xref: /openbmc/linux/fs/afs/dir.c (revision f8ea5c7b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
3  *
4  * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include "internal.h"
17 #include "afs_fs.h"
18 #include "xdr_fs.h"
19 
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
21 				 unsigned int flags);
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 				  loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 			      loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
32 		      bool excl);
33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
34 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
35 static int afs_unlink(struct inode *dir, struct dentry *dentry);
36 static int afs_link(struct dentry *from, struct inode *dir,
37 		    struct dentry *dentry);
38 static int afs_symlink(struct inode *dir, struct dentry *dentry,
39 		       const char *content);
40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
41 		      struct inode *new_dir, struct dentry *new_dentry,
42 		      unsigned int flags);
43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
45 				   unsigned int length);
46 
47 static int afs_dir_set_page_dirty(struct page *page)
48 {
49 	BUG(); /* This should never happen. */
50 }
51 
52 const struct file_operations afs_dir_file_operations = {
53 	.open		= afs_dir_open,
54 	.release	= afs_release,
55 	.iterate_shared	= afs_readdir,
56 	.lock		= afs_lock,
57 	.llseek		= generic_file_llseek,
58 };
59 
60 const struct inode_operations afs_dir_inode_operations = {
61 	.create		= afs_create,
62 	.lookup		= afs_lookup,
63 	.link		= afs_link,
64 	.unlink		= afs_unlink,
65 	.symlink	= afs_symlink,
66 	.mkdir		= afs_mkdir,
67 	.rmdir		= afs_rmdir,
68 	.rename		= afs_rename,
69 	.permission	= afs_permission,
70 	.getattr	= afs_getattr,
71 	.setattr	= afs_setattr,
72 	.listxattr	= afs_listxattr,
73 };
74 
75 const struct address_space_operations afs_dir_aops = {
76 	.set_page_dirty	= afs_dir_set_page_dirty,
77 	.releasepage	= afs_dir_releasepage,
78 	.invalidatepage	= afs_dir_invalidatepage,
79 };
80 
81 const struct dentry_operations afs_fs_dentry_operations = {
82 	.d_revalidate	= afs_d_revalidate,
83 	.d_delete	= afs_d_delete,
84 	.d_release	= afs_d_release,
85 	.d_automount	= afs_d_automount,
86 	.d_iput		= afs_d_iput,
87 };
88 
89 struct afs_lookup_one_cookie {
90 	struct dir_context	ctx;
91 	struct qstr		name;
92 	bool			found;
93 	struct afs_fid		fid;
94 };
95 
96 struct afs_lookup_cookie {
97 	struct dir_context	ctx;
98 	struct qstr		name;
99 	bool			found;
100 	bool			one_only;
101 	unsigned short		nr_fids;
102 	struct afs_fid		fids[50];
103 };
104 
105 /*
106  * check that a directory page is valid
107  */
108 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
109 			       loff_t i_size)
110 {
111 	struct afs_xdr_dir_page *dbuf;
112 	loff_t latter, off;
113 	int tmp, qty;
114 
115 	/* Determine how many magic numbers there should be in this page, but
116 	 * we must take care because the directory may change size under us.
117 	 */
118 	off = page_offset(page);
119 	if (i_size <= off)
120 		goto checked;
121 
122 	latter = i_size - off;
123 	if (latter >= PAGE_SIZE)
124 		qty = PAGE_SIZE;
125 	else
126 		qty = latter;
127 	qty /= sizeof(union afs_xdr_dir_block);
128 
129 	/* check them */
130 	dbuf = kmap(page);
131 	for (tmp = 0; tmp < qty; tmp++) {
132 		if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
133 			printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
134 			       __func__, dvnode->vfs_inode.i_ino, tmp, qty,
135 			       ntohs(dbuf->blocks[tmp].hdr.magic));
136 			trace_afs_dir_check_failed(dvnode, off, i_size);
137 			kunmap(page);
138 			trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
139 			goto error;
140 		}
141 
142 		/* Make sure each block is NUL terminated so we can reasonably
143 		 * use string functions on it.  The filenames in the page
144 		 * *should* be NUL-terminated anyway.
145 		 */
146 		((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
147 	}
148 
149 	kunmap(page);
150 
151 checked:
152 	afs_stat_v(dvnode, n_read_dir);
153 	return true;
154 
155 error:
156 	return false;
157 }
158 
159 /*
160  * Check the contents of a directory that we've just read.
161  */
162 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
163 {
164 	struct afs_xdr_dir_page *dbuf;
165 	unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
166 
167 	for (i = 0; i < req->nr_pages; i++)
168 		if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
169 			goto bad;
170 	return true;
171 
172 bad:
173 	pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
174 		dvnode->fid.vid, dvnode->fid.vnode,
175 		req->file_size, req->len, req->actual_len, req->remain);
176 	pr_warn("DIR %llx %x %x %x\n",
177 		req->pos, req->index, req->nr_pages, req->offset);
178 
179 	for (i = 0; i < req->nr_pages; i++) {
180 		dbuf = kmap(req->pages[i]);
181 		for (j = 0; j < qty; j++) {
182 			union afs_xdr_dir_block *block = &dbuf->blocks[j];
183 
184 			pr_warn("[%02x] %32phN\n", i * qty + j, block);
185 		}
186 		kunmap(req->pages[i]);
187 	}
188 	return false;
189 }
190 
191 /*
192  * open an AFS directory file
193  */
194 static int afs_dir_open(struct inode *inode, struct file *file)
195 {
196 	_enter("{%lu}", inode->i_ino);
197 
198 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
199 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
200 
201 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
202 		return -ENOENT;
203 
204 	return afs_open(inode, file);
205 }
206 
207 /*
208  * Read the directory into the pagecache in one go, scrubbing the previous
209  * contents.  The list of pages is returned, pinning them so that they don't
210  * get reclaimed during the iteration.
211  */
212 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
213 	__acquires(&dvnode->validate_lock)
214 {
215 	struct afs_read *req;
216 	loff_t i_size;
217 	int nr_pages, nr_inline, i, n;
218 	int ret = -ENOMEM;
219 
220 retry:
221 	i_size = i_size_read(&dvnode->vfs_inode);
222 	if (i_size < 2048)
223 		return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
224 	if (i_size > 2048 * 1024) {
225 		trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
226 		return ERR_PTR(-EFBIG);
227 	}
228 
229 	_enter("%llu", i_size);
230 
231 	/* Get a request record to hold the page list.  We want to hold it
232 	 * inline if we can, but we don't want to make an order 1 allocation.
233 	 */
234 	nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
235 	nr_inline = nr_pages;
236 	if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
237 		nr_inline = 0;
238 
239 	req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
240 	if (!req)
241 		return ERR_PTR(-ENOMEM);
242 
243 	refcount_set(&req->usage, 1);
244 	req->nr_pages = nr_pages;
245 	req->actual_len = i_size; /* May change */
246 	req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
247 	req->data_version = dvnode->status.data_version; /* May change */
248 	if (nr_inline > 0) {
249 		req->pages = req->array;
250 	} else {
251 		req->pages = kcalloc(nr_pages, sizeof(struct page *),
252 				     GFP_KERNEL);
253 		if (!req->pages)
254 			goto error;
255 	}
256 
257 	/* Get a list of all the pages that hold or will hold the directory
258 	 * content.  We need to fill in any gaps that we might find where the
259 	 * memory reclaimer has been at work.  If there are any gaps, we will
260 	 * need to reread the entire directory contents.
261 	 */
262 	i = 0;
263 	do {
264 		n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
265 					  req->nr_pages - i,
266 					  req->pages + i);
267 		_debug("find %u at %u/%u", n, i, req->nr_pages);
268 		if (n == 0) {
269 			gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
270 
271 			if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
272 				afs_stat_v(dvnode, n_inval);
273 
274 			ret = -ENOMEM;
275 			req->pages[i] = __page_cache_alloc(gfp);
276 			if (!req->pages[i])
277 				goto error;
278 			ret = add_to_page_cache_lru(req->pages[i],
279 						    dvnode->vfs_inode.i_mapping,
280 						    i, gfp);
281 			if (ret < 0)
282 				goto error;
283 
284 			set_page_private(req->pages[i], 1);
285 			SetPagePrivate(req->pages[i]);
286 			unlock_page(req->pages[i]);
287 			i++;
288 		} else {
289 			i += n;
290 		}
291 	} while (i < req->nr_pages);
292 
293 	/* If we're going to reload, we need to lock all the pages to prevent
294 	 * races.
295 	 */
296 	ret = -ERESTARTSYS;
297 	if (down_read_killable(&dvnode->validate_lock) < 0)
298 		goto error;
299 
300 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
301 		goto success;
302 
303 	up_read(&dvnode->validate_lock);
304 	if (down_write_killable(&dvnode->validate_lock) < 0)
305 		goto error;
306 
307 	if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
308 		trace_afs_reload_dir(dvnode);
309 		ret = afs_fetch_data(dvnode, key, req);
310 		if (ret < 0)
311 			goto error_unlock;
312 
313 		task_io_account_read(PAGE_SIZE * req->nr_pages);
314 
315 		if (req->len < req->file_size)
316 			goto content_has_grown;
317 
318 		/* Validate the data we just read. */
319 		ret = -EIO;
320 		if (!afs_dir_check_pages(dvnode, req))
321 			goto error_unlock;
322 
323 		// TODO: Trim excess pages
324 
325 		set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
326 	}
327 
328 	downgrade_write(&dvnode->validate_lock);
329 success:
330 	return req;
331 
332 error_unlock:
333 	up_write(&dvnode->validate_lock);
334 error:
335 	afs_put_read(req);
336 	_leave(" = %d", ret);
337 	return ERR_PTR(ret);
338 
339 content_has_grown:
340 	up_write(&dvnode->validate_lock);
341 	afs_put_read(req);
342 	goto retry;
343 }
344 
345 /*
346  * deal with one block in an AFS directory
347  */
348 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
349 				 struct dir_context *ctx,
350 				 union afs_xdr_dir_block *block,
351 				 unsigned blkoff)
352 {
353 	union afs_xdr_dirent *dire;
354 	unsigned offset, next, curr;
355 	size_t nlen;
356 	int tmp;
357 
358 	_enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
359 
360 	curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
361 
362 	/* walk through the block, an entry at a time */
363 	for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
364 	     offset < AFS_DIR_SLOTS_PER_BLOCK;
365 	     offset = next
366 	     ) {
367 		next = offset + 1;
368 
369 		/* skip entries marked unused in the bitmap */
370 		if (!(block->hdr.bitmap[offset / 8] &
371 		      (1 << (offset % 8)))) {
372 			_debug("ENT[%zu.%u]: unused",
373 			       blkoff / sizeof(union afs_xdr_dir_block), offset);
374 			if (offset >= curr)
375 				ctx->pos = blkoff +
376 					next * sizeof(union afs_xdr_dirent);
377 			continue;
378 		}
379 
380 		/* got a valid entry */
381 		dire = &block->dirents[offset];
382 		nlen = strnlen(dire->u.name,
383 			       sizeof(*block) -
384 			       offset * sizeof(union afs_xdr_dirent));
385 
386 		_debug("ENT[%zu.%u]: %s %zu \"%s\"",
387 		       blkoff / sizeof(union afs_xdr_dir_block), offset,
388 		       (offset < curr ? "skip" : "fill"),
389 		       nlen, dire->u.name);
390 
391 		/* work out where the next possible entry is */
392 		for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) {
393 			if (next >= AFS_DIR_SLOTS_PER_BLOCK) {
394 				_debug("ENT[%zu.%u]:"
395 				       " %u travelled beyond end dir block"
396 				       " (len %u/%zu)",
397 				       blkoff / sizeof(union afs_xdr_dir_block),
398 				       offset, next, tmp, nlen);
399 				return afs_bad(dvnode, afs_file_error_dir_over_end);
400 			}
401 			if (!(block->hdr.bitmap[next / 8] &
402 			      (1 << (next % 8)))) {
403 				_debug("ENT[%zu.%u]:"
404 				       " %u unmarked extension (len %u/%zu)",
405 				       blkoff / sizeof(union afs_xdr_dir_block),
406 				       offset, next, tmp, nlen);
407 				return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
408 			}
409 
410 			_debug("ENT[%zu.%u]: ext %u/%zu",
411 			       blkoff / sizeof(union afs_xdr_dir_block),
412 			       next, tmp, nlen);
413 			next++;
414 		}
415 
416 		/* skip if starts before the current position */
417 		if (offset < curr)
418 			continue;
419 
420 		/* found the next entry */
421 		if (!dir_emit(ctx, dire->u.name, nlen,
422 			      ntohl(dire->u.vnode),
423 			      (ctx->actor == afs_lookup_filldir ||
424 			       ctx->actor == afs_lookup_one_filldir)?
425 			      ntohl(dire->u.unique) : DT_UNKNOWN)) {
426 			_leave(" = 0 [full]");
427 			return 0;
428 		}
429 
430 		ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
431 	}
432 
433 	_leave(" = 1 [more]");
434 	return 1;
435 }
436 
437 /*
438  * iterate through the data blob that lists the contents of an AFS directory
439  */
440 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
441 			   struct key *key, afs_dataversion_t *_dir_version)
442 {
443 	struct afs_vnode *dvnode = AFS_FS_I(dir);
444 	struct afs_xdr_dir_page *dbuf;
445 	union afs_xdr_dir_block *dblock;
446 	struct afs_read *req;
447 	struct page *page;
448 	unsigned blkoff, limit;
449 	int ret;
450 
451 	_enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
452 
453 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
454 		_leave(" = -ESTALE");
455 		return -ESTALE;
456 	}
457 
458 	req = afs_read_dir(dvnode, key);
459 	if (IS_ERR(req))
460 		return PTR_ERR(req);
461 	*_dir_version = req->data_version;
462 
463 	/* round the file position up to the next entry boundary */
464 	ctx->pos += sizeof(union afs_xdr_dirent) - 1;
465 	ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
466 
467 	/* walk through the blocks in sequence */
468 	ret = 0;
469 	while (ctx->pos < req->actual_len) {
470 		blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
471 
472 		/* Fetch the appropriate page from the directory and re-add it
473 		 * to the LRU.
474 		 */
475 		page = req->pages[blkoff / PAGE_SIZE];
476 		if (!page) {
477 			ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
478 			break;
479 		}
480 		mark_page_accessed(page);
481 
482 		limit = blkoff & ~(PAGE_SIZE - 1);
483 
484 		dbuf = kmap(page);
485 
486 		/* deal with the individual blocks stashed on this page */
487 		do {
488 			dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
489 					       sizeof(union afs_xdr_dir_block)];
490 			ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
491 			if (ret != 1) {
492 				kunmap(page);
493 				goto out;
494 			}
495 
496 			blkoff += sizeof(union afs_xdr_dir_block);
497 
498 		} while (ctx->pos < dir->i_size && blkoff < limit);
499 
500 		kunmap(page);
501 		ret = 0;
502 	}
503 
504 out:
505 	up_read(&dvnode->validate_lock);
506 	afs_put_read(req);
507 	_leave(" = %d", ret);
508 	return ret;
509 }
510 
511 /*
512  * read an AFS directory
513  */
514 static int afs_readdir(struct file *file, struct dir_context *ctx)
515 {
516 	afs_dataversion_t dir_version;
517 
518 	return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
519 			       &dir_version);
520 }
521 
522 /*
523  * Search the directory for a single name
524  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
525  *   uniquifier through dtype
526  */
527 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
528 				  int nlen, loff_t fpos, u64 ino, unsigned dtype)
529 {
530 	struct afs_lookup_one_cookie *cookie =
531 		container_of(ctx, struct afs_lookup_one_cookie, ctx);
532 
533 	_enter("{%s,%u},%s,%u,,%llu,%u",
534 	       cookie->name.name, cookie->name.len, name, nlen,
535 	       (unsigned long long) ino, dtype);
536 
537 	/* insanity checks first */
538 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
539 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
540 
541 	if (cookie->name.len != nlen ||
542 	    memcmp(cookie->name.name, name, nlen) != 0) {
543 		_leave(" = 0 [no]");
544 		return 0;
545 	}
546 
547 	cookie->fid.vnode = ino;
548 	cookie->fid.unique = dtype;
549 	cookie->found = 1;
550 
551 	_leave(" = -1 [found]");
552 	return -1;
553 }
554 
555 /*
556  * Do a lookup of a single name in a directory
557  * - just returns the FID the dentry name maps to if found
558  */
559 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
560 			     struct afs_fid *fid, struct key *key,
561 			     afs_dataversion_t *_dir_version)
562 {
563 	struct afs_super_info *as = dir->i_sb->s_fs_info;
564 	struct afs_lookup_one_cookie cookie = {
565 		.ctx.actor = afs_lookup_one_filldir,
566 		.name = dentry->d_name,
567 		.fid.vid = as->volume->vid
568 	};
569 	int ret;
570 
571 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
572 
573 	/* search the directory */
574 	ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
575 	if (ret < 0) {
576 		_leave(" = %d [iter]", ret);
577 		return ret;
578 	}
579 
580 	ret = -ENOENT;
581 	if (!cookie.found) {
582 		_leave(" = -ENOENT [not found]");
583 		return -ENOENT;
584 	}
585 
586 	*fid = cookie.fid;
587 	_leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
588 	return 0;
589 }
590 
591 /*
592  * search the directory for a name
593  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
594  *   uniquifier through dtype
595  */
596 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
597 			      int nlen, loff_t fpos, u64 ino, unsigned dtype)
598 {
599 	struct afs_lookup_cookie *cookie =
600 		container_of(ctx, struct afs_lookup_cookie, ctx);
601 	int ret;
602 
603 	_enter("{%s,%u},%s,%u,,%llu,%u",
604 	       cookie->name.name, cookie->name.len, name, nlen,
605 	       (unsigned long long) ino, dtype);
606 
607 	/* insanity checks first */
608 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
609 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
610 
611 	if (cookie->found) {
612 		if (cookie->nr_fids < 50) {
613 			cookie->fids[cookie->nr_fids].vnode	= ino;
614 			cookie->fids[cookie->nr_fids].unique	= dtype;
615 			cookie->nr_fids++;
616 		}
617 	} else if (cookie->name.len == nlen &&
618 		   memcmp(cookie->name.name, name, nlen) == 0) {
619 		cookie->fids[1].vnode	= ino;
620 		cookie->fids[1].unique	= dtype;
621 		cookie->found = 1;
622 		if (cookie->one_only)
623 			return -1;
624 	}
625 
626 	ret = cookie->nr_fids >= 50 ? -1 : 0;
627 	_leave(" = %d", ret);
628 	return ret;
629 }
630 
631 /*
632  * Deal with the result of a successful lookup operation.  Turn all the files
633  * into inodes and save the first one - which is the one we actually want.
634  */
635 static void afs_do_lookup_success(struct afs_operation *op)
636 {
637 	struct afs_vnode_param *vp;
638 	struct afs_vnode *vnode;
639 	struct inode *inode;
640 	u32 abort_code;
641 	int i;
642 
643 	_enter("");
644 
645 	for (i = 0; i < op->nr_files; i++) {
646 		switch (i) {
647 		case 0:
648 			vp = &op->file[0];
649 			abort_code = vp->scb.status.abort_code;
650 			if (abort_code != 0) {
651 				op->ac.abort_code = abort_code;
652 				op->error = afs_abort_to_error(abort_code);
653 			}
654 			break;
655 
656 		case 1:
657 			vp = &op->file[1];
658 			break;
659 
660 		default:
661 			vp = &op->more_files[i - 2];
662 			break;
663 		}
664 
665 		if (!vp->scb.have_status && !vp->scb.have_error)
666 			continue;
667 
668 		_debug("do [%u]", i);
669 		if (vp->vnode) {
670 			if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags))
671 				afs_vnode_commit_status(op, vp);
672 		} else if (vp->scb.status.abort_code == 0) {
673 			inode = afs_iget(op, vp);
674 			if (!IS_ERR(inode)) {
675 				vnode = AFS_FS_I(inode);
676 				afs_cache_permit(vnode, op->key,
677 						 0 /* Assume vnode->cb_break is 0 */ +
678 						 op->cb_v_break,
679 						 &vp->scb);
680 				vp->vnode = vnode;
681 				vp->put_vnode = true;
682 			}
683 		} else {
684 			_debug("- abort %d %llx:%llx.%x",
685 			       vp->scb.status.abort_code,
686 			       vp->fid.vid, vp->fid.vnode, vp->fid.unique);
687 		}
688 	}
689 
690 	_leave("");
691 }
692 
693 static const struct afs_operation_ops afs_inline_bulk_status_operation = {
694 	.issue_afs_rpc	= afs_fs_inline_bulk_status,
695 	.issue_yfs_rpc	= yfs_fs_inline_bulk_status,
696 	.success	= afs_do_lookup_success,
697 };
698 
699 static const struct afs_operation_ops afs_lookup_fetch_status_operation = {
700 	.issue_afs_rpc	= afs_fs_fetch_status,
701 	.issue_yfs_rpc	= yfs_fs_fetch_status,
702 	.success	= afs_do_lookup_success,
703 	.aborted	= afs_check_for_remote_deletion,
704 };
705 
706 /*
707  * See if we know that the server we expect to use doesn't support
708  * FS.InlineBulkStatus.
709  */
710 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode)
711 {
712 	struct afs_server_list *slist;
713 	struct afs_volume *volume = dvnode->volume;
714 	struct afs_server *server;
715 	bool ret = true;
716 	int i;
717 
718 	if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags))
719 		return true;
720 
721 	rcu_read_lock();
722 	slist = rcu_dereference(volume->servers);
723 
724 	for (i = 0; i < slist->nr_servers; i++) {
725 		server = slist->servers[i].server;
726 		if (server == dvnode->cb_server) {
727 			if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
728 				ret = false;
729 			break;
730 		}
731 	}
732 
733 	rcu_read_unlock();
734 	return ret;
735 }
736 
737 /*
738  * Do a lookup in a directory.  We make use of bulk lookup to query a slew of
739  * files in one go and create inodes for them.  The inode of the file we were
740  * asked for is returned.
741  */
742 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
743 				   struct key *key)
744 {
745 	struct afs_lookup_cookie *cookie;
746 	struct afs_vnode_param *vp;
747 	struct afs_operation *op;
748 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
749 	struct inode *inode = NULL, *ti;
750 	afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
751 	long ret;
752 	int i;
753 
754 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
755 
756 	cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
757 	if (!cookie)
758 		return ERR_PTR(-ENOMEM);
759 
760 	for (i = 0; i < ARRAY_SIZE(cookie->fids); i++)
761 		cookie->fids[i].vid = dvnode->fid.vid;
762 	cookie->ctx.actor = afs_lookup_filldir;
763 	cookie->name = dentry->d_name;
764 	cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want
765 			      * and slot 1 for the directory */
766 
767 	if (!afs_server_supports_ibulk(dvnode))
768 		cookie->one_only = true;
769 
770 	/* search the directory */
771 	ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
772 	if (ret < 0)
773 		goto out;
774 
775 	dentry->d_fsdata = (void *)(unsigned long)data_version;
776 
777 	ret = -ENOENT;
778 	if (!cookie->found)
779 		goto out;
780 
781 	/* Check to see if we already have an inode for the primary fid. */
782 	inode = ilookup5(dir->i_sb, cookie->fids[1].vnode,
783 			 afs_ilookup5_test_by_fid, &cookie->fids[1]);
784 	if (inode)
785 		goto out; /* We do */
786 
787 	/* Okay, we didn't find it.  We need to query the server - and whilst
788 	 * we're doing that, we're going to attempt to look up a bunch of other
789 	 * vnodes also.
790 	 */
791 	op = afs_alloc_operation(NULL, dvnode->volume);
792 	if (IS_ERR(op)) {
793 		ret = PTR_ERR(op);
794 		goto out;
795 	}
796 
797 	afs_op_set_vnode(op, 0, dvnode);
798 	afs_op_set_fid(op, 1, &cookie->fids[1]);
799 
800 	op->nr_files = cookie->nr_fids;
801 	_debug("nr_files %u", op->nr_files);
802 
803 	/* Need space for examining all the selected files */
804 	op->error = -ENOMEM;
805 	if (op->nr_files > 2) {
806 		op->more_files = kvcalloc(op->nr_files - 2,
807 					  sizeof(struct afs_vnode_param),
808 					  GFP_KERNEL);
809 		if (!op->more_files)
810 			goto out_op;
811 
812 		for (i = 2; i < op->nr_files; i++) {
813 			vp = &op->more_files[i - 2];
814 			vp->fid = cookie->fids[i];
815 
816 			/* Find any inodes that already exist and get their
817 			 * callback counters.
818 			 */
819 			ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode,
820 					     afs_ilookup5_test_by_fid, &vp->fid);
821 			if (!IS_ERR_OR_NULL(ti)) {
822 				vnode = AFS_FS_I(ti);
823 				vp->dv_before = vnode->status.data_version;
824 				vp->cb_break_before = afs_calc_vnode_cb_break(vnode);
825 				vp->vnode = vnode;
826 				vp->put_vnode = true;
827 			}
828 		}
829 	}
830 
831 	/* Try FS.InlineBulkStatus first.  Abort codes for the individual
832 	 * lookups contained therein are stored in the reply without aborting
833 	 * the whole operation.
834 	 */
835 	op->error = -ENOTSUPP;
836 	if (!cookie->one_only) {
837 		op->ops = &afs_inline_bulk_status_operation;
838 		afs_begin_vnode_operation(op);
839 		afs_wait_for_operation(op);
840 	}
841 
842 	if (op->error == -ENOTSUPP) {
843 		/* We could try FS.BulkStatus next, but this aborts the entire
844 		 * op if any of the lookups fails - so, for the moment, revert
845 		 * to FS.FetchStatus for op->file[1].
846 		 */
847 		op->fetch_status.which = 1;
848 		op->ops = &afs_lookup_fetch_status_operation;
849 		afs_begin_vnode_operation(op);
850 		afs_wait_for_operation(op);
851 	}
852 	inode = ERR_PTR(op->error);
853 
854 out_op:
855 	if (op->error == 0) {
856 		inode = &op->file[1].vnode->vfs_inode;
857 		op->file[1].vnode = NULL;
858 	}
859 
860 	if (op->file[0].scb.have_status)
861 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version;
862 	else
863 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before;
864 	ret = afs_put_operation(op);
865 out:
866 	kfree(cookie);
867 	_leave("");
868 	return inode ?: ERR_PTR(ret);
869 }
870 
871 /*
872  * Look up an entry in a directory with @sys substitution.
873  */
874 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
875 				       struct key *key)
876 {
877 	struct afs_sysnames *subs;
878 	struct afs_net *net = afs_i2net(dir);
879 	struct dentry *ret;
880 	char *buf, *p, *name;
881 	int len, i;
882 
883 	_enter("");
884 
885 	ret = ERR_PTR(-ENOMEM);
886 	p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
887 	if (!buf)
888 		goto out_p;
889 	if (dentry->d_name.len > 4) {
890 		memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
891 		p += dentry->d_name.len - 4;
892 	}
893 
894 	/* There is an ordered list of substitutes that we have to try. */
895 	read_lock(&net->sysnames_lock);
896 	subs = net->sysnames;
897 	refcount_inc(&subs->usage);
898 	read_unlock(&net->sysnames_lock);
899 
900 	for (i = 0; i < subs->nr; i++) {
901 		name = subs->subs[i];
902 		len = dentry->d_name.len - 4 + strlen(name);
903 		if (len >= AFSNAMEMAX) {
904 			ret = ERR_PTR(-ENAMETOOLONG);
905 			goto out_s;
906 		}
907 
908 		strcpy(p, name);
909 		ret = lookup_one_len(buf, dentry->d_parent, len);
910 		if (IS_ERR(ret) || d_is_positive(ret))
911 			goto out_s;
912 		dput(ret);
913 	}
914 
915 	/* We don't want to d_add() the @sys dentry here as we don't want to
916 	 * the cached dentry to hide changes to the sysnames list.
917 	 */
918 	ret = NULL;
919 out_s:
920 	afs_put_sysnames(subs);
921 	kfree(buf);
922 out_p:
923 	key_put(key);
924 	return ret;
925 }
926 
927 /*
928  * look up an entry in a directory
929  */
930 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
931 				 unsigned int flags)
932 {
933 	struct afs_vnode *dvnode = AFS_FS_I(dir);
934 	struct afs_fid fid = {};
935 	struct inode *inode;
936 	struct dentry *d;
937 	struct key *key;
938 	int ret;
939 
940 	_enter("{%llx:%llu},%p{%pd},",
941 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
942 
943 	ASSERTCMP(d_inode(dentry), ==, NULL);
944 
945 	if (dentry->d_name.len >= AFSNAMEMAX) {
946 		_leave(" = -ENAMETOOLONG");
947 		return ERR_PTR(-ENAMETOOLONG);
948 	}
949 
950 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
951 		_leave(" = -ESTALE");
952 		return ERR_PTR(-ESTALE);
953 	}
954 
955 	key = afs_request_key(dvnode->volume->cell);
956 	if (IS_ERR(key)) {
957 		_leave(" = %ld [key]", PTR_ERR(key));
958 		return ERR_CAST(key);
959 	}
960 
961 	ret = afs_validate(dvnode, key);
962 	if (ret < 0) {
963 		key_put(key);
964 		_leave(" = %d [val]", ret);
965 		return ERR_PTR(ret);
966 	}
967 
968 	if (dentry->d_name.len >= 4 &&
969 	    dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
970 	    dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
971 	    dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
972 	    dentry->d_name.name[dentry->d_name.len - 1] == 's')
973 		return afs_lookup_atsys(dir, dentry, key);
974 
975 	afs_stat_v(dvnode, n_lookup);
976 	inode = afs_do_lookup(dir, dentry, key);
977 	key_put(key);
978 	if (inode == ERR_PTR(-ENOENT))
979 		inode = afs_try_auto_mntpt(dentry, dir);
980 
981 	if (!IS_ERR_OR_NULL(inode))
982 		fid = AFS_FS_I(inode)->fid;
983 
984 	_debug("splice %p", dentry->d_inode);
985 	d = d_splice_alias(inode, dentry);
986 	if (!IS_ERR_OR_NULL(d)) {
987 		d->d_fsdata = dentry->d_fsdata;
988 		trace_afs_lookup(dvnode, &d->d_name, &fid);
989 	} else {
990 		trace_afs_lookup(dvnode, &dentry->d_name, &fid);
991 	}
992 	_leave("");
993 	return d;
994 }
995 
996 /*
997  * Check the validity of a dentry under RCU conditions.
998  */
999 static int afs_d_revalidate_rcu(struct dentry *dentry)
1000 {
1001 	struct afs_vnode *dvnode, *vnode;
1002 	struct dentry *parent;
1003 	struct inode *dir, *inode;
1004 	long dir_version, de_version;
1005 
1006 	_enter("%p", dentry);
1007 
1008 	/* Check the parent directory is still valid first. */
1009 	parent = READ_ONCE(dentry->d_parent);
1010 	dir = d_inode_rcu(parent);
1011 	if (!dir)
1012 		return -ECHILD;
1013 	dvnode = AFS_FS_I(dir);
1014 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
1015 		return -ECHILD;
1016 
1017 	if (!afs_check_validity(dvnode))
1018 		return -ECHILD;
1019 
1020 	/* We only need to invalidate a dentry if the server's copy changed
1021 	 * behind our back.  If we made the change, it's no problem.  Note that
1022 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1023 	 * version.
1024 	 */
1025 	dir_version = (long)READ_ONCE(dvnode->status.data_version);
1026 	de_version = (long)READ_ONCE(dentry->d_fsdata);
1027 	if (de_version != dir_version) {
1028 		dir_version = (long)READ_ONCE(dvnode->invalid_before);
1029 		if (de_version - dir_version < 0)
1030 			return -ECHILD;
1031 	}
1032 
1033 	/* Check to see if the vnode referred to by the dentry still
1034 	 * has a callback.
1035 	 */
1036 	if (d_really_is_positive(dentry)) {
1037 		inode = d_inode_rcu(dentry);
1038 		if (inode) {
1039 			vnode = AFS_FS_I(inode);
1040 			if (!afs_check_validity(vnode))
1041 				return -ECHILD;
1042 		}
1043 	}
1044 
1045 	return 1; /* Still valid */
1046 }
1047 
1048 /*
1049  * check that a dentry lookup hit has found a valid entry
1050  * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1051  *   inode
1052  */
1053 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1054 {
1055 	struct afs_vnode *vnode, *dir;
1056 	struct afs_fid uninitialized_var(fid);
1057 	struct dentry *parent;
1058 	struct inode *inode;
1059 	struct key *key;
1060 	afs_dataversion_t dir_version, invalid_before;
1061 	long de_version;
1062 	int ret;
1063 
1064 	if (flags & LOOKUP_RCU)
1065 		return afs_d_revalidate_rcu(dentry);
1066 
1067 	if (d_really_is_positive(dentry)) {
1068 		vnode = AFS_FS_I(d_inode(dentry));
1069 		_enter("{v={%llx:%llu} n=%pd fl=%lx},",
1070 		       vnode->fid.vid, vnode->fid.vnode, dentry,
1071 		       vnode->flags);
1072 	} else {
1073 		_enter("{neg n=%pd}", dentry);
1074 	}
1075 
1076 	key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1077 	if (IS_ERR(key))
1078 		key = NULL;
1079 
1080 	if (d_really_is_positive(dentry)) {
1081 		inode = d_inode(dentry);
1082 		if (inode) {
1083 			vnode = AFS_FS_I(inode);
1084 			afs_validate(vnode, key);
1085 			if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1086 				goto out_bad;
1087 		}
1088 	}
1089 
1090 	/* lock down the parent dentry so we can peer at it */
1091 	parent = dget_parent(dentry);
1092 	dir = AFS_FS_I(d_inode(parent));
1093 
1094 	/* validate the parent directory */
1095 	afs_validate(dir, key);
1096 
1097 	if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1098 		_debug("%pd: parent dir deleted", dentry);
1099 		goto out_bad_parent;
1100 	}
1101 
1102 	/* We only need to invalidate a dentry if the server's copy changed
1103 	 * behind our back.  If we made the change, it's no problem.  Note that
1104 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1105 	 * version.
1106 	 */
1107 	dir_version = dir->status.data_version;
1108 	de_version = (long)dentry->d_fsdata;
1109 	if (de_version == (long)dir_version)
1110 		goto out_valid_noupdate;
1111 
1112 	invalid_before = dir->invalid_before;
1113 	if (de_version - (long)invalid_before >= 0)
1114 		goto out_valid;
1115 
1116 	_debug("dir modified");
1117 	afs_stat_v(dir, n_reval);
1118 
1119 	/* search the directory for this vnode */
1120 	ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1121 	switch (ret) {
1122 	case 0:
1123 		/* the filename maps to something */
1124 		if (d_really_is_negative(dentry))
1125 			goto out_bad_parent;
1126 		inode = d_inode(dentry);
1127 		if (is_bad_inode(inode)) {
1128 			printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1129 			       dentry);
1130 			goto out_bad_parent;
1131 		}
1132 
1133 		vnode = AFS_FS_I(inode);
1134 
1135 		/* if the vnode ID has changed, then the dirent points to a
1136 		 * different file */
1137 		if (fid.vnode != vnode->fid.vnode) {
1138 			_debug("%pd: dirent changed [%llu != %llu]",
1139 			       dentry, fid.vnode,
1140 			       vnode->fid.vnode);
1141 			goto not_found;
1142 		}
1143 
1144 		/* if the vnode ID uniqifier has changed, then the file has
1145 		 * been deleted and replaced, and the original vnode ID has
1146 		 * been reused */
1147 		if (fid.unique != vnode->fid.unique) {
1148 			_debug("%pd: file deleted (uq %u -> %u I:%u)",
1149 			       dentry, fid.unique,
1150 			       vnode->fid.unique,
1151 			       vnode->vfs_inode.i_generation);
1152 			write_seqlock(&vnode->cb_lock);
1153 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1154 			write_sequnlock(&vnode->cb_lock);
1155 			goto not_found;
1156 		}
1157 		goto out_valid;
1158 
1159 	case -ENOENT:
1160 		/* the filename is unknown */
1161 		_debug("%pd: dirent not found", dentry);
1162 		if (d_really_is_positive(dentry))
1163 			goto not_found;
1164 		goto out_valid;
1165 
1166 	default:
1167 		_debug("failed to iterate dir %pd: %d",
1168 		       parent, ret);
1169 		goto out_bad_parent;
1170 	}
1171 
1172 out_valid:
1173 	dentry->d_fsdata = (void *)(unsigned long)dir_version;
1174 out_valid_noupdate:
1175 	dput(parent);
1176 	key_put(key);
1177 	_leave(" = 1 [valid]");
1178 	return 1;
1179 
1180 	/* the dirent, if it exists, now points to a different vnode */
1181 not_found:
1182 	spin_lock(&dentry->d_lock);
1183 	dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1184 	spin_unlock(&dentry->d_lock);
1185 
1186 out_bad_parent:
1187 	_debug("dropping dentry %pd2", dentry);
1188 	dput(parent);
1189 out_bad:
1190 	key_put(key);
1191 
1192 	_leave(" = 0 [bad]");
1193 	return 0;
1194 }
1195 
1196 /*
1197  * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1198  * sleep)
1199  * - called from dput() when d_count is going to 0.
1200  * - return 1 to request dentry be unhashed, 0 otherwise
1201  */
1202 static int afs_d_delete(const struct dentry *dentry)
1203 {
1204 	_enter("%pd", dentry);
1205 
1206 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1207 		goto zap;
1208 
1209 	if (d_really_is_positive(dentry) &&
1210 	    (test_bit(AFS_VNODE_DELETED,   &AFS_FS_I(d_inode(dentry))->flags) ||
1211 	     test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1212 		goto zap;
1213 
1214 	_leave(" = 0 [keep]");
1215 	return 0;
1216 
1217 zap:
1218 	_leave(" = 1 [zap]");
1219 	return 1;
1220 }
1221 
1222 /*
1223  * Clean up sillyrename files on dentry removal.
1224  */
1225 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1226 {
1227 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1228 		afs_silly_iput(dentry, inode);
1229 	iput(inode);
1230 }
1231 
1232 /*
1233  * handle dentry release
1234  */
1235 void afs_d_release(struct dentry *dentry)
1236 {
1237 	_enter("%pd", dentry);
1238 }
1239 
1240 void afs_check_for_remote_deletion(struct afs_operation *op)
1241 {
1242 	struct afs_vnode *vnode = op->file[0].vnode;
1243 
1244 	switch (op->ac.abort_code) {
1245 	case VNOVNODE:
1246 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1247 		afs_break_callback(vnode, afs_cb_break_for_deleted);
1248 	}
1249 }
1250 
1251 /*
1252  * Create a new inode for create/mkdir/symlink
1253  */
1254 static void afs_vnode_new_inode(struct afs_operation *op)
1255 {
1256 	struct afs_vnode_param *vp = &op->file[1];
1257 	struct afs_vnode *vnode;
1258 	struct inode *inode;
1259 
1260 	_enter("");
1261 
1262 	ASSERTCMP(op->error, ==, 0);
1263 
1264 	inode = afs_iget(op, vp);
1265 	if (IS_ERR(inode)) {
1266 		/* ENOMEM or EINTR at a really inconvenient time - just abandon
1267 		 * the new directory on the server.
1268 		 */
1269 		op->error = PTR_ERR(inode);
1270 		return;
1271 	}
1272 
1273 	vnode = AFS_FS_I(inode);
1274 	set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1275 	if (!op->error)
1276 		afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb);
1277 	d_instantiate(op->dentry, inode);
1278 }
1279 
1280 static void afs_create_success(struct afs_operation *op)
1281 {
1282 	_enter("op=%08x", op->debug_id);
1283 	op->ctime = op->file[0].scb.status.mtime_client;
1284 	afs_vnode_commit_status(op, &op->file[0]);
1285 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1286 	afs_vnode_new_inode(op);
1287 }
1288 
1289 static void afs_create_edit_dir(struct afs_operation *op)
1290 {
1291 	struct afs_vnode_param *dvp = &op->file[0];
1292 	struct afs_vnode_param *vp = &op->file[1];
1293 	struct afs_vnode *dvnode = dvp->vnode;
1294 
1295 	_enter("op=%08x", op->debug_id);
1296 
1297 	down_write(&dvnode->validate_lock);
1298 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1299 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1300 		afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid,
1301 				 op->create.reason);
1302 	up_write(&dvnode->validate_lock);
1303 }
1304 
1305 static void afs_create_put(struct afs_operation *op)
1306 {
1307 	_enter("op=%08x", op->debug_id);
1308 
1309 	if (op->error)
1310 		d_drop(op->dentry);
1311 }
1312 
1313 static const struct afs_operation_ops afs_mkdir_operation = {
1314 	.issue_afs_rpc	= afs_fs_make_dir,
1315 	.issue_yfs_rpc	= yfs_fs_make_dir,
1316 	.success	= afs_create_success,
1317 	.aborted	= afs_check_for_remote_deletion,
1318 	.edit_dir	= afs_create_edit_dir,
1319 	.put		= afs_create_put,
1320 };
1321 
1322 /*
1323  * create a directory on an AFS filesystem
1324  */
1325 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1326 {
1327 	struct afs_operation *op;
1328 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1329 
1330 	_enter("{%llx:%llu},{%pd},%ho",
1331 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1332 
1333 	op = afs_alloc_operation(NULL, dvnode->volume);
1334 	if (IS_ERR(op)) {
1335 		d_drop(dentry);
1336 		return PTR_ERR(op);
1337 	}
1338 
1339 	afs_op_set_vnode(op, 0, dvnode);
1340 	op->file[0].dv_delta = 1;
1341 	op->file[0].update_ctime = true;
1342 	op->dentry	= dentry;
1343 	op->create.mode	= S_IFDIR | mode;
1344 	op->create.reason = afs_edit_dir_for_mkdir;
1345 	op->ops		= &afs_mkdir_operation;
1346 	return afs_do_sync_operation(op);
1347 }
1348 
1349 /*
1350  * Remove a subdir from a directory.
1351  */
1352 static void afs_dir_remove_subdir(struct dentry *dentry)
1353 {
1354 	if (d_really_is_positive(dentry)) {
1355 		struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1356 
1357 		clear_nlink(&vnode->vfs_inode);
1358 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1359 		clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1360 		clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1361 	}
1362 }
1363 
1364 static void afs_rmdir_success(struct afs_operation *op)
1365 {
1366 	_enter("op=%08x", op->debug_id);
1367 	op->ctime = op->file[0].scb.status.mtime_client;
1368 	afs_vnode_commit_status(op, &op->file[0]);
1369 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1370 }
1371 
1372 static void afs_rmdir_edit_dir(struct afs_operation *op)
1373 {
1374 	struct afs_vnode_param *dvp = &op->file[0];
1375 	struct afs_vnode *dvnode = dvp->vnode;
1376 
1377 	_enter("op=%08x", op->debug_id);
1378 	afs_dir_remove_subdir(op->dentry);
1379 
1380 	down_write(&dvnode->validate_lock);
1381 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1382 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1383 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1384 				    afs_edit_dir_for_rmdir);
1385 	up_write(&dvnode->validate_lock);
1386 }
1387 
1388 static void afs_rmdir_put(struct afs_operation *op)
1389 {
1390 	_enter("op=%08x", op->debug_id);
1391 	if (op->file[1].vnode)
1392 		up_write(&op->file[1].vnode->rmdir_lock);
1393 }
1394 
1395 static const struct afs_operation_ops afs_rmdir_operation = {
1396 	.issue_afs_rpc	= afs_fs_remove_dir,
1397 	.issue_yfs_rpc	= yfs_fs_remove_dir,
1398 	.success	= afs_rmdir_success,
1399 	.aborted	= afs_check_for_remote_deletion,
1400 	.edit_dir	= afs_rmdir_edit_dir,
1401 	.put		= afs_rmdir_put,
1402 };
1403 
1404 /*
1405  * remove a directory from an AFS filesystem
1406  */
1407 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1408 {
1409 	struct afs_operation *op;
1410 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1411 	int ret;
1412 
1413 	_enter("{%llx:%llu},{%pd}",
1414 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1415 
1416 	op = afs_alloc_operation(NULL, dvnode->volume);
1417 	if (IS_ERR(op))
1418 		return PTR_ERR(op);
1419 
1420 	afs_op_set_vnode(op, 0, dvnode);
1421 	op->file[0].dv_delta = 1;
1422 	op->file[0].update_ctime = true;
1423 
1424 	op->dentry	= dentry;
1425 	op->ops		= &afs_rmdir_operation;
1426 
1427 	/* Try to make sure we have a callback promise on the victim. */
1428 	if (d_really_is_positive(dentry)) {
1429 		vnode = AFS_FS_I(d_inode(dentry));
1430 		ret = afs_validate(vnode, op->key);
1431 		if (ret < 0)
1432 			goto error;
1433 	}
1434 
1435 	if (vnode) {
1436 		ret = down_write_killable(&vnode->rmdir_lock);
1437 		if (ret < 0)
1438 			goto error;
1439 		op->file[1].vnode = vnode;
1440 	}
1441 
1442 	return afs_do_sync_operation(op);
1443 
1444 error:
1445 	return afs_put_operation(op);
1446 }
1447 
1448 /*
1449  * Remove a link to a file or symlink from a directory.
1450  *
1451  * If the file was not deleted due to excess hard links, the fileserver will
1452  * break the callback promise on the file - if it had one - before it returns
1453  * to us, and if it was deleted, it won't
1454  *
1455  * However, if we didn't have a callback promise outstanding, or it was
1456  * outstanding on a different server, then it won't break it either...
1457  */
1458 static void afs_dir_remove_link(struct afs_operation *op)
1459 {
1460 	struct afs_vnode *dvnode = op->file[0].vnode;
1461 	struct afs_vnode *vnode = op->file[1].vnode;
1462 	struct dentry *dentry = op->dentry;
1463 	int ret;
1464 
1465 	if (op->error != 0 ||
1466 	    (op->file[1].scb.have_status && op->file[1].scb.have_error))
1467 		return;
1468 	if (d_really_is_positive(dentry))
1469 		return;
1470 
1471 	if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1472 		/* Already done */
1473 	} else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1474 		write_seqlock(&vnode->cb_lock);
1475 		drop_nlink(&vnode->vfs_inode);
1476 		if (vnode->vfs_inode.i_nlink == 0) {
1477 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1478 			__afs_break_callback(vnode, afs_cb_break_for_unlink);
1479 		}
1480 		write_sequnlock(&vnode->cb_lock);
1481 	} else {
1482 		afs_break_callback(vnode, afs_cb_break_for_unlink);
1483 
1484 		if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1485 			_debug("AFS_VNODE_DELETED");
1486 
1487 		ret = afs_validate(vnode, op->key);
1488 		if (ret != -ESTALE)
1489 			op->error = ret;
1490 	}
1491 
1492 	_debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error);
1493 }
1494 
1495 static void afs_unlink_success(struct afs_operation *op)
1496 {
1497 	_enter("op=%08x", op->debug_id);
1498 	op->ctime = op->file[0].scb.status.mtime_client;
1499 	afs_check_dir_conflict(op, &op->file[0]);
1500 	afs_vnode_commit_status(op, &op->file[0]);
1501 	afs_vnode_commit_status(op, &op->file[1]);
1502 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1503 	afs_dir_remove_link(op);
1504 }
1505 
1506 static void afs_unlink_edit_dir(struct afs_operation *op)
1507 {
1508 	struct afs_vnode_param *dvp = &op->file[0];
1509 	struct afs_vnode *dvnode = dvp->vnode;
1510 
1511 	_enter("op=%08x", op->debug_id);
1512 	down_write(&dvnode->validate_lock);
1513 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1514 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1515 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1516 				    afs_edit_dir_for_unlink);
1517 	up_write(&dvnode->validate_lock);
1518 }
1519 
1520 static void afs_unlink_put(struct afs_operation *op)
1521 {
1522 	_enter("op=%08x", op->debug_id);
1523 	if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT)
1524 		d_rehash(op->dentry);
1525 }
1526 
1527 static const struct afs_operation_ops afs_unlink_operation = {
1528 	.issue_afs_rpc	= afs_fs_remove_file,
1529 	.issue_yfs_rpc	= yfs_fs_remove_file,
1530 	.success	= afs_unlink_success,
1531 	.aborted	= afs_check_for_remote_deletion,
1532 	.edit_dir	= afs_unlink_edit_dir,
1533 	.put		= afs_unlink_put,
1534 };
1535 
1536 /*
1537  * Remove a file or symlink from an AFS filesystem.
1538  */
1539 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1540 {
1541 	struct afs_operation *op;
1542 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1543 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1544 	int ret;
1545 
1546 	_enter("{%llx:%llu},{%pd}",
1547 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1548 
1549 	if (dentry->d_name.len >= AFSNAMEMAX)
1550 		return -ENAMETOOLONG;
1551 
1552 	op = afs_alloc_operation(NULL, dvnode->volume);
1553 	if (IS_ERR(op))
1554 		return PTR_ERR(op);
1555 
1556 	afs_op_set_vnode(op, 0, dvnode);
1557 	op->file[0].dv_delta = 1;
1558 	op->file[0].update_ctime = true;
1559 
1560 	/* Try to make sure we have a callback promise on the victim. */
1561 	ret = afs_validate(vnode, op->key);
1562 	if (ret < 0) {
1563 		op->error = ret;
1564 		goto error;
1565 	}
1566 
1567 	spin_lock(&dentry->d_lock);
1568 	if (d_count(dentry) > 1) {
1569 		spin_unlock(&dentry->d_lock);
1570 		/* Start asynchronous writeout of the inode */
1571 		write_inode_now(d_inode(dentry), 0);
1572 		op->error = afs_sillyrename(dvnode, vnode, dentry, op->key);
1573 		goto error;
1574 	}
1575 	if (!d_unhashed(dentry)) {
1576 		/* Prevent a race with RCU lookup. */
1577 		__d_drop(dentry);
1578 		op->unlink.need_rehash = true;
1579 	}
1580 	spin_unlock(&dentry->d_lock);
1581 
1582 	op->file[1].vnode = vnode;
1583 	op->file[1].update_ctime = true;
1584 	op->file[1].op_unlinked = true;
1585 	op->dentry	= dentry;
1586 	op->ops		= &afs_unlink_operation;
1587 	afs_begin_vnode_operation(op);
1588 	afs_wait_for_operation(op);
1589 
1590 	/* If there was a conflict with a third party, check the status of the
1591 	 * unlinked vnode.
1592 	 */
1593 	if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) {
1594 		op->file[1].update_ctime = false;
1595 		op->fetch_status.which = 1;
1596 		op->ops = &afs_fetch_status_operation;
1597 		afs_begin_vnode_operation(op);
1598 		afs_wait_for_operation(op);
1599 	}
1600 
1601 	return afs_put_operation(op);
1602 
1603 error:
1604 	return afs_put_operation(op);
1605 }
1606 
1607 static const struct afs_operation_ops afs_create_operation = {
1608 	.issue_afs_rpc	= afs_fs_create_file,
1609 	.issue_yfs_rpc	= yfs_fs_create_file,
1610 	.success	= afs_create_success,
1611 	.aborted	= afs_check_for_remote_deletion,
1612 	.edit_dir	= afs_create_edit_dir,
1613 	.put		= afs_create_put,
1614 };
1615 
1616 /*
1617  * create a regular file on an AFS filesystem
1618  */
1619 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1620 		      bool excl)
1621 {
1622 	struct afs_operation *op;
1623 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1624 	int ret = -ENAMETOOLONG;
1625 
1626 	_enter("{%llx:%llu},{%pd},%ho",
1627 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1628 
1629 	if (dentry->d_name.len >= AFSNAMEMAX)
1630 		goto error;
1631 
1632 	op = afs_alloc_operation(NULL, dvnode->volume);
1633 	if (IS_ERR(op)) {
1634 		ret = PTR_ERR(op);
1635 		goto error;
1636 	}
1637 
1638 	afs_op_set_vnode(op, 0, dvnode);
1639 	op->file[0].dv_delta = 1;
1640 	op->file[0].update_ctime = true;
1641 
1642 	op->dentry	= dentry;
1643 	op->create.mode	= S_IFREG | mode;
1644 	op->create.reason = afs_edit_dir_for_create;
1645 	op->ops		= &afs_create_operation;
1646 	return afs_do_sync_operation(op);
1647 
1648 error:
1649 	d_drop(dentry);
1650 	_leave(" = %d", ret);
1651 	return ret;
1652 }
1653 
1654 static void afs_link_success(struct afs_operation *op)
1655 {
1656 	struct afs_vnode_param *dvp = &op->file[0];
1657 	struct afs_vnode_param *vp = &op->file[1];
1658 
1659 	_enter("op=%08x", op->debug_id);
1660 	op->ctime = dvp->scb.status.mtime_client;
1661 	afs_vnode_commit_status(op, dvp);
1662 	afs_vnode_commit_status(op, vp);
1663 	afs_update_dentry_version(op, dvp, op->dentry);
1664 	if (op->dentry_2->d_parent == op->dentry->d_parent)
1665 		afs_update_dentry_version(op, dvp, op->dentry_2);
1666 	ihold(&vp->vnode->vfs_inode);
1667 	d_instantiate(op->dentry, &vp->vnode->vfs_inode);
1668 }
1669 
1670 static void afs_link_put(struct afs_operation *op)
1671 {
1672 	_enter("op=%08x", op->debug_id);
1673 	if (op->error)
1674 		d_drop(op->dentry);
1675 }
1676 
1677 static const struct afs_operation_ops afs_link_operation = {
1678 	.issue_afs_rpc	= afs_fs_link,
1679 	.issue_yfs_rpc	= yfs_fs_link,
1680 	.success	= afs_link_success,
1681 	.aborted	= afs_check_for_remote_deletion,
1682 	.edit_dir	= afs_create_edit_dir,
1683 	.put		= afs_link_put,
1684 };
1685 
1686 /*
1687  * create a hard link between files in an AFS filesystem
1688  */
1689 static int afs_link(struct dentry *from, struct inode *dir,
1690 		    struct dentry *dentry)
1691 {
1692 	struct afs_operation *op;
1693 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1694 	struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1695 	int ret = -ENAMETOOLONG;
1696 
1697 	_enter("{%llx:%llu},{%llx:%llu},{%pd}",
1698 	       vnode->fid.vid, vnode->fid.vnode,
1699 	       dvnode->fid.vid, dvnode->fid.vnode,
1700 	       dentry);
1701 
1702 	if (dentry->d_name.len >= AFSNAMEMAX)
1703 		goto error;
1704 
1705 	op = afs_alloc_operation(NULL, dvnode->volume);
1706 	if (IS_ERR(op)) {
1707 		ret = PTR_ERR(op);
1708 		goto error;
1709 	}
1710 
1711 	afs_op_set_vnode(op, 0, dvnode);
1712 	afs_op_set_vnode(op, 1, vnode);
1713 	op->file[0].dv_delta = 1;
1714 	op->file[0].update_ctime = true;
1715 	op->file[1].update_ctime = true;
1716 
1717 	op->dentry		= dentry;
1718 	op->dentry_2		= from;
1719 	op->ops			= &afs_link_operation;
1720 	op->create.reason	= afs_edit_dir_for_link;
1721 	return afs_do_sync_operation(op);
1722 
1723 error:
1724 	d_drop(dentry);
1725 	_leave(" = %d", ret);
1726 	return ret;
1727 }
1728 
1729 static const struct afs_operation_ops afs_symlink_operation = {
1730 	.issue_afs_rpc	= afs_fs_symlink,
1731 	.issue_yfs_rpc	= yfs_fs_symlink,
1732 	.success	= afs_create_success,
1733 	.aborted	= afs_check_for_remote_deletion,
1734 	.edit_dir	= afs_create_edit_dir,
1735 	.put		= afs_create_put,
1736 };
1737 
1738 /*
1739  * create a symlink in an AFS filesystem
1740  */
1741 static int afs_symlink(struct inode *dir, struct dentry *dentry,
1742 		       const char *content)
1743 {
1744 	struct afs_operation *op;
1745 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1746 	int ret;
1747 
1748 	_enter("{%llx:%llu},{%pd},%s",
1749 	       dvnode->fid.vid, dvnode->fid.vnode, dentry,
1750 	       content);
1751 
1752 	ret = -ENAMETOOLONG;
1753 	if (dentry->d_name.len >= AFSNAMEMAX)
1754 		goto error;
1755 
1756 	ret = -EINVAL;
1757 	if (strlen(content) >= AFSPATHMAX)
1758 		goto error;
1759 
1760 	op = afs_alloc_operation(NULL, dvnode->volume);
1761 	if (IS_ERR(op)) {
1762 		ret = PTR_ERR(op);
1763 		goto error;
1764 	}
1765 
1766 	afs_op_set_vnode(op, 0, dvnode);
1767 	op->file[0].dv_delta = 1;
1768 
1769 	op->dentry		= dentry;
1770 	op->ops			= &afs_symlink_operation;
1771 	op->create.reason	= afs_edit_dir_for_symlink;
1772 	op->create.symlink	= content;
1773 	return afs_do_sync_operation(op);
1774 
1775 error:
1776 	d_drop(dentry);
1777 	_leave(" = %d", ret);
1778 	return ret;
1779 }
1780 
1781 static void afs_rename_success(struct afs_operation *op)
1782 {
1783 	_enter("op=%08x", op->debug_id);
1784 
1785 	op->ctime = op->file[0].scb.status.mtime_client;
1786 	afs_check_dir_conflict(op, &op->file[1]);
1787 	afs_vnode_commit_status(op, &op->file[0]);
1788 	if (op->file[1].vnode != op->file[0].vnode) {
1789 		op->ctime = op->file[1].scb.status.mtime_client;
1790 		afs_vnode_commit_status(op, &op->file[1]);
1791 	}
1792 }
1793 
1794 static void afs_rename_edit_dir(struct afs_operation *op)
1795 {
1796 	struct afs_vnode_param *orig_dvp = &op->file[0];
1797 	struct afs_vnode_param *new_dvp = &op->file[1];
1798 	struct afs_vnode *orig_dvnode = orig_dvp->vnode;
1799 	struct afs_vnode *new_dvnode = new_dvp->vnode;
1800 	struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry));
1801 	struct dentry *old_dentry = op->dentry;
1802 	struct dentry *new_dentry = op->dentry_2;
1803 	struct inode *new_inode;
1804 
1805 	_enter("op=%08x", op->debug_id);
1806 
1807 	if (op->rename.rehash) {
1808 		d_rehash(op->rename.rehash);
1809 		op->rename.rehash = NULL;
1810 	}
1811 
1812 	down_write(&orig_dvnode->validate_lock);
1813 	if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) &&
1814 	    orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta)
1815 		afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1816 				    afs_edit_dir_for_rename_0);
1817 
1818 	if (new_dvnode != orig_dvnode) {
1819 		up_write(&orig_dvnode->validate_lock);
1820 		down_write(&new_dvnode->validate_lock);
1821 	}
1822 
1823 	if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) &&
1824 	    new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) {
1825 		if (!op->rename.new_negative)
1826 			afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1827 					    afs_edit_dir_for_rename_1);
1828 
1829 		afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1830 				 &vnode->fid, afs_edit_dir_for_rename_2);
1831 	}
1832 
1833 	new_inode = d_inode(new_dentry);
1834 	if (new_inode) {
1835 		spin_lock(&new_inode->i_lock);
1836 		if (new_inode->i_nlink > 0)
1837 			drop_nlink(new_inode);
1838 		spin_unlock(&new_inode->i_lock);
1839 	}
1840 
1841 	/* Now we can update d_fsdata on the dentries to reflect their
1842 	 * new parent's data_version.
1843 	 *
1844 	 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1845 	 * to update both dentries with opposing dir versions.
1846 	 */
1847 	afs_update_dentry_version(op, new_dvp, op->dentry);
1848 	afs_update_dentry_version(op, new_dvp, op->dentry_2);
1849 
1850 	d_move(old_dentry, new_dentry);
1851 
1852 	up_write(&new_dvnode->validate_lock);
1853 }
1854 
1855 static void afs_rename_put(struct afs_operation *op)
1856 {
1857 	_enter("op=%08x", op->debug_id);
1858 	if (op->rename.rehash)
1859 		d_rehash(op->rename.rehash);
1860 	dput(op->rename.tmp);
1861 	if (op->error)
1862 		d_rehash(op->dentry);
1863 }
1864 
1865 static const struct afs_operation_ops afs_rename_operation = {
1866 	.issue_afs_rpc	= afs_fs_rename,
1867 	.issue_yfs_rpc	= yfs_fs_rename,
1868 	.success	= afs_rename_success,
1869 	.edit_dir	= afs_rename_edit_dir,
1870 	.put		= afs_rename_put,
1871 };
1872 
1873 /*
1874  * rename a file in an AFS filesystem and/or move it between directories
1875  */
1876 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
1877 		      struct inode *new_dir, struct dentry *new_dentry,
1878 		      unsigned int flags)
1879 {
1880 	struct afs_operation *op;
1881 	struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1882 	int ret;
1883 
1884 	if (flags)
1885 		return -EINVAL;
1886 
1887 	/* Don't allow silly-rename files be moved around. */
1888 	if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1889 		return -EINVAL;
1890 
1891 	vnode = AFS_FS_I(d_inode(old_dentry));
1892 	orig_dvnode = AFS_FS_I(old_dir);
1893 	new_dvnode = AFS_FS_I(new_dir);
1894 
1895 	_enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1896 	       orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1897 	       vnode->fid.vid, vnode->fid.vnode,
1898 	       new_dvnode->fid.vid, new_dvnode->fid.vnode,
1899 	       new_dentry);
1900 
1901 	op = afs_alloc_operation(NULL, orig_dvnode->volume);
1902 	if (IS_ERR(op))
1903 		return PTR_ERR(op);
1904 
1905 	afs_op_set_vnode(op, 0, orig_dvnode);
1906 	afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */
1907 	op->file[0].dv_delta = 1;
1908 	op->file[1].dv_delta = 1;
1909 	op->file[0].update_ctime = true;
1910 	op->file[1].update_ctime = true;
1911 
1912 	op->dentry		= old_dentry;
1913 	op->dentry_2		= new_dentry;
1914 	op->rename.new_negative	= d_is_negative(new_dentry);
1915 	op->ops			= &afs_rename_operation;
1916 
1917 	/* For non-directories, check whether the target is busy and if so,
1918 	 * make a copy of the dentry and then do a silly-rename.  If the
1919 	 * silly-rename succeeds, the copied dentry is hashed and becomes the
1920 	 * new target.
1921 	 */
1922 	if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1923 		/* To prevent any new references to the target during the
1924 		 * rename, we unhash the dentry in advance.
1925 		 */
1926 		if (!d_unhashed(new_dentry)) {
1927 			d_drop(new_dentry);
1928 			op->rename.rehash = new_dentry;
1929 		}
1930 
1931 		if (d_count(new_dentry) > 2) {
1932 			/* copy the target dentry's name */
1933 			ret = -ENOMEM;
1934 			op->rename.tmp = d_alloc(new_dentry->d_parent,
1935 						 &new_dentry->d_name);
1936 			if (!op->rename.tmp)
1937 				goto error;
1938 
1939 			ret = afs_sillyrename(new_dvnode,
1940 					      AFS_FS_I(d_inode(new_dentry)),
1941 					      new_dentry, op->key);
1942 			if (ret)
1943 				goto error;
1944 
1945 			op->dentry_2 = op->rename.tmp;
1946 			op->rename.rehash = NULL;
1947 			op->rename.new_negative = true;
1948 		}
1949 	}
1950 
1951 	/* This bit is potentially nasty as there's a potential race with
1952 	 * afs_d_revalidate{,_rcu}().  We have to change d_fsdata on the dentry
1953 	 * to reflect it's new parent's new data_version after the op, but
1954 	 * d_revalidate may see old_dentry between the op having taken place
1955 	 * and the version being updated.
1956 	 *
1957 	 * So drop the old_dentry for now to make other threads go through
1958 	 * lookup instead - which we hold a lock against.
1959 	 */
1960 	d_drop(old_dentry);
1961 
1962 	return afs_do_sync_operation(op);
1963 
1964 error:
1965 	return afs_put_operation(op);
1966 }
1967 
1968 /*
1969  * Release a directory page and clean up its private state if it's not busy
1970  * - return true if the page can now be released, false if not
1971  */
1972 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1973 {
1974 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1975 
1976 	_enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1977 
1978 	set_page_private(page, 0);
1979 	ClearPagePrivate(page);
1980 
1981 	/* The directory will need reloading. */
1982 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1983 		afs_stat_v(dvnode, n_relpg);
1984 	return 1;
1985 }
1986 
1987 /*
1988  * invalidate part or all of a page
1989  * - release a page and clean up its private data if offset is 0 (indicating
1990  *   the entire page)
1991  */
1992 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
1993 				   unsigned int length)
1994 {
1995 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1996 
1997 	_enter("{%lu},%u,%u", page->index, offset, length);
1998 
1999 	BUG_ON(!PageLocked(page));
2000 
2001 	/* The directory will need reloading. */
2002 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2003 		afs_stat_v(dvnode, n_inval);
2004 
2005 	/* we clean up only if the entire page is being invalidated */
2006 	if (offset == 0 && length == PAGE_SIZE) {
2007 		set_page_private(page, 0);
2008 		ClearPagePrivate(page);
2009 	}
2010 }
2011