32)); 1877 call->unmarshall++; 1878 /* Fall through */ 1879 1880 /* Extract capabilities words */ 1881 case 2: 1882 ret = afs_extract_data(call, false); 1883 if (ret < 0) 1884 return ret; 1885 1886 /* TODO: Examine capabilities */ 1887 1888 call->unmarshall++; 1889 break; 1890 } 1891 1892 _leave(" = 0 [done]"); 1893 return 0; 1894 } 1895 1896 /* 1897 * FS.GetCapabilities operation type 1898 */ 1899 static const struct afs_call_type afs_RXFSGetCapabilities = { 1900 .name = "FS.GetCapabilities", 1901 .op = afs_FS_GetCapabilities, 1902 .deliver = afs_deliver_fs_get_capabilities, 1903 .done = afs_fileserver_probe_result, 1904 .destructor = afs_flat_call_destructor, 1905 }; 1906 1907 /* 1908 * Probe a fileserver for the capabilities that it supports. This can 1909 * return up to 196 words. 1910 */ 1911 struct afs_call *afs_fs_get_capabilities(struct afs_net *net, 1912 struct afs_server *server, 1913 struct afs_addr_cursor *ac, 1914 struct key *key, 1915 unsigned int server_index) 1916 { 1917 struct afs_call *call; 1918 __be32 *bp; 1919 1920 _enter(""); 1921 1922 call = afs_alloc_flat_call(net, &afs_RXFSGetCapabilities, 1 * 4, 16 * 4); 1923 if (!call) 1924 return ERR_PTR(-ENOMEM); 1925 1926 call->key = key; 1927 call->server = afs_get_server(server, afs_server_trace_get_caps); 1928 call->server_index = server_index; 1929 call->upgrade = true; 1930 call->async = true; 1931 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN; 1932 1933 /* marshall the parameters */ 1934 bp = call->request; 1935 *bp++ = htonl(FSGETCAPABILITIES); 1936 1937 /* Can't take a ref on server */ 1938 trace_afs_make_fs_call(call, NULL); 1939 afs_make_call(ac, call, GFP_NOFS); 1940 return call; 1941 } 1942 1943 /* 1944 * Deliver reply data to an FS.FetchStatus with no vnode. 1945 */ 1946 static int afs_deliver_fs_fetch_status(struct afs_call *call) 1947 { 1948 const __be32 *bp; 1949 int ret; 1950 1951 ret = afs_transfer_reply(call); 1952 if (ret < 0) 1953 return ret; 1954 1955 /* unmarshall the reply once we've received all of it */ 1956 bp = call->buffer; 1957 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 1958 if (ret < 0) 1959 return ret; 1960 xdr_decode_AFSCallBack(&bp, call, call->out_scb); 1961 xdr_decode_AFSVolSync(&bp, call->out_volsync); 1962 1963 _leave(" = 0 [done]"); 1964 return 0; 1965 } 1966 1967 /* 1968 * FS.FetchStatus operation type 1969 */ 1970 static const struct afs_call_type afs_RXFSFetchStatus = { 1971 .name = "FS.FetchStatus", 1972 .op = afs_FS_FetchStatus, 1973 .deliver = afs_deliver_fs_fetch_status, 1974 .destructor = afs_flat_call_destructor, 1975 }; 1976 1977 /* 1978 * Fetch the status information for a fid without needing a vnode handle. 1979 */ 1980 int afs_fs_fetch_status(struct afs_fs_cursor *fc, 1981 struct afs_net *net, 1982 struct afs_fid *fid, 1983 struct afs_status_cb *scb, 1984 struct afs_volsync *volsync) 1985 { 1986 struct afs_call *call; 1987 __be32 *bp; 1988 1989 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 1990 return yfs_fs_fetch_status(fc, net, fid, scb, volsync); 1991 1992 _enter(",%x,{%llx:%llu},,", 1993 key_serial(fc->key), fid->vid, fid->vnode); 1994 1995 call = afs_alloc_flat_call(net, &afs_RXFSFetchStatus, 16, (21 + 3 + 6) * 4); 1996 if (!call) { 1997 fc->ac.error = -ENOMEM; 1998 return -ENOMEM; 1999 } 2000 2001 call->key = fc->key; 2002 call->out_fid = fid; 2003 call->out_scb = scb; 2004 call->out_volsync = volsync; 2005 2006 /* marshall the parameters */ 2007 bp = call->request; 2008 bp[0] = htonl(FSFETCHSTATUS); 2009 bp[1] = htonl(fid->vid); 2010 bp[2] = htonl(fid->vnode); 2011 bp[3] = htonl(fid->unique); 2012 2013 afs_use_fs_server(call, fc->cbi); 2014 trace_afs_make_fs_call(call, fid); 2015 afs_set_fc_call(call, fc); 2016 afs_make_call(&fc->ac, call, GFP_NOFS); 2017 return afs_wait_for_call_to_complete(call, &fc->ac); 2018 } 2019 2020 /* 2021 * Deliver reply data to an FS.InlineBulkStatus call 2022 */ 2023 static int afs_deliver_fs_inline_bulk_status(struct afs_call *call) 2024 { 2025 struct afs_status_cb *scb; 2026 const __be32 *bp; 2027 u32 tmp; 2028 int ret; 2029 2030 _enter("{%u}", call->unmarshall); 2031 2032 switch (call->unmarshall) { 2033 case 0: 2034 afs_extract_to_tmp(call); 2035 call->unmarshall++; 2036 /* Fall through */ 2037 2038 /* Extract the file status count and array in two steps */ 2039 case 1: 2040 _debug("extract status count"); 2041 ret = afs_extract_data(call, true); 2042 if (ret < 0) 2043 return ret; 2044 2045 tmp = ntohl(call->tmp); 2046 _debug("status count: %u/%u", tmp, call->count2); 2047 if (tmp != call->count2) 2048 return afs_protocol_error(call, -EBADMSG, 2049 afs_eproto_ibulkst_count); 2050 2051 call->count = 0; 2052 call->unmarshall++; 2053 more_counts: 2054 afs_extract_to_buf(call, 21 * sizeof(__be32)); 2055 /* Fall through */ 2056 2057 case 2: 2058 _debug("extract status array %u", call->count); 2059 ret = afs_extract_data(call, true); 2060 if (ret < 0) 2061 return ret; 2062 2063 bp = call->buffer; 2064 scb = &call->out_scb[call->count]; 2065 ret = xdr_decode_AFSFetchStatus(&bp, call, scb); 2066 if (ret < 0) 2067 return ret; 2068 2069 call->count++; 2070 if (call->count < call->count2) 2071 goto more_counts; 2072 2073 call->count = 0; 2074 call->unmarshall++; 2075 afs_extract_to_tmp(call); 2076 /* Fall through */ 2077 2078 /* Extract the callback count and array in two steps */ 2079 case 3: 2080 _debug("extract CB count"); 2081 ret = afs_extract_data(call, true); 2082 if (ret < 0) 2083 return ret; 2084 2085 tmp = ntohl(call->tmp); 2086 _debug("CB count: %u", tmp); 2087 if (tmp != call->count2) 2088 return afs_protocol_error(call, -EBADMSG, 2089 afs_eproto_ibulkst_cb_count); 2090 call->count = 0; 2091 call->unmarshall++; 2092 more_cbs: 2093 afs_extract_to_buf(call, 3 * sizeof(__be32)); 2094 /* Fall through */ 2095 2096 case 4: 2097 _debug("extract CB array"); 2098 ret = afs_extract_data(call, true); 2099 if (ret < 0) 2100 return ret; 2101 2102 _debug("unmarshall CB array"); 2103 bp = call->buffer; 2104 scb = &call->out_scb[call->count]; 2105 xdr_decode_AFSCallBack(&bp, call, scb); 2106 call->count++; 2107 if (call->count < call->count2) 2108 goto more_cbs; 2109 2110 afs_extract_to_buf(call, 6 * sizeof(__be32)); 2111 call->unmarshall++; 2112 /* Fall through */ 2113 2114 case 5: 2115 ret = afs_extract_data(call, false); 2116 if (ret < 0) 2117 return ret; 2118 2119 bp = call->buffer; 2120 xdr_decode_AFSVolSync(&bp, call->out_volsync); 2121 2122 call->unmarshall++; 2123 2124 case 6: 2125 break; 2126 } 2127 2128 _leave(" = 0 [done]"); 2129 return 0; 2130 } 2131 2132 /* 2133 * FS.InlineBulkStatus operation type 2134 */ 2135 static const struct afs_call_type afs_RXFSInlineBulkStatus = { 2136 .name = "FS.InlineBulkStatus", 2137 .op = afs_FS_InlineBulkStatus, 2138 .deliver = afs_deliver_fs_inline_bulk_status, 2139 .destructor = afs_flat_call_destructor, 2140 }; 2141 2142 /* 2143 * Fetch the status information for up to 50 files 2144 */ 2145 int afs_fs_inline_bulk_status(struct afs_fs_cursor *fc, 2146 struct afs_net *net, 2147 struct afs_fid *fids, 2148 struct afs_status_cb *statuses, 2149 unsigned int nr_fids, 2150 struct afs_volsync *volsync) 2151 { 2152 struct afs_call *call; 2153 __be32 *bp; 2154 int i; 2155 2156 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)) 2157 return yfs_fs_inline_bulk_status(fc, net, fids, statuses, 2158 nr_fids, volsync); 2159 2160 _enter(",%x,{%llx:%llu},%u", 2161 key_serial(fc->key), fids[0].vid, fids[1].vnode, nr_fids); 2162 2163 call = afs_alloc_flat_call(net, &afs_RXFSInlineBulkStatus, 2164 (2 + nr_fids * 3) * 4, 2165 21 * 4); 2166 if (!call) { 2167 fc->ac.error = -ENOMEM; 2168 return -ENOMEM; 2169 } 2170 2171 call->key = fc->key; 2172 call->out_scb = statuses; 2173 call->out_volsync = volsync; 2174 call->count2 = nr_fids; 2175 2176 /* marshall the parameters */ 2177 bp = call->request; 2178 *bp++ = htonl(FSINLINEBULKSTATUS); 2179 *bp++ = htonl(nr_fids); 2180 for (i = 0; i < nr_fids; i++) { 2181 *bp++ = htonl(fids[i].vid); 2182 *bp++ = htonl(fids[i].vnode); 2183 *bp++ = htonl(fids[i].unique); 2184 } 2185 2186 afs_use_fs_server(call, fc->cbi); 2187 trace_afs_make_fs_call(call, &fids[0]); 2188 afs_set_fc_call(call, fc); 2189 afs_make_call(&fc->ac, call, GFP_NOFS); 2190 return afs_wait_for_call_to_complete(call, &fc->ac); 2191 } 2192 2193 /* 2194 * deliver reply data to an FS.FetchACL 2195 */ 2196 static int afs_deliver_fs_fetch_acl(struct afs_call *call) 2197 { 2198 struct afs_acl *acl; 2199 const __be32 *bp; 2200 unsigned int size; 2201 int ret; 2202 2203 _enter("{%u}", call->unmarshall); 2204 2205 switch (call->unmarshall) { 2206 case 0: 2207 afs_extract_to_tmp(call); 2208 call->unmarshall++; 2209 /* Fall through */ 2210 2211 /* extract the returned data length */ 2212 case 1: 2213 ret = afs_extract_data(call, true); 2214 if (ret < 0) 2215 return ret; 2216 2217 size = call->count2 = ntohl(call->tmp); 2218 size = round_up(size, 4); 2219 2220 acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL); 2221 if (!acl) 2222 return -ENOMEM; 2223 call->ret_acl = acl; 2224 acl->size = call->count2; 2225 afs_extract_begin(call, acl->data, size); 2226 call->unmarshall++; 2227 /* Fall through */ 2228 2229 /* extract the returned data */ 2230 case 2: 2231 ret = afs_extract_data(call, true); 2232 if (ret < 0) 2233 return ret; 2234 2235 afs_extract_to_buf(call, (21 + 6) * 4); 2236 call->unmarshall++; 2237 /* Fall through */ 2238 2239 /* extract the metadata */ 2240 case 3: 2241 ret = afs_extract_data(call, false); 2242 if (ret < 0) 2243 return ret; 2244 2245 bp = call->buffer; 2246 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 2247 if (ret < 0) 2248 return ret; 2249 xdr_decode_AFSVolSync(&bp, call->out_volsync); 2250 2251 call->unmarshall++; 2252 2253 case 4: 2254 break; 2255 } 2256 2257 _leave(" = 0 [done]"); 2258 return 0; 2259 } 2260 2261 static void afs_destroy_fs_fetch_acl(struct afs_call *call) 2262 { 2263 kfree(call->ret_acl); 2264 afs_flat_call_destructor(call); 2265 } 2266 2267 /* 2268 * FS.FetchACL operation type 2269 */ 2270 static const struct afs_call_type afs_RXFSFetchACL = { 2271 .name = "FS.FetchACL", 2272 .op = afs_FS_FetchACL, 2273 .deliver = afs_deliver_fs_fetch_acl, 2274 .destructor = afs_destroy_fs_fetch_acl, 2275 }; 2276 2277 /* 2278 * Fetch the ACL for a file. 2279 */ 2280 struct afs_acl *afs_fs_fetch_acl(struct afs_fs_cursor *fc, 2281 struct afs_status_cb *scb) 2282 { 2283 struct afs_vnode *vnode = fc->vnode; 2284 struct afs_call *call; 2285 struct afs_net *net = afs_v2net(vnode); 2286 __be32 *bp; 2287 2288 _enter(",%x,{%llx:%llu},,", 2289 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 2290 2291 call = afs_alloc_flat_call(net, &afs_RXFSFetchACL, 16, (21 + 6) * 4); 2292 if (!call) { 2293 fc->ac.error = -ENOMEM; 2294 return ERR_PTR(-ENOMEM); 2295 } 2296 2297 call->key = fc->key; 2298 call->ret_acl = NULL; 2299 call->out_scb = scb; 2300 call->out_volsync = NULL; 2301 2302 /* marshall the parameters */ 2303 bp = call->request; 2304 bp[0] = htonl(FSFETCHACL); 2305 bp[1] = htonl(vnode->fid.vid); 2306 bp[2] = htonl(vnode->fid.vnode); 2307 bp[3] = htonl(vnode->fid.unique); 2308 2309 afs_use_fs_server(call, fc->cbi); 2310 trace_afs_make_fs_call(call, &vnode->fid); 2311 afs_make_call(&fc->ac, call, GFP_KERNEL); 2312 return (struct afs_acl *)afs_wait_for_call_to_complete(call, &fc->ac); 2313 } 2314 2315 /* 2316 * Deliver reply data to any operation that returns file status and volume 2317 * sync. 2318 */ 2319 static int afs_deliver_fs_file_status_and_vol(struct afs_call *call) 2320 { 2321 const __be32 *bp; 2322 int ret; 2323 2324 ret = afs_transfer_reply(call); 2325 if (ret < 0) 2326 return ret; 2327 2328 bp = call->buffer; 2329 ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb); 2330 if (ret < 0) 2331 return ret; 2332 xdr_decode_AFSVolSync(&bp, call->out_volsync); 2333 2334 _leave(" = 0 [done]"); 2335 return 0; 2336 } 2337 2338 /* 2339 * FS.StoreACL operation type 2340 */ 2341 static const struct afs_call_type afs_RXFSStoreACL = { 2342 .name = "FS.StoreACL", 2343 .op = afs_FS_StoreACL, 2344 .deliver = afs_deliver_fs_file_status_and_vol, 2345 .destructor = afs_flat_call_destructor, 2346 }; 2347 2348 /* 2349 * Fetch the ACL for a file. 2350 */ 2351 int afs_fs_store_acl(struct afs_fs_cursor *fc, const struct afs_acl *acl, 2352 struct afs_status_cb *scb) 2353 { 2354 struct afs_vnode *vnode = fc->vnode; 2355 struct afs_call *call; 2356 struct afs_net *net = afs_v2net(vnode); 2357 size_t size; 2358 __be32 *bp; 2359 2360 _enter(",%x,{%llx:%llu},,", 2361 key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode); 2362 2363 size = round_up(acl->size, 4); 2364 call = afs_alloc_flat_call(net, &afs_RXFSStoreACL, 2365 5 * 4 + size, (21 + 6) * 4); 2366 if (!call) { 2367 fc->ac.error = -ENOMEM; 2368 return -ENOMEM; 2369 } 2370 2371 call->key = fc->key; 2372 call->out_scb = scb; 2373 call->out_volsync = NULL; 2374 2375 /* marshall the parameters */ 2376 bp = call->request; 2377 bp[0] = htonl(FSSTOREACL); 2378 bp[1] = htonl(vnode->fid.vid); 2379 bp[2] = htonl(vnode->fid.vnode); 2380 bp[3] = htonl(vnode->fid.unique); 2381 bp[4] = htonl(acl->size); 2382 memcpy(&bp[5], acl->data, acl->size); 2383 if (acl->size != size) 2384 memset((void *)&bp[5] + acl->size, 0, size - acl->size); 2385 2386 trace_afs_make_fs_call(call, &vnode->fid); 2387 afs_make_call(&fc->ac, call, GFP_KERNEL); 2388 return afs_wait_for_call_to_complete(call, &fc->ac); 2389 } 2390