1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* AFS filesystem file handling 3 * 4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/writeback.h> 14 #include <linux/gfp.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include <linux/mm.h> 17 #include <linux/swap.h> 18 #include <linux/netfs.h> 19 #include "internal.h" 20 21 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma); 22 static int afs_symlink_read_folio(struct file *file, struct folio *folio); 23 static void afs_invalidate_folio(struct folio *folio, size_t offset, 24 size_t length); 25 static bool afs_release_folio(struct folio *folio, gfp_t gfp_flags); 26 27 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter); 28 static void afs_vm_open(struct vm_area_struct *area); 29 static void afs_vm_close(struct vm_area_struct *area); 30 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); 31 32 const struct file_operations afs_file_operations = { 33 .open = afs_open, 34 .release = afs_release, 35 .llseek = generic_file_llseek, 36 .read_iter = afs_file_read_iter, 37 .write_iter = afs_file_write, 38 .mmap = afs_file_mmap, 39 .splice_read = generic_file_splice_read, 40 .splice_write = iter_file_splice_write, 41 .fsync = afs_fsync, 42 .lock = afs_lock, 43 .flock = afs_flock, 44 }; 45 46 const struct inode_operations afs_file_inode_operations = { 47 .getattr = afs_getattr, 48 .setattr = afs_setattr, 49 .permission = afs_permission, 50 }; 51 52 const struct address_space_operations afs_file_aops = { 53 .read_folio = netfs_read_folio, 54 .readahead = netfs_readahead, 55 .dirty_folio = afs_dirty_folio, 56 .launder_folio = afs_launder_folio, 57 .release_folio = afs_release_folio, 58 .invalidate_folio = afs_invalidate_folio, 59 .write_begin = afs_write_begin, 60 .write_end = afs_write_end, 61 .writepage = afs_writepage, 62 .writepages = afs_writepages, 63 }; 64 65 const struct address_space_operations afs_symlink_aops = { 66 .read_folio = afs_symlink_read_folio, 67 .release_folio = afs_release_folio, 68 .invalidate_folio = afs_invalidate_folio, 69 }; 70 71 static const struct vm_operations_struct afs_vm_ops = { 72 .open = afs_vm_open, 73 .close = afs_vm_close, 74 .fault = filemap_fault, 75 .map_pages = afs_vm_map_pages, 76 .page_mkwrite = afs_page_mkwrite, 77 }; 78 79 /* 80 * Discard a pin on a writeback key. 81 */ 82 void afs_put_wb_key(struct afs_wb_key *wbk) 83 { 84 if (wbk && refcount_dec_and_test(&wbk->usage)) { 85 key_put(wbk->key); 86 kfree(wbk); 87 } 88 } 89 90 /* 91 * Cache key for writeback. 92 */ 93 int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af) 94 { 95 struct afs_wb_key *wbk, *p; 96 97 wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL); 98 if (!wbk) 99 return -ENOMEM; 100 refcount_set(&wbk->usage, 2); 101 wbk->key = af->key; 102 103 spin_lock(&vnode->wb_lock); 104 list_for_each_entry(p, &vnode->wb_keys, vnode_link) { 105 if (p->key == wbk->key) 106 goto found; 107 } 108 109 key_get(wbk->key); 110 list_add_tail(&wbk->vnode_link, &vnode->wb_keys); 111 spin_unlock(&vnode->wb_lock); 112 af->wb = wbk; 113 return 0; 114 115 found: 116 refcount_inc(&p->usage); 117 spin_unlock(&vnode->wb_lock); 118 af->wb = p; 119 kfree(wbk); 120 return 0; 121 } 122 123 /* 124 * open an AFS file or directory and attach a key to it 125 */ 126 int afs_open(struct inode *inode, struct file *file) 127 { 128 struct afs_vnode *vnode = AFS_FS_I(inode); 129 struct afs_file *af; 130 struct key *key; 131 int ret; 132 133 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 134 135 key = afs_request_key(vnode->volume->cell); 136 if (IS_ERR(key)) { 137 ret = PTR_ERR(key); 138 goto error; 139 } 140 141 af = kzalloc(sizeof(*af), GFP_KERNEL); 142 if (!af) { 143 ret = -ENOMEM; 144 goto error_key; 145 } 146 af->key = key; 147 148 ret = afs_validate(vnode, key); 149 if (ret < 0) 150 goto error_af; 151 152 if (file->f_mode & FMODE_WRITE) { 153 ret = afs_cache_wb_key(vnode, af); 154 if (ret < 0) 155 goto error_af; 156 } 157 158 if (file->f_flags & O_TRUNC) 159 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 160 161 fscache_use_cookie(afs_vnode_cache(vnode), file->f_mode & FMODE_WRITE); 162 163 file->private_data = af; 164 _leave(" = 0"); 165 return 0; 166 167 error_af: 168 kfree(af); 169 error_key: 170 key_put(key); 171 error: 172 _leave(" = %d", ret); 173 return ret; 174 } 175 176 /* 177 * release an AFS file or directory and discard its key 178 */ 179 int afs_release(struct inode *inode, struct file *file) 180 { 181 struct afs_vnode_cache_aux aux; 182 struct afs_vnode *vnode = AFS_FS_I(inode); 183 struct afs_file *af = file->private_data; 184 loff_t i_size; 185 int ret = 0; 186 187 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 188 189 if ((file->f_mode & FMODE_WRITE)) 190 ret = vfs_fsync(file, 0); 191 192 file->private_data = NULL; 193 if (af->wb) 194 afs_put_wb_key(af->wb); 195 196 if ((file->f_mode & FMODE_WRITE)) { 197 i_size = i_size_read(&vnode->netfs.inode); 198 afs_set_cache_aux(vnode, &aux); 199 fscache_unuse_cookie(afs_vnode_cache(vnode), &aux, &i_size); 200 } else { 201 fscache_unuse_cookie(afs_vnode_cache(vnode), NULL, NULL); 202 } 203 204 key_put(af->key); 205 kfree(af); 206 afs_prune_wb_keys(vnode); 207 _leave(" = %d", ret); 208 return ret; 209 } 210 211 /* 212 * Allocate a new read record. 213 */ 214 struct afs_read *afs_alloc_read(gfp_t gfp) 215 { 216 struct afs_read *req; 217 218 req = kzalloc(sizeof(struct afs_read), gfp); 219 if (req) 220 refcount_set(&req->usage, 1); 221 222 return req; 223 } 224 225 /* 226 * Dispose of a ref to a read record. 227 */ 228 void afs_put_read(struct afs_read *req) 229 { 230 if (refcount_dec_and_test(&req->usage)) { 231 if (req->cleanup) 232 req->cleanup(req); 233 key_put(req->key); 234 kfree(req); 235 } 236 } 237 238 static void afs_fetch_data_notify(struct afs_operation *op) 239 { 240 struct afs_read *req = op->fetch.req; 241 struct netfs_io_subrequest *subreq = req->subreq; 242 int error = op->error; 243 244 if (error == -ECONNABORTED) 245 error = afs_abort_to_error(op->ac.abort_code); 246 req->error = error; 247 248 if (subreq) { 249 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 250 netfs_subreq_terminated(subreq, error ?: req->actual_len, false); 251 req->subreq = NULL; 252 } else if (req->done) { 253 req->done(req); 254 } 255 } 256 257 static void afs_fetch_data_success(struct afs_operation *op) 258 { 259 struct afs_vnode *vnode = op->file[0].vnode; 260 261 _enter("op=%08x", op->debug_id); 262 afs_vnode_commit_status(op, &op->file[0]); 263 afs_stat_v(vnode, n_fetches); 264 atomic_long_add(op->fetch.req->actual_len, &op->net->n_fetch_bytes); 265 afs_fetch_data_notify(op); 266 } 267 268 static void afs_fetch_data_put(struct afs_operation *op) 269 { 270 op->fetch.req->error = op->error; 271 afs_put_read(op->fetch.req); 272 } 273 274 static const struct afs_operation_ops afs_fetch_data_operation = { 275 .issue_afs_rpc = afs_fs_fetch_data, 276 .issue_yfs_rpc = yfs_fs_fetch_data, 277 .success = afs_fetch_data_success, 278 .aborted = afs_check_for_remote_deletion, 279 .failed = afs_fetch_data_notify, 280 .put = afs_fetch_data_put, 281 }; 282 283 /* 284 * Fetch file data from the volume. 285 */ 286 int afs_fetch_data(struct afs_vnode *vnode, struct afs_read *req) 287 { 288 struct afs_operation *op; 289 290 _enter("%s{%llx:%llu.%u},%x,,,", 291 vnode->volume->name, 292 vnode->fid.vid, 293 vnode->fid.vnode, 294 vnode->fid.unique, 295 key_serial(req->key)); 296 297 op = afs_alloc_operation(req->key, vnode->volume); 298 if (IS_ERR(op)) { 299 if (req->subreq) 300 netfs_subreq_terminated(req->subreq, PTR_ERR(op), false); 301 return PTR_ERR(op); 302 } 303 304 afs_op_set_vnode(op, 0, vnode); 305 306 op->fetch.req = afs_get_read(req); 307 op->ops = &afs_fetch_data_operation; 308 return afs_do_sync_operation(op); 309 } 310 311 static void afs_issue_read(struct netfs_io_subrequest *subreq) 312 { 313 struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode); 314 struct afs_read *fsreq; 315 316 fsreq = afs_alloc_read(GFP_NOFS); 317 if (!fsreq) 318 return netfs_subreq_terminated(subreq, -ENOMEM, false); 319 320 fsreq->subreq = subreq; 321 fsreq->pos = subreq->start + subreq->transferred; 322 fsreq->len = subreq->len - subreq->transferred; 323 fsreq->key = key_get(subreq->rreq->netfs_priv); 324 fsreq->vnode = vnode; 325 fsreq->iter = &fsreq->def_iter; 326 327 iov_iter_xarray(&fsreq->def_iter, READ, 328 &fsreq->vnode->netfs.inode.i_mapping->i_pages, 329 fsreq->pos, fsreq->len); 330 331 afs_fetch_data(fsreq->vnode, fsreq); 332 afs_put_read(fsreq); 333 } 334 335 static int afs_symlink_read_folio(struct file *file, struct folio *folio) 336 { 337 struct afs_vnode *vnode = AFS_FS_I(folio->mapping->host); 338 struct afs_read *fsreq; 339 int ret; 340 341 fsreq = afs_alloc_read(GFP_NOFS); 342 if (!fsreq) 343 return -ENOMEM; 344 345 fsreq->pos = folio_pos(folio); 346 fsreq->len = folio_size(folio); 347 fsreq->vnode = vnode; 348 fsreq->iter = &fsreq->def_iter; 349 iov_iter_xarray(&fsreq->def_iter, READ, &folio->mapping->i_pages, 350 fsreq->pos, fsreq->len); 351 352 ret = afs_fetch_data(fsreq->vnode, fsreq); 353 if (ret == 0) 354 folio_mark_uptodate(folio); 355 folio_unlock(folio); 356 return ret; 357 } 358 359 static int afs_init_request(struct netfs_io_request *rreq, struct file *file) 360 { 361 rreq->netfs_priv = key_get(afs_file_key(file)); 362 return 0; 363 } 364 365 static int afs_begin_cache_operation(struct netfs_io_request *rreq) 366 { 367 #ifdef CONFIG_AFS_FSCACHE 368 struct afs_vnode *vnode = AFS_FS_I(rreq->inode); 369 370 return fscache_begin_read_operation(&rreq->cache_resources, 371 afs_vnode_cache(vnode)); 372 #else 373 return -ENOBUFS; 374 #endif 375 } 376 377 static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len, 378 struct folio *folio, void **_fsdata) 379 { 380 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 381 382 return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0; 383 } 384 385 static void afs_priv_cleanup(struct address_space *mapping, void *netfs_priv) 386 { 387 key_put(netfs_priv); 388 } 389 390 const struct netfs_request_ops afs_req_ops = { 391 .init_request = afs_init_request, 392 .begin_cache_operation = afs_begin_cache_operation, 393 .check_write_begin = afs_check_write_begin, 394 .issue_read = afs_issue_read, 395 .cleanup = afs_priv_cleanup, 396 }; 397 398 int afs_write_inode(struct inode *inode, struct writeback_control *wbc) 399 { 400 fscache_unpin_writeback(wbc, afs_vnode_cache(AFS_FS_I(inode))); 401 return 0; 402 } 403 404 /* 405 * Adjust the dirty region of the page on truncation or full invalidation, 406 * getting rid of the markers altogether if the region is entirely invalidated. 407 */ 408 static void afs_invalidate_dirty(struct folio *folio, size_t offset, 409 size_t length) 410 { 411 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 412 unsigned long priv; 413 unsigned int f, t, end = offset + length; 414 415 priv = (unsigned long)folio_get_private(folio); 416 417 /* we clean up only if the entire page is being invalidated */ 418 if (offset == 0 && length == folio_size(folio)) 419 goto full_invalidate; 420 421 /* If the page was dirtied by page_mkwrite(), the PTE stays writable 422 * and we don't get another notification to tell us to expand it 423 * again. 424 */ 425 if (afs_is_folio_dirty_mmapped(priv)) 426 return; 427 428 /* We may need to shorten the dirty region */ 429 f = afs_folio_dirty_from(folio, priv); 430 t = afs_folio_dirty_to(folio, priv); 431 432 if (t <= offset || f >= end) 433 return; /* Doesn't overlap */ 434 435 if (f < offset && t > end) 436 return; /* Splits the dirty region - just absorb it */ 437 438 if (f >= offset && t <= end) 439 goto undirty; 440 441 if (f < offset) 442 t = offset; 443 else 444 f = end; 445 if (f == t) 446 goto undirty; 447 448 priv = afs_folio_dirty(folio, f, t); 449 folio_change_private(folio, (void *)priv); 450 trace_afs_folio_dirty(vnode, tracepoint_string("trunc"), folio); 451 return; 452 453 undirty: 454 trace_afs_folio_dirty(vnode, tracepoint_string("undirty"), folio); 455 folio_clear_dirty_for_io(folio); 456 full_invalidate: 457 trace_afs_folio_dirty(vnode, tracepoint_string("inval"), folio); 458 folio_detach_private(folio); 459 } 460 461 /* 462 * invalidate part or all of a page 463 * - release a page and clean up its private data if offset is 0 (indicating 464 * the entire page) 465 */ 466 static void afs_invalidate_folio(struct folio *folio, size_t offset, 467 size_t length) 468 { 469 _enter("{%lu},%zu,%zu", folio->index, offset, length); 470 471 BUG_ON(!folio_test_locked(folio)); 472 473 if (folio_get_private(folio)) 474 afs_invalidate_dirty(folio, offset, length); 475 476 folio_wait_fscache(folio); 477 _leave(""); 478 } 479 480 /* 481 * release a page and clean up its private state if it's not busy 482 * - return true if the page can now be released, false if not 483 */ 484 static bool afs_release_folio(struct folio *folio, gfp_t gfp) 485 { 486 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 487 488 _enter("{{%llx:%llu}[%lu],%lx},%x", 489 vnode->fid.vid, vnode->fid.vnode, folio_index(folio), folio->flags, 490 gfp); 491 492 /* deny if folio is being written to the cache and the caller hasn't 493 * elected to wait */ 494 #ifdef CONFIG_AFS_FSCACHE 495 if (folio_test_fscache(folio)) { 496 if (current_is_kswapd() || !(gfp & __GFP_FS)) 497 return false; 498 folio_wait_fscache(folio); 499 } 500 fscache_note_page_release(afs_vnode_cache(vnode)); 501 #endif 502 503 if (folio_test_private(folio)) { 504 trace_afs_folio_dirty(vnode, tracepoint_string("rel"), folio); 505 folio_detach_private(folio); 506 } 507 508 /* Indicate that the folio can be released */ 509 _leave(" = T"); 510 return true; 511 } 512 513 static void afs_add_open_mmap(struct afs_vnode *vnode) 514 { 515 if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) { 516 down_write(&vnode->volume->cell->fs_open_mmaps_lock); 517 518 if (list_empty(&vnode->cb_mmap_link)) 519 list_add_tail(&vnode->cb_mmap_link, 520 &vnode->volume->cell->fs_open_mmaps); 521 522 up_write(&vnode->volume->cell->fs_open_mmaps_lock); 523 } 524 } 525 526 static void afs_drop_open_mmap(struct afs_vnode *vnode) 527 { 528 if (!atomic_dec_and_test(&vnode->cb_nr_mmap)) 529 return; 530 531 down_write(&vnode->volume->cell->fs_open_mmaps_lock); 532 533 if (atomic_read(&vnode->cb_nr_mmap) == 0) 534 list_del_init(&vnode->cb_mmap_link); 535 536 up_write(&vnode->volume->cell->fs_open_mmaps_lock); 537 flush_work(&vnode->cb_work); 538 } 539 540 /* 541 * Handle setting up a memory mapping on an AFS file. 542 */ 543 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma) 544 { 545 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 546 int ret; 547 548 afs_add_open_mmap(vnode); 549 550 ret = generic_file_mmap(file, vma); 551 if (ret == 0) 552 vma->vm_ops = &afs_vm_ops; 553 else 554 afs_drop_open_mmap(vnode); 555 return ret; 556 } 557 558 static void afs_vm_open(struct vm_area_struct *vma) 559 { 560 afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 561 } 562 563 static void afs_vm_close(struct vm_area_struct *vma) 564 { 565 afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 566 } 567 568 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff) 569 { 570 struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file)); 571 struct afs_file *af = vmf->vma->vm_file->private_data; 572 573 switch (afs_validate(vnode, af->key)) { 574 case 0: 575 return filemap_map_pages(vmf, start_pgoff, end_pgoff); 576 case -ENOMEM: 577 return VM_FAULT_OOM; 578 case -EINTR: 579 case -ERESTARTSYS: 580 return VM_FAULT_RETRY; 581 case -ESTALE: 582 default: 583 return VM_FAULT_SIGBUS; 584 } 585 } 586 587 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 588 { 589 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 590 struct afs_file *af = iocb->ki_filp->private_data; 591 int ret; 592 593 ret = afs_validate(vnode, af->key); 594 if (ret < 0) 595 return ret; 596 597 return generic_file_read_iter(iocb, iter); 598 } 599