xref: /openbmc/linux/fs/afs/file.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* AFS filesystem file handling
3  *
4  * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/writeback.h>
14 #include <linux/gfp.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/mm.h>
17 #include <linux/netfs.h>
18 #include "internal.h"
19 
20 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma);
21 static int afs_readpage(struct file *file, struct page *page);
22 static void afs_invalidatepage(struct page *page, unsigned int offset,
23 			       unsigned int length);
24 static int afs_releasepage(struct page *page, gfp_t gfp_flags);
25 
26 static void afs_readahead(struct readahead_control *ractl);
27 
28 const struct file_operations afs_file_operations = {
29 	.open		= afs_open,
30 	.release	= afs_release,
31 	.llseek		= generic_file_llseek,
32 	.read_iter	= generic_file_read_iter,
33 	.write_iter	= afs_file_write,
34 	.mmap		= afs_file_mmap,
35 	.splice_read	= generic_file_splice_read,
36 	.splice_write	= iter_file_splice_write,
37 	.fsync		= afs_fsync,
38 	.lock		= afs_lock,
39 	.flock		= afs_flock,
40 };
41 
42 const struct inode_operations afs_file_inode_operations = {
43 	.getattr	= afs_getattr,
44 	.setattr	= afs_setattr,
45 	.permission	= afs_permission,
46 };
47 
48 const struct address_space_operations afs_fs_aops = {
49 	.readpage	= afs_readpage,
50 	.readahead	= afs_readahead,
51 	.set_page_dirty	= afs_set_page_dirty,
52 	.launder_page	= afs_launder_page,
53 	.releasepage	= afs_releasepage,
54 	.invalidatepage	= afs_invalidatepage,
55 	.write_begin	= afs_write_begin,
56 	.write_end	= afs_write_end,
57 	.writepage	= afs_writepage,
58 	.writepages	= afs_writepages,
59 };
60 
61 static const struct vm_operations_struct afs_vm_ops = {
62 	.fault		= filemap_fault,
63 	.map_pages	= filemap_map_pages,
64 	.page_mkwrite	= afs_page_mkwrite,
65 };
66 
67 /*
68  * Discard a pin on a writeback key.
69  */
70 void afs_put_wb_key(struct afs_wb_key *wbk)
71 {
72 	if (wbk && refcount_dec_and_test(&wbk->usage)) {
73 		key_put(wbk->key);
74 		kfree(wbk);
75 	}
76 }
77 
78 /*
79  * Cache key for writeback.
80  */
81 int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af)
82 {
83 	struct afs_wb_key *wbk, *p;
84 
85 	wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL);
86 	if (!wbk)
87 		return -ENOMEM;
88 	refcount_set(&wbk->usage, 2);
89 	wbk->key = af->key;
90 
91 	spin_lock(&vnode->wb_lock);
92 	list_for_each_entry(p, &vnode->wb_keys, vnode_link) {
93 		if (p->key == wbk->key)
94 			goto found;
95 	}
96 
97 	key_get(wbk->key);
98 	list_add_tail(&wbk->vnode_link, &vnode->wb_keys);
99 	spin_unlock(&vnode->wb_lock);
100 	af->wb = wbk;
101 	return 0;
102 
103 found:
104 	refcount_inc(&p->usage);
105 	spin_unlock(&vnode->wb_lock);
106 	af->wb = p;
107 	kfree(wbk);
108 	return 0;
109 }
110 
111 /*
112  * open an AFS file or directory and attach a key to it
113  */
114 int afs_open(struct inode *inode, struct file *file)
115 {
116 	struct afs_vnode *vnode = AFS_FS_I(inode);
117 	struct afs_file *af;
118 	struct key *key;
119 	int ret;
120 
121 	_enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
122 
123 	key = afs_request_key(vnode->volume->cell);
124 	if (IS_ERR(key)) {
125 		ret = PTR_ERR(key);
126 		goto error;
127 	}
128 
129 	af = kzalloc(sizeof(*af), GFP_KERNEL);
130 	if (!af) {
131 		ret = -ENOMEM;
132 		goto error_key;
133 	}
134 	af->key = key;
135 
136 	ret = afs_validate(vnode, key);
137 	if (ret < 0)
138 		goto error_af;
139 
140 	if (file->f_mode & FMODE_WRITE) {
141 		ret = afs_cache_wb_key(vnode, af);
142 		if (ret < 0)
143 			goto error_af;
144 	}
145 
146 	if (file->f_flags & O_TRUNC)
147 		set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
148 
149 	file->private_data = af;
150 	_leave(" = 0");
151 	return 0;
152 
153 error_af:
154 	kfree(af);
155 error_key:
156 	key_put(key);
157 error:
158 	_leave(" = %d", ret);
159 	return ret;
160 }
161 
162 /*
163  * release an AFS file or directory and discard its key
164  */
165 int afs_release(struct inode *inode, struct file *file)
166 {
167 	struct afs_vnode *vnode = AFS_FS_I(inode);
168 	struct afs_file *af = file->private_data;
169 	int ret = 0;
170 
171 	_enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
172 
173 	if ((file->f_mode & FMODE_WRITE))
174 		ret = vfs_fsync(file, 0);
175 
176 	file->private_data = NULL;
177 	if (af->wb)
178 		afs_put_wb_key(af->wb);
179 	key_put(af->key);
180 	kfree(af);
181 	afs_prune_wb_keys(vnode);
182 	_leave(" = %d", ret);
183 	return ret;
184 }
185 
186 /*
187  * Allocate a new read record.
188  */
189 struct afs_read *afs_alloc_read(gfp_t gfp)
190 {
191 	struct afs_read *req;
192 
193 	req = kzalloc(sizeof(struct afs_read), gfp);
194 	if (req)
195 		refcount_set(&req->usage, 1);
196 
197 	return req;
198 }
199 
200 /*
201  * Dispose of a ref to a read record.
202  */
203 void afs_put_read(struct afs_read *req)
204 {
205 	if (refcount_dec_and_test(&req->usage)) {
206 		if (req->cleanup)
207 			req->cleanup(req);
208 		key_put(req->key);
209 		kfree(req);
210 	}
211 }
212 
213 static void afs_fetch_data_notify(struct afs_operation *op)
214 {
215 	struct afs_read *req = op->fetch.req;
216 	struct netfs_read_subrequest *subreq = req->subreq;
217 	int error = op->error;
218 
219 	if (error == -ECONNABORTED)
220 		error = afs_abort_to_error(op->ac.abort_code);
221 	req->error = error;
222 
223 	if (subreq) {
224 		__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
225 		netfs_subreq_terminated(subreq, error ?: req->actual_len, false);
226 		req->subreq = NULL;
227 	} else if (req->done) {
228 		req->done(req);
229 	}
230 }
231 
232 static void afs_fetch_data_success(struct afs_operation *op)
233 {
234 	struct afs_vnode *vnode = op->file[0].vnode;
235 
236 	_enter("op=%08x", op->debug_id);
237 	afs_vnode_commit_status(op, &op->file[0]);
238 	afs_stat_v(vnode, n_fetches);
239 	atomic_long_add(op->fetch.req->actual_len, &op->net->n_fetch_bytes);
240 	afs_fetch_data_notify(op);
241 }
242 
243 static void afs_fetch_data_put(struct afs_operation *op)
244 {
245 	op->fetch.req->error = op->error;
246 	afs_put_read(op->fetch.req);
247 }
248 
249 static const struct afs_operation_ops afs_fetch_data_operation = {
250 	.issue_afs_rpc	= afs_fs_fetch_data,
251 	.issue_yfs_rpc	= yfs_fs_fetch_data,
252 	.success	= afs_fetch_data_success,
253 	.aborted	= afs_check_for_remote_deletion,
254 	.failed		= afs_fetch_data_notify,
255 	.put		= afs_fetch_data_put,
256 };
257 
258 /*
259  * Fetch file data from the volume.
260  */
261 int afs_fetch_data(struct afs_vnode *vnode, struct afs_read *req)
262 {
263 	struct afs_operation *op;
264 
265 	_enter("%s{%llx:%llu.%u},%x,,,",
266 	       vnode->volume->name,
267 	       vnode->fid.vid,
268 	       vnode->fid.vnode,
269 	       vnode->fid.unique,
270 	       key_serial(req->key));
271 
272 	op = afs_alloc_operation(req->key, vnode->volume);
273 	if (IS_ERR(op)) {
274 		if (req->subreq)
275 			netfs_subreq_terminated(req->subreq, PTR_ERR(op), false);
276 		return PTR_ERR(op);
277 	}
278 
279 	afs_op_set_vnode(op, 0, vnode);
280 
281 	op->fetch.req	= afs_get_read(req);
282 	op->ops		= &afs_fetch_data_operation;
283 	return afs_do_sync_operation(op);
284 }
285 
286 static void afs_req_issue_op(struct netfs_read_subrequest *subreq)
287 {
288 	struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode);
289 	struct afs_read *fsreq;
290 
291 	fsreq = afs_alloc_read(GFP_NOFS);
292 	if (!fsreq)
293 		return netfs_subreq_terminated(subreq, -ENOMEM, false);
294 
295 	fsreq->subreq	= subreq;
296 	fsreq->pos	= subreq->start + subreq->transferred;
297 	fsreq->len	= subreq->len   - subreq->transferred;
298 	fsreq->key	= subreq->rreq->netfs_priv;
299 	fsreq->vnode	= vnode;
300 	fsreq->iter	= &fsreq->def_iter;
301 
302 	iov_iter_xarray(&fsreq->def_iter, READ,
303 			&fsreq->vnode->vfs_inode.i_mapping->i_pages,
304 			fsreq->pos, fsreq->len);
305 
306 	afs_fetch_data(fsreq->vnode, fsreq);
307 }
308 
309 static int afs_symlink_readpage(struct page *page)
310 {
311 	struct afs_vnode *vnode = AFS_FS_I(page->mapping->host);
312 	struct afs_read *fsreq;
313 	int ret;
314 
315 	fsreq = afs_alloc_read(GFP_NOFS);
316 	if (!fsreq)
317 		return -ENOMEM;
318 
319 	fsreq->pos	= page->index * PAGE_SIZE;
320 	fsreq->len	= PAGE_SIZE;
321 	fsreq->vnode	= vnode;
322 	fsreq->iter	= &fsreq->def_iter;
323 	iov_iter_xarray(&fsreq->def_iter, READ, &page->mapping->i_pages,
324 			fsreq->pos, fsreq->len);
325 
326 	ret = afs_fetch_data(fsreq->vnode, fsreq);
327 	page_endio(page, false, ret);
328 	return ret;
329 }
330 
331 static void afs_init_rreq(struct netfs_read_request *rreq, struct file *file)
332 {
333 	rreq->netfs_priv = key_get(afs_file_key(file));
334 }
335 
336 static bool afs_is_cache_enabled(struct inode *inode)
337 {
338 	struct fscache_cookie *cookie = afs_vnode_cache(AFS_FS_I(inode));
339 
340 	return fscache_cookie_enabled(cookie) && !hlist_empty(&cookie->backing_objects);
341 }
342 
343 static int afs_begin_cache_operation(struct netfs_read_request *rreq)
344 {
345 	struct afs_vnode *vnode = AFS_FS_I(rreq->inode);
346 
347 	return fscache_begin_read_operation(rreq, afs_vnode_cache(vnode));
348 }
349 
350 static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len,
351 				 struct page *page, void **_fsdata)
352 {
353 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
354 
355 	return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0;
356 }
357 
358 static void afs_priv_cleanup(struct address_space *mapping, void *netfs_priv)
359 {
360 	key_put(netfs_priv);
361 }
362 
363 const struct netfs_read_request_ops afs_req_ops = {
364 	.init_rreq		= afs_init_rreq,
365 	.is_cache_enabled	= afs_is_cache_enabled,
366 	.begin_cache_operation	= afs_begin_cache_operation,
367 	.check_write_begin	= afs_check_write_begin,
368 	.issue_op		= afs_req_issue_op,
369 	.cleanup		= afs_priv_cleanup,
370 };
371 
372 static int afs_readpage(struct file *file, struct page *page)
373 {
374 	if (!file)
375 		return afs_symlink_readpage(page);
376 
377 	return netfs_readpage(file, page, &afs_req_ops, NULL);
378 }
379 
380 static void afs_readahead(struct readahead_control *ractl)
381 {
382 	netfs_readahead(ractl, &afs_req_ops, NULL);
383 }
384 
385 /*
386  * Adjust the dirty region of the page on truncation or full invalidation,
387  * getting rid of the markers altogether if the region is entirely invalidated.
388  */
389 static void afs_invalidate_dirty(struct page *page, unsigned int offset,
390 				 unsigned int length)
391 {
392 	struct afs_vnode *vnode = AFS_FS_I(page->mapping->host);
393 	unsigned long priv;
394 	unsigned int f, t, end = offset + length;
395 
396 	priv = page_private(page);
397 
398 	/* we clean up only if the entire page is being invalidated */
399 	if (offset == 0 && length == thp_size(page))
400 		goto full_invalidate;
401 
402 	 /* If the page was dirtied by page_mkwrite(), the PTE stays writable
403 	  * and we don't get another notification to tell us to expand it
404 	  * again.
405 	  */
406 	if (afs_is_page_dirty_mmapped(priv))
407 		return;
408 
409 	/* We may need to shorten the dirty region */
410 	f = afs_page_dirty_from(page, priv);
411 	t = afs_page_dirty_to(page, priv);
412 
413 	if (t <= offset || f >= end)
414 		return; /* Doesn't overlap */
415 
416 	if (f < offset && t > end)
417 		return; /* Splits the dirty region - just absorb it */
418 
419 	if (f >= offset && t <= end)
420 		goto undirty;
421 
422 	if (f < offset)
423 		t = offset;
424 	else
425 		f = end;
426 	if (f == t)
427 		goto undirty;
428 
429 	priv = afs_page_dirty(page, f, t);
430 	set_page_private(page, priv);
431 	trace_afs_page_dirty(vnode, tracepoint_string("trunc"), page);
432 	return;
433 
434 undirty:
435 	trace_afs_page_dirty(vnode, tracepoint_string("undirty"), page);
436 	clear_page_dirty_for_io(page);
437 full_invalidate:
438 	trace_afs_page_dirty(vnode, tracepoint_string("inval"), page);
439 	detach_page_private(page);
440 }
441 
442 /*
443  * invalidate part or all of a page
444  * - release a page and clean up its private data if offset is 0 (indicating
445  *   the entire page)
446  */
447 static void afs_invalidatepage(struct page *page, unsigned int offset,
448 			       unsigned int length)
449 {
450 	_enter("{%lu},%u,%u", page->index, offset, length);
451 
452 	BUG_ON(!PageLocked(page));
453 
454 	if (PagePrivate(page))
455 		afs_invalidate_dirty(page, offset, length);
456 
457 	wait_on_page_fscache(page);
458 	_leave("");
459 }
460 
461 /*
462  * release a page and clean up its private state if it's not busy
463  * - return true if the page can now be released, false if not
464  */
465 static int afs_releasepage(struct page *page, gfp_t gfp_flags)
466 {
467 	struct afs_vnode *vnode = AFS_FS_I(page->mapping->host);
468 
469 	_enter("{{%llx:%llu}[%lu],%lx},%x",
470 	       vnode->fid.vid, vnode->fid.vnode, page->index, page->flags,
471 	       gfp_flags);
472 
473 	/* deny if page is being written to the cache and the caller hasn't
474 	 * elected to wait */
475 #ifdef CONFIG_AFS_FSCACHE
476 	if (PageFsCache(page)) {
477 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM) || !(gfp_flags & __GFP_FS))
478 			return false;
479 		wait_on_page_fscache(page);
480 	}
481 #endif
482 
483 	if (PagePrivate(page)) {
484 		trace_afs_page_dirty(vnode, tracepoint_string("rel"), page);
485 		detach_page_private(page);
486 	}
487 
488 	/* indicate that the page can be released */
489 	_leave(" = T");
490 	return 1;
491 }
492 
493 /*
494  * Handle setting up a memory mapping on an AFS file.
495  */
496 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma)
497 {
498 	int ret;
499 
500 	ret = generic_file_mmap(file, vma);
501 	if (ret == 0)
502 		vma->vm_ops = &afs_vm_ops;
503 	return ret;
504 }
505