1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* dir.c: AFS filesystem directory handling 3 * 4 * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/fs.h> 10 #include <linux/namei.h> 11 #include <linux/pagemap.h> 12 #include <linux/swap.h> 13 #include <linux/ctype.h> 14 #include <linux/sched.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include "internal.h" 17 #include "afs_fs.h" 18 #include "xdr_fs.h" 19 20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry, 21 unsigned int flags); 22 static int afs_dir_open(struct inode *inode, struct file *file); 23 static int afs_readdir(struct file *file, struct dir_context *ctx); 24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags); 25 static int afs_d_delete(const struct dentry *dentry); 26 static void afs_d_iput(struct dentry *dentry, struct inode *inode); 27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen, 28 loff_t fpos, u64 ino, unsigned dtype); 29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen, 30 loff_t fpos, u64 ino, unsigned dtype); 31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 32 bool excl); 33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); 34 static int afs_rmdir(struct inode *dir, struct dentry *dentry); 35 static int afs_unlink(struct inode *dir, struct dentry *dentry); 36 static int afs_link(struct dentry *from, struct inode *dir, 37 struct dentry *dentry); 38 static int afs_symlink(struct inode *dir, struct dentry *dentry, 39 const char *content); 40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry, 41 struct inode *new_dir, struct dentry *new_dentry, 42 unsigned int flags); 43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags); 44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset, 45 unsigned int length); 46 47 static int afs_dir_set_page_dirty(struct page *page) 48 { 49 BUG(); /* This should never happen. */ 50 } 51 52 const struct file_operations afs_dir_file_operations = { 53 .open = afs_dir_open, 54 .release = afs_release, 55 .iterate_shared = afs_readdir, 56 .lock = afs_lock, 57 .llseek = generic_file_llseek, 58 }; 59 60 const struct inode_operations afs_dir_inode_operations = { 61 .create = afs_create, 62 .lookup = afs_lookup, 63 .link = afs_link, 64 .unlink = afs_unlink, 65 .symlink = afs_symlink, 66 .mkdir = afs_mkdir, 67 .rmdir = afs_rmdir, 68 .rename = afs_rename, 69 .permission = afs_permission, 70 .getattr = afs_getattr, 71 .setattr = afs_setattr, 72 .listxattr = afs_listxattr, 73 }; 74 75 const struct address_space_operations afs_dir_aops = { 76 .set_page_dirty = afs_dir_set_page_dirty, 77 .releasepage = afs_dir_releasepage, 78 .invalidatepage = afs_dir_invalidatepage, 79 }; 80 81 const struct dentry_operations afs_fs_dentry_operations = { 82 .d_revalidate = afs_d_revalidate, 83 .d_delete = afs_d_delete, 84 .d_release = afs_d_release, 85 .d_automount = afs_d_automount, 86 .d_iput = afs_d_iput, 87 }; 88 89 struct afs_lookup_one_cookie { 90 struct dir_context ctx; 91 struct qstr name; 92 bool found; 93 struct afs_fid fid; 94 }; 95 96 struct afs_lookup_cookie { 97 struct dir_context ctx; 98 struct qstr name; 99 bool found; 100 bool one_only; 101 unsigned short nr_fids; 102 struct afs_fid fids[50]; 103 }; 104 105 /* 106 * check that a directory page is valid 107 */ 108 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page, 109 loff_t i_size) 110 { 111 struct afs_xdr_dir_page *dbuf; 112 loff_t latter, off; 113 int tmp, qty; 114 115 /* Determine how many magic numbers there should be in this page, but 116 * we must take care because the directory may change size under us. 117 */ 118 off = page_offset(page); 119 if (i_size <= off) 120 goto checked; 121 122 latter = i_size - off; 123 if (latter >= PAGE_SIZE) 124 qty = PAGE_SIZE; 125 else 126 qty = latter; 127 qty /= sizeof(union afs_xdr_dir_block); 128 129 /* check them */ 130 dbuf = kmap(page); 131 for (tmp = 0; tmp < qty; tmp++) { 132 if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) { 133 printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n", 134 __func__, dvnode->vfs_inode.i_ino, tmp, qty, 135 ntohs(dbuf->blocks[tmp].hdr.magic)); 136 trace_afs_dir_check_failed(dvnode, off, i_size); 137 kunmap(page); 138 trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic); 139 goto error; 140 } 141 142 /* Make sure each block is NUL terminated so we can reasonably 143 * use string functions on it. The filenames in the page 144 * *should* be NUL-terminated anyway. 145 */ 146 ((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0; 147 } 148 149 kunmap(page); 150 151 checked: 152 afs_stat_v(dvnode, n_read_dir); 153 return true; 154 155 error: 156 return false; 157 } 158 159 /* 160 * Check the contents of a directory that we've just read. 161 */ 162 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req) 163 { 164 struct afs_xdr_dir_page *dbuf; 165 unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block); 166 167 for (i = 0; i < req->nr_pages; i++) 168 if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len)) 169 goto bad; 170 return true; 171 172 bad: 173 pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n", 174 dvnode->fid.vid, dvnode->fid.vnode, 175 req->file_size, req->len, req->actual_len, req->remain); 176 pr_warn("DIR %llx %x %x %x\n", 177 req->pos, req->index, req->nr_pages, req->offset); 178 179 for (i = 0; i < req->nr_pages; i++) { 180 dbuf = kmap(req->pages[i]); 181 for (j = 0; j < qty; j++) { 182 union afs_xdr_dir_block *block = &dbuf->blocks[j]; 183 184 pr_warn("[%02x] %32phN\n", i * qty + j, block); 185 } 186 kunmap(req->pages[i]); 187 } 188 return false; 189 } 190 191 /* 192 * open an AFS directory file 193 */ 194 static int afs_dir_open(struct inode *inode, struct file *file) 195 { 196 _enter("{%lu}", inode->i_ino); 197 198 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 199 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 200 201 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags)) 202 return -ENOENT; 203 204 return afs_open(inode, file); 205 } 206 207 /* 208 * Read the directory into the pagecache in one go, scrubbing the previous 209 * contents. The list of pages is returned, pinning them so that they don't 210 * get reclaimed during the iteration. 211 */ 212 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key) 213 __acquires(&dvnode->validate_lock) 214 { 215 struct afs_read *req; 216 loff_t i_size; 217 int nr_pages, nr_inline, i, n; 218 int ret = -ENOMEM; 219 220 retry: 221 i_size = i_size_read(&dvnode->vfs_inode); 222 if (i_size < 2048) 223 return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small)); 224 if (i_size > 2048 * 1024) { 225 trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big); 226 return ERR_PTR(-EFBIG); 227 } 228 229 _enter("%llu", i_size); 230 231 /* Get a request record to hold the page list. We want to hold it 232 * inline if we can, but we don't want to make an order 1 allocation. 233 */ 234 nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE; 235 nr_inline = nr_pages; 236 if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *)) 237 nr_inline = 0; 238 239 req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL); 240 if (!req) 241 return ERR_PTR(-ENOMEM); 242 243 refcount_set(&req->usage, 1); 244 req->nr_pages = nr_pages; 245 req->actual_len = i_size; /* May change */ 246 req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */ 247 req->data_version = dvnode->status.data_version; /* May change */ 248 if (nr_inline > 0) { 249 req->pages = req->array; 250 } else { 251 req->pages = kcalloc(nr_pages, sizeof(struct page *), 252 GFP_KERNEL); 253 if (!req->pages) 254 goto error; 255 } 256 257 /* Get a list of all the pages that hold or will hold the directory 258 * content. We need to fill in any gaps that we might find where the 259 * memory reclaimer has been at work. If there are any gaps, we will 260 * need to reread the entire directory contents. 261 */ 262 i = 0; 263 do { 264 n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i, 265 req->nr_pages - i, 266 req->pages + i); 267 _debug("find %u at %u/%u", n, i, req->nr_pages); 268 if (n == 0) { 269 gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask; 270 271 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 272 afs_stat_v(dvnode, n_inval); 273 274 ret = -ENOMEM; 275 req->pages[i] = __page_cache_alloc(gfp); 276 if (!req->pages[i]) 277 goto error; 278 ret = add_to_page_cache_lru(req->pages[i], 279 dvnode->vfs_inode.i_mapping, 280 i, gfp); 281 if (ret < 0) 282 goto error; 283 284 attach_page_private(req->pages[i], (void *)1); 285 unlock_page(req->pages[i]); 286 i++; 287 } else { 288 i += n; 289 } 290 } while (i < req->nr_pages); 291 292 /* If we're going to reload, we need to lock all the pages to prevent 293 * races. 294 */ 295 ret = -ERESTARTSYS; 296 if (down_read_killable(&dvnode->validate_lock) < 0) 297 goto error; 298 299 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 300 goto success; 301 302 up_read(&dvnode->validate_lock); 303 if (down_write_killable(&dvnode->validate_lock) < 0) 304 goto error; 305 306 if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { 307 trace_afs_reload_dir(dvnode); 308 ret = afs_fetch_data(dvnode, key, req); 309 if (ret < 0) 310 goto error_unlock; 311 312 task_io_account_read(PAGE_SIZE * req->nr_pages); 313 314 if (req->len < req->file_size) 315 goto content_has_grown; 316 317 /* Validate the data we just read. */ 318 ret = -EIO; 319 if (!afs_dir_check_pages(dvnode, req)) 320 goto error_unlock; 321 322 // TODO: Trim excess pages 323 324 set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags); 325 } 326 327 downgrade_write(&dvnode->validate_lock); 328 success: 329 return req; 330 331 error_unlock: 332 up_write(&dvnode->validate_lock); 333 error: 334 afs_put_read(req); 335 _leave(" = %d", ret); 336 return ERR_PTR(ret); 337 338 content_has_grown: 339 up_write(&dvnode->validate_lock); 340 afs_put_read(req); 341 goto retry; 342 } 343 344 /* 345 * deal with one block in an AFS directory 346 */ 347 static int afs_dir_iterate_block(struct afs_vnode *dvnode, 348 struct dir_context *ctx, 349 union afs_xdr_dir_block *block, 350 unsigned blkoff) 351 { 352 union afs_xdr_dirent *dire; 353 unsigned offset, next, curr; 354 size_t nlen; 355 int tmp; 356 357 _enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block); 358 359 curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent); 360 361 /* walk through the block, an entry at a time */ 362 for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS); 363 offset < AFS_DIR_SLOTS_PER_BLOCK; 364 offset = next 365 ) { 366 next = offset + 1; 367 368 /* skip entries marked unused in the bitmap */ 369 if (!(block->hdr.bitmap[offset / 8] & 370 (1 << (offset % 8)))) { 371 _debug("ENT[%zu.%u]: unused", 372 blkoff / sizeof(union afs_xdr_dir_block), offset); 373 if (offset >= curr) 374 ctx->pos = blkoff + 375 next * sizeof(union afs_xdr_dirent); 376 continue; 377 } 378 379 /* got a valid entry */ 380 dire = &block->dirents[offset]; 381 nlen = strnlen(dire->u.name, 382 sizeof(*block) - 383 offset * sizeof(union afs_xdr_dirent)); 384 385 _debug("ENT[%zu.%u]: %s %zu \"%s\"", 386 blkoff / sizeof(union afs_xdr_dir_block), offset, 387 (offset < curr ? "skip" : "fill"), 388 nlen, dire->u.name); 389 390 /* work out where the next possible entry is */ 391 for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) { 392 if (next >= AFS_DIR_SLOTS_PER_BLOCK) { 393 _debug("ENT[%zu.%u]:" 394 " %u travelled beyond end dir block" 395 " (len %u/%zu)", 396 blkoff / sizeof(union afs_xdr_dir_block), 397 offset, next, tmp, nlen); 398 return afs_bad(dvnode, afs_file_error_dir_over_end); 399 } 400 if (!(block->hdr.bitmap[next / 8] & 401 (1 << (next % 8)))) { 402 _debug("ENT[%zu.%u]:" 403 " %u unmarked extension (len %u/%zu)", 404 blkoff / sizeof(union afs_xdr_dir_block), 405 offset, next, tmp, nlen); 406 return afs_bad(dvnode, afs_file_error_dir_unmarked_ext); 407 } 408 409 _debug("ENT[%zu.%u]: ext %u/%zu", 410 blkoff / sizeof(union afs_xdr_dir_block), 411 next, tmp, nlen); 412 next++; 413 } 414 415 /* skip if starts before the current position */ 416 if (offset < curr) 417 continue; 418 419 /* found the next entry */ 420 if (!dir_emit(ctx, dire->u.name, nlen, 421 ntohl(dire->u.vnode), 422 (ctx->actor == afs_lookup_filldir || 423 ctx->actor == afs_lookup_one_filldir)? 424 ntohl(dire->u.unique) : DT_UNKNOWN)) { 425 _leave(" = 0 [full]"); 426 return 0; 427 } 428 429 ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent); 430 } 431 432 _leave(" = 1 [more]"); 433 return 1; 434 } 435 436 /* 437 * iterate through the data blob that lists the contents of an AFS directory 438 */ 439 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx, 440 struct key *key, afs_dataversion_t *_dir_version) 441 { 442 struct afs_vnode *dvnode = AFS_FS_I(dir); 443 struct afs_xdr_dir_page *dbuf; 444 union afs_xdr_dir_block *dblock; 445 struct afs_read *req; 446 struct page *page; 447 unsigned blkoff, limit; 448 int ret; 449 450 _enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos); 451 452 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) { 453 _leave(" = -ESTALE"); 454 return -ESTALE; 455 } 456 457 req = afs_read_dir(dvnode, key); 458 if (IS_ERR(req)) 459 return PTR_ERR(req); 460 *_dir_version = req->data_version; 461 462 /* round the file position up to the next entry boundary */ 463 ctx->pos += sizeof(union afs_xdr_dirent) - 1; 464 ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1); 465 466 /* walk through the blocks in sequence */ 467 ret = 0; 468 while (ctx->pos < req->actual_len) { 469 blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1); 470 471 /* Fetch the appropriate page from the directory and re-add it 472 * to the LRU. 473 */ 474 page = req->pages[blkoff / PAGE_SIZE]; 475 if (!page) { 476 ret = afs_bad(dvnode, afs_file_error_dir_missing_page); 477 break; 478 } 479 mark_page_accessed(page); 480 481 limit = blkoff & ~(PAGE_SIZE - 1); 482 483 dbuf = kmap(page); 484 485 /* deal with the individual blocks stashed on this page */ 486 do { 487 dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) / 488 sizeof(union afs_xdr_dir_block)]; 489 ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff); 490 if (ret != 1) { 491 kunmap(page); 492 goto out; 493 } 494 495 blkoff += sizeof(union afs_xdr_dir_block); 496 497 } while (ctx->pos < dir->i_size && blkoff < limit); 498 499 kunmap(page); 500 ret = 0; 501 } 502 503 out: 504 up_read(&dvnode->validate_lock); 505 afs_put_read(req); 506 _leave(" = %d", ret); 507 return ret; 508 } 509 510 /* 511 * read an AFS directory 512 */ 513 static int afs_readdir(struct file *file, struct dir_context *ctx) 514 { 515 afs_dataversion_t dir_version; 516 517 return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file), 518 &dir_version); 519 } 520 521 /* 522 * Search the directory for a single name 523 * - if afs_dir_iterate_block() spots this function, it'll pass the FID 524 * uniquifier through dtype 525 */ 526 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, 527 int nlen, loff_t fpos, u64 ino, unsigned dtype) 528 { 529 struct afs_lookup_one_cookie *cookie = 530 container_of(ctx, struct afs_lookup_one_cookie, ctx); 531 532 _enter("{%s,%u},%s,%u,,%llu,%u", 533 cookie->name.name, cookie->name.len, name, nlen, 534 (unsigned long long) ino, dtype); 535 536 /* insanity checks first */ 537 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 538 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 539 540 if (cookie->name.len != nlen || 541 memcmp(cookie->name.name, name, nlen) != 0) { 542 _leave(" = 0 [no]"); 543 return 0; 544 } 545 546 cookie->fid.vnode = ino; 547 cookie->fid.unique = dtype; 548 cookie->found = 1; 549 550 _leave(" = -1 [found]"); 551 return -1; 552 } 553 554 /* 555 * Do a lookup of a single name in a directory 556 * - just returns the FID the dentry name maps to if found 557 */ 558 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry, 559 struct afs_fid *fid, struct key *key, 560 afs_dataversion_t *_dir_version) 561 { 562 struct afs_super_info *as = dir->i_sb->s_fs_info; 563 struct afs_lookup_one_cookie cookie = { 564 .ctx.actor = afs_lookup_one_filldir, 565 .name = dentry->d_name, 566 .fid.vid = as->volume->vid 567 }; 568 int ret; 569 570 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry); 571 572 /* search the directory */ 573 ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version); 574 if (ret < 0) { 575 _leave(" = %d [iter]", ret); 576 return ret; 577 } 578 579 ret = -ENOENT; 580 if (!cookie.found) { 581 _leave(" = -ENOENT [not found]"); 582 return -ENOENT; 583 } 584 585 *fid = cookie.fid; 586 _leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique); 587 return 0; 588 } 589 590 /* 591 * search the directory for a name 592 * - if afs_dir_iterate_block() spots this function, it'll pass the FID 593 * uniquifier through dtype 594 */ 595 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, 596 int nlen, loff_t fpos, u64 ino, unsigned dtype) 597 { 598 struct afs_lookup_cookie *cookie = 599 container_of(ctx, struct afs_lookup_cookie, ctx); 600 int ret; 601 602 _enter("{%s,%u},%s,%u,,%llu,%u", 603 cookie->name.name, cookie->name.len, name, nlen, 604 (unsigned long long) ino, dtype); 605 606 /* insanity checks first */ 607 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 608 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 609 610 if (cookie->found) { 611 if (cookie->nr_fids < 50) { 612 cookie->fids[cookie->nr_fids].vnode = ino; 613 cookie->fids[cookie->nr_fids].unique = dtype; 614 cookie->nr_fids++; 615 } 616 } else if (cookie->name.len == nlen && 617 memcmp(cookie->name.name, name, nlen) == 0) { 618 cookie->fids[1].vnode = ino; 619 cookie->fids[1].unique = dtype; 620 cookie->found = 1; 621 if (cookie->one_only) 622 return -1; 623 } 624 625 ret = cookie->nr_fids >= 50 ? -1 : 0; 626 _leave(" = %d", ret); 627 return ret; 628 } 629 630 /* 631 * Deal with the result of a successful lookup operation. Turn all the files 632 * into inodes and save the first one - which is the one we actually want. 633 */ 634 static void afs_do_lookup_success(struct afs_operation *op) 635 { 636 struct afs_vnode_param *vp; 637 struct afs_vnode *vnode; 638 struct inode *inode; 639 u32 abort_code; 640 int i; 641 642 _enter(""); 643 644 for (i = 0; i < op->nr_files; i++) { 645 switch (i) { 646 case 0: 647 vp = &op->file[0]; 648 abort_code = vp->scb.status.abort_code; 649 if (abort_code != 0) { 650 op->ac.abort_code = abort_code; 651 op->error = afs_abort_to_error(abort_code); 652 } 653 break; 654 655 case 1: 656 vp = &op->file[1]; 657 break; 658 659 default: 660 vp = &op->more_files[i - 2]; 661 break; 662 } 663 664 if (!vp->scb.have_status && !vp->scb.have_error) 665 continue; 666 667 _debug("do [%u]", i); 668 if (vp->vnode) { 669 if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags)) 670 afs_vnode_commit_status(op, vp); 671 } else if (vp->scb.status.abort_code == 0) { 672 inode = afs_iget(op, vp); 673 if (!IS_ERR(inode)) { 674 vnode = AFS_FS_I(inode); 675 afs_cache_permit(vnode, op->key, 676 0 /* Assume vnode->cb_break is 0 */ + 677 op->cb_v_break, 678 &vp->scb); 679 vp->vnode = vnode; 680 vp->put_vnode = true; 681 } 682 } else { 683 _debug("- abort %d %llx:%llx.%x", 684 vp->scb.status.abort_code, 685 vp->fid.vid, vp->fid.vnode, vp->fid.unique); 686 } 687 } 688 689 _leave(""); 690 } 691 692 static const struct afs_operation_ops afs_inline_bulk_status_operation = { 693 .issue_afs_rpc = afs_fs_inline_bulk_status, 694 .issue_yfs_rpc = yfs_fs_inline_bulk_status, 695 .success = afs_do_lookup_success, 696 }; 697 698 static const struct afs_operation_ops afs_lookup_fetch_status_operation = { 699 .issue_afs_rpc = afs_fs_fetch_status, 700 .issue_yfs_rpc = yfs_fs_fetch_status, 701 .success = afs_do_lookup_success, 702 .aborted = afs_check_for_remote_deletion, 703 }; 704 705 /* 706 * See if we know that the server we expect to use doesn't support 707 * FS.InlineBulkStatus. 708 */ 709 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode) 710 { 711 struct afs_server_list *slist; 712 struct afs_volume *volume = dvnode->volume; 713 struct afs_server *server; 714 bool ret = true; 715 int i; 716 717 if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags)) 718 return true; 719 720 rcu_read_lock(); 721 slist = rcu_dereference(volume->servers); 722 723 for (i = 0; i < slist->nr_servers; i++) { 724 server = slist->servers[i].server; 725 if (server == dvnode->cb_server) { 726 if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags)) 727 ret = false; 728 break; 729 } 730 } 731 732 rcu_read_unlock(); 733 return ret; 734 } 735 736 /* 737 * Do a lookup in a directory. We make use of bulk lookup to query a slew of 738 * files in one go and create inodes for them. The inode of the file we were 739 * asked for is returned. 740 */ 741 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry, 742 struct key *key) 743 { 744 struct afs_lookup_cookie *cookie; 745 struct afs_vnode_param *vp; 746 struct afs_operation *op; 747 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode; 748 struct inode *inode = NULL, *ti; 749 afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version); 750 long ret; 751 int i; 752 753 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry); 754 755 cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL); 756 if (!cookie) 757 return ERR_PTR(-ENOMEM); 758 759 for (i = 0; i < ARRAY_SIZE(cookie->fids); i++) 760 cookie->fids[i].vid = dvnode->fid.vid; 761 cookie->ctx.actor = afs_lookup_filldir; 762 cookie->name = dentry->d_name; 763 cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want 764 * and slot 1 for the directory */ 765 766 if (!afs_server_supports_ibulk(dvnode)) 767 cookie->one_only = true; 768 769 /* search the directory */ 770 ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version); 771 if (ret < 0) 772 goto out; 773 774 dentry->d_fsdata = (void *)(unsigned long)data_version; 775 776 ret = -ENOENT; 777 if (!cookie->found) 778 goto out; 779 780 /* Check to see if we already have an inode for the primary fid. */ 781 inode = ilookup5(dir->i_sb, cookie->fids[1].vnode, 782 afs_ilookup5_test_by_fid, &cookie->fids[1]); 783 if (inode) 784 goto out; /* We do */ 785 786 /* Okay, we didn't find it. We need to query the server - and whilst 787 * we're doing that, we're going to attempt to look up a bunch of other 788 * vnodes also. 789 */ 790 op = afs_alloc_operation(NULL, dvnode->volume); 791 if (IS_ERR(op)) { 792 ret = PTR_ERR(op); 793 goto out; 794 } 795 796 afs_op_set_vnode(op, 0, dvnode); 797 afs_op_set_fid(op, 1, &cookie->fids[1]); 798 799 op->nr_files = cookie->nr_fids; 800 _debug("nr_files %u", op->nr_files); 801 802 /* Need space for examining all the selected files */ 803 op->error = -ENOMEM; 804 if (op->nr_files > 2) { 805 op->more_files = kvcalloc(op->nr_files - 2, 806 sizeof(struct afs_vnode_param), 807 GFP_KERNEL); 808 if (!op->more_files) 809 goto out_op; 810 811 for (i = 2; i < op->nr_files; i++) { 812 vp = &op->more_files[i - 2]; 813 vp->fid = cookie->fids[i]; 814 815 /* Find any inodes that already exist and get their 816 * callback counters. 817 */ 818 ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode, 819 afs_ilookup5_test_by_fid, &vp->fid); 820 if (!IS_ERR_OR_NULL(ti)) { 821 vnode = AFS_FS_I(ti); 822 vp->dv_before = vnode->status.data_version; 823 vp->cb_break_before = afs_calc_vnode_cb_break(vnode); 824 vp->vnode = vnode; 825 vp->put_vnode = true; 826 } 827 } 828 } 829 830 /* Try FS.InlineBulkStatus first. Abort codes for the individual 831 * lookups contained therein are stored in the reply without aborting 832 * the whole operation. 833 */ 834 op->error = -ENOTSUPP; 835 if (!cookie->one_only) { 836 op->ops = &afs_inline_bulk_status_operation; 837 afs_begin_vnode_operation(op); 838 afs_wait_for_operation(op); 839 } 840 841 if (op->error == -ENOTSUPP) { 842 /* We could try FS.BulkStatus next, but this aborts the entire 843 * op if any of the lookups fails - so, for the moment, revert 844 * to FS.FetchStatus for op->file[1]. 845 */ 846 op->fetch_status.which = 1; 847 op->ops = &afs_lookup_fetch_status_operation; 848 afs_begin_vnode_operation(op); 849 afs_wait_for_operation(op); 850 } 851 inode = ERR_PTR(op->error); 852 853 out_op: 854 if (op->error == 0) { 855 inode = &op->file[1].vnode->vfs_inode; 856 op->file[1].vnode = NULL; 857 } 858 859 if (op->file[0].scb.have_status) 860 dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version; 861 else 862 dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before; 863 ret = afs_put_operation(op); 864 out: 865 kfree(cookie); 866 _leave(""); 867 return inode ?: ERR_PTR(ret); 868 } 869 870 /* 871 * Look up an entry in a directory with @sys substitution. 872 */ 873 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry, 874 struct key *key) 875 { 876 struct afs_sysnames *subs; 877 struct afs_net *net = afs_i2net(dir); 878 struct dentry *ret; 879 char *buf, *p, *name; 880 int len, i; 881 882 _enter(""); 883 884 ret = ERR_PTR(-ENOMEM); 885 p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL); 886 if (!buf) 887 goto out_p; 888 if (dentry->d_name.len > 4) { 889 memcpy(p, dentry->d_name.name, dentry->d_name.len - 4); 890 p += dentry->d_name.len - 4; 891 } 892 893 /* There is an ordered list of substitutes that we have to try. */ 894 read_lock(&net->sysnames_lock); 895 subs = net->sysnames; 896 refcount_inc(&subs->usage); 897 read_unlock(&net->sysnames_lock); 898 899 for (i = 0; i < subs->nr; i++) { 900 name = subs->subs[i]; 901 len = dentry->d_name.len - 4 + strlen(name); 902 if (len >= AFSNAMEMAX) { 903 ret = ERR_PTR(-ENAMETOOLONG); 904 goto out_s; 905 } 906 907 strcpy(p, name); 908 ret = lookup_one_len(buf, dentry->d_parent, len); 909 if (IS_ERR(ret) || d_is_positive(ret)) 910 goto out_s; 911 dput(ret); 912 } 913 914 /* We don't want to d_add() the @sys dentry here as we don't want to 915 * the cached dentry to hide changes to the sysnames list. 916 */ 917 ret = NULL; 918 out_s: 919 afs_put_sysnames(subs); 920 kfree(buf); 921 out_p: 922 key_put(key); 923 return ret; 924 } 925 926 /* 927 * look up an entry in a directory 928 */ 929 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry, 930 unsigned int flags) 931 { 932 struct afs_vnode *dvnode = AFS_FS_I(dir); 933 struct afs_fid fid = {}; 934 struct inode *inode; 935 struct dentry *d; 936 struct key *key; 937 int ret; 938 939 _enter("{%llx:%llu},%p{%pd},", 940 dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry); 941 942 ASSERTCMP(d_inode(dentry), ==, NULL); 943 944 if (dentry->d_name.len >= AFSNAMEMAX) { 945 _leave(" = -ENAMETOOLONG"); 946 return ERR_PTR(-ENAMETOOLONG); 947 } 948 949 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) { 950 _leave(" = -ESTALE"); 951 return ERR_PTR(-ESTALE); 952 } 953 954 key = afs_request_key(dvnode->volume->cell); 955 if (IS_ERR(key)) { 956 _leave(" = %ld [key]", PTR_ERR(key)); 957 return ERR_CAST(key); 958 } 959 960 ret = afs_validate(dvnode, key); 961 if (ret < 0) { 962 key_put(key); 963 _leave(" = %d [val]", ret); 964 return ERR_PTR(ret); 965 } 966 967 if (dentry->d_name.len >= 4 && 968 dentry->d_name.name[dentry->d_name.len - 4] == '@' && 969 dentry->d_name.name[dentry->d_name.len - 3] == 's' && 970 dentry->d_name.name[dentry->d_name.len - 2] == 'y' && 971 dentry->d_name.name[dentry->d_name.len - 1] == 's') 972 return afs_lookup_atsys(dir, dentry, key); 973 974 afs_stat_v(dvnode, n_lookup); 975 inode = afs_do_lookup(dir, dentry, key); 976 key_put(key); 977 if (inode == ERR_PTR(-ENOENT)) 978 inode = afs_try_auto_mntpt(dentry, dir); 979 980 if (!IS_ERR_OR_NULL(inode)) 981 fid = AFS_FS_I(inode)->fid; 982 983 _debug("splice %p", dentry->d_inode); 984 d = d_splice_alias(inode, dentry); 985 if (!IS_ERR_OR_NULL(d)) { 986 d->d_fsdata = dentry->d_fsdata; 987 trace_afs_lookup(dvnode, &d->d_name, &fid); 988 } else { 989 trace_afs_lookup(dvnode, &dentry->d_name, &fid); 990 } 991 _leave(""); 992 return d; 993 } 994 995 /* 996 * Check the validity of a dentry under RCU conditions. 997 */ 998 static int afs_d_revalidate_rcu(struct dentry *dentry) 999 { 1000 struct afs_vnode *dvnode, *vnode; 1001 struct dentry *parent; 1002 struct inode *dir, *inode; 1003 long dir_version, de_version; 1004 1005 _enter("%p", dentry); 1006 1007 /* Check the parent directory is still valid first. */ 1008 parent = READ_ONCE(dentry->d_parent); 1009 dir = d_inode_rcu(parent); 1010 if (!dir) 1011 return -ECHILD; 1012 dvnode = AFS_FS_I(dir); 1013 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) 1014 return -ECHILD; 1015 1016 if (!afs_check_validity(dvnode)) 1017 return -ECHILD; 1018 1019 /* We only need to invalidate a dentry if the server's copy changed 1020 * behind our back. If we made the change, it's no problem. Note that 1021 * on a 32-bit system, we only have 32 bits in the dentry to store the 1022 * version. 1023 */ 1024 dir_version = (long)READ_ONCE(dvnode->status.data_version); 1025 de_version = (long)READ_ONCE(dentry->d_fsdata); 1026 if (de_version != dir_version) { 1027 dir_version = (long)READ_ONCE(dvnode->invalid_before); 1028 if (de_version - dir_version < 0) 1029 return -ECHILD; 1030 } 1031 1032 /* Check to see if the vnode referred to by the dentry still 1033 * has a callback. 1034 */ 1035 if (d_really_is_positive(dentry)) { 1036 inode = d_inode_rcu(dentry); 1037 if (inode) { 1038 vnode = AFS_FS_I(inode); 1039 if (!afs_check_validity(vnode)) 1040 return -ECHILD; 1041 } 1042 } 1043 1044 return 1; /* Still valid */ 1045 } 1046 1047 /* 1048 * check that a dentry lookup hit has found a valid entry 1049 * - NOTE! the hit can be a negative hit too, so we can't assume we have an 1050 * inode 1051 */ 1052 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags) 1053 { 1054 struct afs_vnode *vnode, *dir; 1055 struct afs_fid fid; 1056 struct dentry *parent; 1057 struct inode *inode; 1058 struct key *key; 1059 afs_dataversion_t dir_version, invalid_before; 1060 long de_version; 1061 int ret; 1062 1063 if (flags & LOOKUP_RCU) 1064 return afs_d_revalidate_rcu(dentry); 1065 1066 if (d_really_is_positive(dentry)) { 1067 vnode = AFS_FS_I(d_inode(dentry)); 1068 _enter("{v={%llx:%llu} n=%pd fl=%lx},", 1069 vnode->fid.vid, vnode->fid.vnode, dentry, 1070 vnode->flags); 1071 } else { 1072 _enter("{neg n=%pd}", dentry); 1073 } 1074 1075 key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell); 1076 if (IS_ERR(key)) 1077 key = NULL; 1078 1079 if (d_really_is_positive(dentry)) { 1080 inode = d_inode(dentry); 1081 if (inode) { 1082 vnode = AFS_FS_I(inode); 1083 afs_validate(vnode, key); 1084 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 1085 goto out_bad; 1086 } 1087 } 1088 1089 /* lock down the parent dentry so we can peer at it */ 1090 parent = dget_parent(dentry); 1091 dir = AFS_FS_I(d_inode(parent)); 1092 1093 /* validate the parent directory */ 1094 afs_validate(dir, key); 1095 1096 if (test_bit(AFS_VNODE_DELETED, &dir->flags)) { 1097 _debug("%pd: parent dir deleted", dentry); 1098 goto out_bad_parent; 1099 } 1100 1101 /* We only need to invalidate a dentry if the server's copy changed 1102 * behind our back. If we made the change, it's no problem. Note that 1103 * on a 32-bit system, we only have 32 bits in the dentry to store the 1104 * version. 1105 */ 1106 dir_version = dir->status.data_version; 1107 de_version = (long)dentry->d_fsdata; 1108 if (de_version == (long)dir_version) 1109 goto out_valid_noupdate; 1110 1111 invalid_before = dir->invalid_before; 1112 if (de_version - (long)invalid_before >= 0) 1113 goto out_valid; 1114 1115 _debug("dir modified"); 1116 afs_stat_v(dir, n_reval); 1117 1118 /* search the directory for this vnode */ 1119 ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version); 1120 switch (ret) { 1121 case 0: 1122 /* the filename maps to something */ 1123 if (d_really_is_negative(dentry)) 1124 goto out_bad_parent; 1125 inode = d_inode(dentry); 1126 if (is_bad_inode(inode)) { 1127 printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n", 1128 dentry); 1129 goto out_bad_parent; 1130 } 1131 1132 vnode = AFS_FS_I(inode); 1133 1134 /* if the vnode ID has changed, then the dirent points to a 1135 * different file */ 1136 if (fid.vnode != vnode->fid.vnode) { 1137 _debug("%pd: dirent changed [%llu != %llu]", 1138 dentry, fid.vnode, 1139 vnode->fid.vnode); 1140 goto not_found; 1141 } 1142 1143 /* if the vnode ID uniqifier has changed, then the file has 1144 * been deleted and replaced, and the original vnode ID has 1145 * been reused */ 1146 if (fid.unique != vnode->fid.unique) { 1147 _debug("%pd: file deleted (uq %u -> %u I:%u)", 1148 dentry, fid.unique, 1149 vnode->fid.unique, 1150 vnode->vfs_inode.i_generation); 1151 write_seqlock(&vnode->cb_lock); 1152 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1153 write_sequnlock(&vnode->cb_lock); 1154 goto not_found; 1155 } 1156 goto out_valid; 1157 1158 case -ENOENT: 1159 /* the filename is unknown */ 1160 _debug("%pd: dirent not found", dentry); 1161 if (d_really_is_positive(dentry)) 1162 goto not_found; 1163 goto out_valid; 1164 1165 default: 1166 _debug("failed to iterate dir %pd: %d", 1167 parent, ret); 1168 goto out_bad_parent; 1169 } 1170 1171 out_valid: 1172 dentry->d_fsdata = (void *)(unsigned long)dir_version; 1173 out_valid_noupdate: 1174 dput(parent); 1175 key_put(key); 1176 _leave(" = 1 [valid]"); 1177 return 1; 1178 1179 /* the dirent, if it exists, now points to a different vnode */ 1180 not_found: 1181 spin_lock(&dentry->d_lock); 1182 dentry->d_flags |= DCACHE_NFSFS_RENAMED; 1183 spin_unlock(&dentry->d_lock); 1184 1185 out_bad_parent: 1186 _debug("dropping dentry %pd2", dentry); 1187 dput(parent); 1188 out_bad: 1189 key_put(key); 1190 1191 _leave(" = 0 [bad]"); 1192 return 0; 1193 } 1194 1195 /* 1196 * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't 1197 * sleep) 1198 * - called from dput() when d_count is going to 0. 1199 * - return 1 to request dentry be unhashed, 0 otherwise 1200 */ 1201 static int afs_d_delete(const struct dentry *dentry) 1202 { 1203 _enter("%pd", dentry); 1204 1205 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1206 goto zap; 1207 1208 if (d_really_is_positive(dentry) && 1209 (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) || 1210 test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags))) 1211 goto zap; 1212 1213 _leave(" = 0 [keep]"); 1214 return 0; 1215 1216 zap: 1217 _leave(" = 1 [zap]"); 1218 return 1; 1219 } 1220 1221 /* 1222 * Clean up sillyrename files on dentry removal. 1223 */ 1224 static void afs_d_iput(struct dentry *dentry, struct inode *inode) 1225 { 1226 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1227 afs_silly_iput(dentry, inode); 1228 iput(inode); 1229 } 1230 1231 /* 1232 * handle dentry release 1233 */ 1234 void afs_d_release(struct dentry *dentry) 1235 { 1236 _enter("%pd", dentry); 1237 } 1238 1239 void afs_check_for_remote_deletion(struct afs_operation *op) 1240 { 1241 struct afs_vnode *vnode = op->file[0].vnode; 1242 1243 switch (op->ac.abort_code) { 1244 case VNOVNODE: 1245 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1246 afs_break_callback(vnode, afs_cb_break_for_deleted); 1247 } 1248 } 1249 1250 /* 1251 * Create a new inode for create/mkdir/symlink 1252 */ 1253 static void afs_vnode_new_inode(struct afs_operation *op) 1254 { 1255 struct afs_vnode_param *vp = &op->file[1]; 1256 struct afs_vnode *vnode; 1257 struct inode *inode; 1258 1259 _enter(""); 1260 1261 ASSERTCMP(op->error, ==, 0); 1262 1263 inode = afs_iget(op, vp); 1264 if (IS_ERR(inode)) { 1265 /* ENOMEM or EINTR at a really inconvenient time - just abandon 1266 * the new directory on the server. 1267 */ 1268 op->error = PTR_ERR(inode); 1269 return; 1270 } 1271 1272 vnode = AFS_FS_I(inode); 1273 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 1274 if (!op->error) 1275 afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb); 1276 d_instantiate(op->dentry, inode); 1277 } 1278 1279 static void afs_create_success(struct afs_operation *op) 1280 { 1281 _enter("op=%08x", op->debug_id); 1282 op->ctime = op->file[0].scb.status.mtime_client; 1283 afs_vnode_commit_status(op, &op->file[0]); 1284 afs_update_dentry_version(op, &op->file[0], op->dentry); 1285 afs_vnode_new_inode(op); 1286 } 1287 1288 static void afs_create_edit_dir(struct afs_operation *op) 1289 { 1290 struct afs_vnode_param *dvp = &op->file[0]; 1291 struct afs_vnode_param *vp = &op->file[1]; 1292 struct afs_vnode *dvnode = dvp->vnode; 1293 1294 _enter("op=%08x", op->debug_id); 1295 1296 down_write(&dvnode->validate_lock); 1297 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) && 1298 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta) 1299 afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid, 1300 op->create.reason); 1301 up_write(&dvnode->validate_lock); 1302 } 1303 1304 static void afs_create_put(struct afs_operation *op) 1305 { 1306 _enter("op=%08x", op->debug_id); 1307 1308 if (op->error) 1309 d_drop(op->dentry); 1310 } 1311 1312 static const struct afs_operation_ops afs_mkdir_operation = { 1313 .issue_afs_rpc = afs_fs_make_dir, 1314 .issue_yfs_rpc = yfs_fs_make_dir, 1315 .success = afs_create_success, 1316 .aborted = afs_check_for_remote_deletion, 1317 .edit_dir = afs_create_edit_dir, 1318 .put = afs_create_put, 1319 }; 1320 1321 /* 1322 * create a directory on an AFS filesystem 1323 */ 1324 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1325 { 1326 struct afs_operation *op; 1327 struct afs_vnode *dvnode = AFS_FS_I(dir); 1328 1329 _enter("{%llx:%llu},{%pd},%ho", 1330 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode); 1331 1332 op = afs_alloc_operation(NULL, dvnode->volume); 1333 if (IS_ERR(op)) { 1334 d_drop(dentry); 1335 return PTR_ERR(op); 1336 } 1337 1338 afs_op_set_vnode(op, 0, dvnode); 1339 op->file[0].dv_delta = 1; 1340 op->file[0].update_ctime = true; 1341 op->dentry = dentry; 1342 op->create.mode = S_IFDIR | mode; 1343 op->create.reason = afs_edit_dir_for_mkdir; 1344 op->ops = &afs_mkdir_operation; 1345 return afs_do_sync_operation(op); 1346 } 1347 1348 /* 1349 * Remove a subdir from a directory. 1350 */ 1351 static void afs_dir_remove_subdir(struct dentry *dentry) 1352 { 1353 if (d_really_is_positive(dentry)) { 1354 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1355 1356 clear_nlink(&vnode->vfs_inode); 1357 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1358 clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags); 1359 clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags); 1360 } 1361 } 1362 1363 static void afs_rmdir_success(struct afs_operation *op) 1364 { 1365 _enter("op=%08x", op->debug_id); 1366 op->ctime = op->file[0].scb.status.mtime_client; 1367 afs_vnode_commit_status(op, &op->file[0]); 1368 afs_update_dentry_version(op, &op->file[0], op->dentry); 1369 } 1370 1371 static void afs_rmdir_edit_dir(struct afs_operation *op) 1372 { 1373 struct afs_vnode_param *dvp = &op->file[0]; 1374 struct afs_vnode *dvnode = dvp->vnode; 1375 1376 _enter("op=%08x", op->debug_id); 1377 afs_dir_remove_subdir(op->dentry); 1378 1379 down_write(&dvnode->validate_lock); 1380 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) && 1381 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta) 1382 afs_edit_dir_remove(dvnode, &op->dentry->d_name, 1383 afs_edit_dir_for_rmdir); 1384 up_write(&dvnode->validate_lock); 1385 } 1386 1387 static void afs_rmdir_put(struct afs_operation *op) 1388 { 1389 _enter("op=%08x", op->debug_id); 1390 if (op->file[1].vnode) 1391 up_write(&op->file[1].vnode->rmdir_lock); 1392 } 1393 1394 static const struct afs_operation_ops afs_rmdir_operation = { 1395 .issue_afs_rpc = afs_fs_remove_dir, 1396 .issue_yfs_rpc = yfs_fs_remove_dir, 1397 .success = afs_rmdir_success, 1398 .aborted = afs_check_for_remote_deletion, 1399 .edit_dir = afs_rmdir_edit_dir, 1400 .put = afs_rmdir_put, 1401 }; 1402 1403 /* 1404 * remove a directory from an AFS filesystem 1405 */ 1406 static int afs_rmdir(struct inode *dir, struct dentry *dentry) 1407 { 1408 struct afs_operation *op; 1409 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL; 1410 int ret; 1411 1412 _enter("{%llx:%llu},{%pd}", 1413 dvnode->fid.vid, dvnode->fid.vnode, dentry); 1414 1415 op = afs_alloc_operation(NULL, dvnode->volume); 1416 if (IS_ERR(op)) 1417 return PTR_ERR(op); 1418 1419 afs_op_set_vnode(op, 0, dvnode); 1420 op->file[0].dv_delta = 1; 1421 op->file[0].update_ctime = true; 1422 1423 op->dentry = dentry; 1424 op->ops = &afs_rmdir_operation; 1425 1426 /* Try to make sure we have a callback promise on the victim. */ 1427 if (d_really_is_positive(dentry)) { 1428 vnode = AFS_FS_I(d_inode(dentry)); 1429 ret = afs_validate(vnode, op->key); 1430 if (ret < 0) 1431 goto error; 1432 } 1433 1434 if (vnode) { 1435 ret = down_write_killable(&vnode->rmdir_lock); 1436 if (ret < 0) 1437 goto error; 1438 op->file[1].vnode = vnode; 1439 } 1440 1441 return afs_do_sync_operation(op); 1442 1443 error: 1444 return afs_put_operation(op); 1445 } 1446 1447 /* 1448 * Remove a link to a file or symlink from a directory. 1449 * 1450 * If the file was not deleted due to excess hard links, the fileserver will 1451 * break the callback promise on the file - if it had one - before it returns 1452 * to us, and if it was deleted, it won't 1453 * 1454 * However, if we didn't have a callback promise outstanding, or it was 1455 * outstanding on a different server, then it won't break it either... 1456 */ 1457 static void afs_dir_remove_link(struct afs_operation *op) 1458 { 1459 struct afs_vnode *dvnode = op->file[0].vnode; 1460 struct afs_vnode *vnode = op->file[1].vnode; 1461 struct dentry *dentry = op->dentry; 1462 int ret; 1463 1464 if (op->error != 0 || 1465 (op->file[1].scb.have_status && op->file[1].scb.have_error)) 1466 return; 1467 if (d_really_is_positive(dentry)) 1468 return; 1469 1470 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) { 1471 /* Already done */ 1472 } else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { 1473 write_seqlock(&vnode->cb_lock); 1474 drop_nlink(&vnode->vfs_inode); 1475 if (vnode->vfs_inode.i_nlink == 0) { 1476 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1477 __afs_break_callback(vnode, afs_cb_break_for_unlink); 1478 } 1479 write_sequnlock(&vnode->cb_lock); 1480 } else { 1481 afs_break_callback(vnode, afs_cb_break_for_unlink); 1482 1483 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 1484 _debug("AFS_VNODE_DELETED"); 1485 1486 ret = afs_validate(vnode, op->key); 1487 if (ret != -ESTALE) 1488 op->error = ret; 1489 } 1490 1491 _debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error); 1492 } 1493 1494 static void afs_unlink_success(struct afs_operation *op) 1495 { 1496 _enter("op=%08x", op->debug_id); 1497 op->ctime = op->file[0].scb.status.mtime_client; 1498 afs_check_dir_conflict(op, &op->file[0]); 1499 afs_vnode_commit_status(op, &op->file[0]); 1500 afs_vnode_commit_status(op, &op->file[1]); 1501 afs_update_dentry_version(op, &op->file[0], op->dentry); 1502 afs_dir_remove_link(op); 1503 } 1504 1505 static void afs_unlink_edit_dir(struct afs_operation *op) 1506 { 1507 struct afs_vnode_param *dvp = &op->file[0]; 1508 struct afs_vnode *dvnode = dvp->vnode; 1509 1510 _enter("op=%08x", op->debug_id); 1511 down_write(&dvnode->validate_lock); 1512 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) && 1513 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta) 1514 afs_edit_dir_remove(dvnode, &op->dentry->d_name, 1515 afs_edit_dir_for_unlink); 1516 up_write(&dvnode->validate_lock); 1517 } 1518 1519 static void afs_unlink_put(struct afs_operation *op) 1520 { 1521 _enter("op=%08x", op->debug_id); 1522 if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT) 1523 d_rehash(op->dentry); 1524 } 1525 1526 static const struct afs_operation_ops afs_unlink_operation = { 1527 .issue_afs_rpc = afs_fs_remove_file, 1528 .issue_yfs_rpc = yfs_fs_remove_file, 1529 .success = afs_unlink_success, 1530 .aborted = afs_check_for_remote_deletion, 1531 .edit_dir = afs_unlink_edit_dir, 1532 .put = afs_unlink_put, 1533 }; 1534 1535 /* 1536 * Remove a file or symlink from an AFS filesystem. 1537 */ 1538 static int afs_unlink(struct inode *dir, struct dentry *dentry) 1539 { 1540 struct afs_operation *op; 1541 struct afs_vnode *dvnode = AFS_FS_I(dir); 1542 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1543 int ret; 1544 1545 _enter("{%llx:%llu},{%pd}", 1546 dvnode->fid.vid, dvnode->fid.vnode, dentry); 1547 1548 if (dentry->d_name.len >= AFSNAMEMAX) 1549 return -ENAMETOOLONG; 1550 1551 op = afs_alloc_operation(NULL, dvnode->volume); 1552 if (IS_ERR(op)) 1553 return PTR_ERR(op); 1554 1555 afs_op_set_vnode(op, 0, dvnode); 1556 op->file[0].dv_delta = 1; 1557 op->file[0].update_ctime = true; 1558 1559 /* Try to make sure we have a callback promise on the victim. */ 1560 ret = afs_validate(vnode, op->key); 1561 if (ret < 0) { 1562 op->error = ret; 1563 goto error; 1564 } 1565 1566 spin_lock(&dentry->d_lock); 1567 if (d_count(dentry) > 1) { 1568 spin_unlock(&dentry->d_lock); 1569 /* Start asynchronous writeout of the inode */ 1570 write_inode_now(d_inode(dentry), 0); 1571 op->error = afs_sillyrename(dvnode, vnode, dentry, op->key); 1572 goto error; 1573 } 1574 if (!d_unhashed(dentry)) { 1575 /* Prevent a race with RCU lookup. */ 1576 __d_drop(dentry); 1577 op->unlink.need_rehash = true; 1578 } 1579 spin_unlock(&dentry->d_lock); 1580 1581 op->file[1].vnode = vnode; 1582 op->file[1].update_ctime = true; 1583 op->file[1].op_unlinked = true; 1584 op->dentry = dentry; 1585 op->ops = &afs_unlink_operation; 1586 afs_begin_vnode_operation(op); 1587 afs_wait_for_operation(op); 1588 1589 /* If there was a conflict with a third party, check the status of the 1590 * unlinked vnode. 1591 */ 1592 if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) { 1593 op->file[1].update_ctime = false; 1594 op->fetch_status.which = 1; 1595 op->ops = &afs_fetch_status_operation; 1596 afs_begin_vnode_operation(op); 1597 afs_wait_for_operation(op); 1598 } 1599 1600 return afs_put_operation(op); 1601 1602 error: 1603 return afs_put_operation(op); 1604 } 1605 1606 static const struct afs_operation_ops afs_create_operation = { 1607 .issue_afs_rpc = afs_fs_create_file, 1608 .issue_yfs_rpc = yfs_fs_create_file, 1609 .success = afs_create_success, 1610 .aborted = afs_check_for_remote_deletion, 1611 .edit_dir = afs_create_edit_dir, 1612 .put = afs_create_put, 1613 }; 1614 1615 /* 1616 * create a regular file on an AFS filesystem 1617 */ 1618 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1619 bool excl) 1620 { 1621 struct afs_operation *op; 1622 struct afs_vnode *dvnode = AFS_FS_I(dir); 1623 int ret = -ENAMETOOLONG; 1624 1625 _enter("{%llx:%llu},{%pd},%ho", 1626 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode); 1627 1628 if (dentry->d_name.len >= AFSNAMEMAX) 1629 goto error; 1630 1631 op = afs_alloc_operation(NULL, dvnode->volume); 1632 if (IS_ERR(op)) { 1633 ret = PTR_ERR(op); 1634 goto error; 1635 } 1636 1637 afs_op_set_vnode(op, 0, dvnode); 1638 op->file[0].dv_delta = 1; 1639 op->file[0].update_ctime = true; 1640 1641 op->dentry = dentry; 1642 op->create.mode = S_IFREG | mode; 1643 op->create.reason = afs_edit_dir_for_create; 1644 op->ops = &afs_create_operation; 1645 return afs_do_sync_operation(op); 1646 1647 error: 1648 d_drop(dentry); 1649 _leave(" = %d", ret); 1650 return ret; 1651 } 1652 1653 static void afs_link_success(struct afs_operation *op) 1654 { 1655 struct afs_vnode_param *dvp = &op->file[0]; 1656 struct afs_vnode_param *vp = &op->file[1]; 1657 1658 _enter("op=%08x", op->debug_id); 1659 op->ctime = dvp->scb.status.mtime_client; 1660 afs_vnode_commit_status(op, dvp); 1661 afs_vnode_commit_status(op, vp); 1662 afs_update_dentry_version(op, dvp, op->dentry); 1663 if (op->dentry_2->d_parent == op->dentry->d_parent) 1664 afs_update_dentry_version(op, dvp, op->dentry_2); 1665 ihold(&vp->vnode->vfs_inode); 1666 d_instantiate(op->dentry, &vp->vnode->vfs_inode); 1667 } 1668 1669 static void afs_link_put(struct afs_operation *op) 1670 { 1671 _enter("op=%08x", op->debug_id); 1672 if (op->error) 1673 d_drop(op->dentry); 1674 } 1675 1676 static const struct afs_operation_ops afs_link_operation = { 1677 .issue_afs_rpc = afs_fs_link, 1678 .issue_yfs_rpc = yfs_fs_link, 1679 .success = afs_link_success, 1680 .aborted = afs_check_for_remote_deletion, 1681 .edit_dir = afs_create_edit_dir, 1682 .put = afs_link_put, 1683 }; 1684 1685 /* 1686 * create a hard link between files in an AFS filesystem 1687 */ 1688 static int afs_link(struct dentry *from, struct inode *dir, 1689 struct dentry *dentry) 1690 { 1691 struct afs_operation *op; 1692 struct afs_vnode *dvnode = AFS_FS_I(dir); 1693 struct afs_vnode *vnode = AFS_FS_I(d_inode(from)); 1694 int ret = -ENAMETOOLONG; 1695 1696 _enter("{%llx:%llu},{%llx:%llu},{%pd}", 1697 vnode->fid.vid, vnode->fid.vnode, 1698 dvnode->fid.vid, dvnode->fid.vnode, 1699 dentry); 1700 1701 if (dentry->d_name.len >= AFSNAMEMAX) 1702 goto error; 1703 1704 op = afs_alloc_operation(NULL, dvnode->volume); 1705 if (IS_ERR(op)) { 1706 ret = PTR_ERR(op); 1707 goto error; 1708 } 1709 1710 afs_op_set_vnode(op, 0, dvnode); 1711 afs_op_set_vnode(op, 1, vnode); 1712 op->file[0].dv_delta = 1; 1713 op->file[0].update_ctime = true; 1714 op->file[1].update_ctime = true; 1715 1716 op->dentry = dentry; 1717 op->dentry_2 = from; 1718 op->ops = &afs_link_operation; 1719 op->create.reason = afs_edit_dir_for_link; 1720 return afs_do_sync_operation(op); 1721 1722 error: 1723 d_drop(dentry); 1724 _leave(" = %d", ret); 1725 return ret; 1726 } 1727 1728 static const struct afs_operation_ops afs_symlink_operation = { 1729 .issue_afs_rpc = afs_fs_symlink, 1730 .issue_yfs_rpc = yfs_fs_symlink, 1731 .success = afs_create_success, 1732 .aborted = afs_check_for_remote_deletion, 1733 .edit_dir = afs_create_edit_dir, 1734 .put = afs_create_put, 1735 }; 1736 1737 /* 1738 * create a symlink in an AFS filesystem 1739 */ 1740 static int afs_symlink(struct inode *dir, struct dentry *dentry, 1741 const char *content) 1742 { 1743 struct afs_operation *op; 1744 struct afs_vnode *dvnode = AFS_FS_I(dir); 1745 int ret; 1746 1747 _enter("{%llx:%llu},{%pd},%s", 1748 dvnode->fid.vid, dvnode->fid.vnode, dentry, 1749 content); 1750 1751 ret = -ENAMETOOLONG; 1752 if (dentry->d_name.len >= AFSNAMEMAX) 1753 goto error; 1754 1755 ret = -EINVAL; 1756 if (strlen(content) >= AFSPATHMAX) 1757 goto error; 1758 1759 op = afs_alloc_operation(NULL, dvnode->volume); 1760 if (IS_ERR(op)) { 1761 ret = PTR_ERR(op); 1762 goto error; 1763 } 1764 1765 afs_op_set_vnode(op, 0, dvnode); 1766 op->file[0].dv_delta = 1; 1767 1768 op->dentry = dentry; 1769 op->ops = &afs_symlink_operation; 1770 op->create.reason = afs_edit_dir_for_symlink; 1771 op->create.symlink = content; 1772 return afs_do_sync_operation(op); 1773 1774 error: 1775 d_drop(dentry); 1776 _leave(" = %d", ret); 1777 return ret; 1778 } 1779 1780 static void afs_rename_success(struct afs_operation *op) 1781 { 1782 _enter("op=%08x", op->debug_id); 1783 1784 op->ctime = op->file[0].scb.status.mtime_client; 1785 afs_check_dir_conflict(op, &op->file[1]); 1786 afs_vnode_commit_status(op, &op->file[0]); 1787 if (op->file[1].vnode != op->file[0].vnode) { 1788 op->ctime = op->file[1].scb.status.mtime_client; 1789 afs_vnode_commit_status(op, &op->file[1]); 1790 } 1791 } 1792 1793 static void afs_rename_edit_dir(struct afs_operation *op) 1794 { 1795 struct afs_vnode_param *orig_dvp = &op->file[0]; 1796 struct afs_vnode_param *new_dvp = &op->file[1]; 1797 struct afs_vnode *orig_dvnode = orig_dvp->vnode; 1798 struct afs_vnode *new_dvnode = new_dvp->vnode; 1799 struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry)); 1800 struct dentry *old_dentry = op->dentry; 1801 struct dentry *new_dentry = op->dentry_2; 1802 struct inode *new_inode; 1803 1804 _enter("op=%08x", op->debug_id); 1805 1806 if (op->rename.rehash) { 1807 d_rehash(op->rename.rehash); 1808 op->rename.rehash = NULL; 1809 } 1810 1811 down_write(&orig_dvnode->validate_lock); 1812 if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) && 1813 orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta) 1814 afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name, 1815 afs_edit_dir_for_rename_0); 1816 1817 if (new_dvnode != orig_dvnode) { 1818 up_write(&orig_dvnode->validate_lock); 1819 down_write(&new_dvnode->validate_lock); 1820 } 1821 1822 if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) && 1823 new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) { 1824 if (!op->rename.new_negative) 1825 afs_edit_dir_remove(new_dvnode, &new_dentry->d_name, 1826 afs_edit_dir_for_rename_1); 1827 1828 afs_edit_dir_add(new_dvnode, &new_dentry->d_name, 1829 &vnode->fid, afs_edit_dir_for_rename_2); 1830 } 1831 1832 new_inode = d_inode(new_dentry); 1833 if (new_inode) { 1834 spin_lock(&new_inode->i_lock); 1835 if (new_inode->i_nlink > 0) 1836 drop_nlink(new_inode); 1837 spin_unlock(&new_inode->i_lock); 1838 } 1839 1840 /* Now we can update d_fsdata on the dentries to reflect their 1841 * new parent's data_version. 1842 * 1843 * Note that if we ever implement RENAME_EXCHANGE, we'll have 1844 * to update both dentries with opposing dir versions. 1845 */ 1846 afs_update_dentry_version(op, new_dvp, op->dentry); 1847 afs_update_dentry_version(op, new_dvp, op->dentry_2); 1848 1849 d_move(old_dentry, new_dentry); 1850 1851 up_write(&new_dvnode->validate_lock); 1852 } 1853 1854 static void afs_rename_put(struct afs_operation *op) 1855 { 1856 _enter("op=%08x", op->debug_id); 1857 if (op->rename.rehash) 1858 d_rehash(op->rename.rehash); 1859 dput(op->rename.tmp); 1860 if (op->error) 1861 d_rehash(op->dentry); 1862 } 1863 1864 static const struct afs_operation_ops afs_rename_operation = { 1865 .issue_afs_rpc = afs_fs_rename, 1866 .issue_yfs_rpc = yfs_fs_rename, 1867 .success = afs_rename_success, 1868 .edit_dir = afs_rename_edit_dir, 1869 .put = afs_rename_put, 1870 }; 1871 1872 /* 1873 * rename a file in an AFS filesystem and/or move it between directories 1874 */ 1875 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry, 1876 struct inode *new_dir, struct dentry *new_dentry, 1877 unsigned int flags) 1878 { 1879 struct afs_operation *op; 1880 struct afs_vnode *orig_dvnode, *new_dvnode, *vnode; 1881 int ret; 1882 1883 if (flags) 1884 return -EINVAL; 1885 1886 /* Don't allow silly-rename files be moved around. */ 1887 if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED) 1888 return -EINVAL; 1889 1890 vnode = AFS_FS_I(d_inode(old_dentry)); 1891 orig_dvnode = AFS_FS_I(old_dir); 1892 new_dvnode = AFS_FS_I(new_dir); 1893 1894 _enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}", 1895 orig_dvnode->fid.vid, orig_dvnode->fid.vnode, 1896 vnode->fid.vid, vnode->fid.vnode, 1897 new_dvnode->fid.vid, new_dvnode->fid.vnode, 1898 new_dentry); 1899 1900 op = afs_alloc_operation(NULL, orig_dvnode->volume); 1901 if (IS_ERR(op)) 1902 return PTR_ERR(op); 1903 1904 afs_op_set_vnode(op, 0, orig_dvnode); 1905 afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */ 1906 op->file[0].dv_delta = 1; 1907 op->file[1].dv_delta = 1; 1908 op->file[0].update_ctime = true; 1909 op->file[1].update_ctime = true; 1910 1911 op->dentry = old_dentry; 1912 op->dentry_2 = new_dentry; 1913 op->rename.new_negative = d_is_negative(new_dentry); 1914 op->ops = &afs_rename_operation; 1915 1916 /* For non-directories, check whether the target is busy and if so, 1917 * make a copy of the dentry and then do a silly-rename. If the 1918 * silly-rename succeeds, the copied dentry is hashed and becomes the 1919 * new target. 1920 */ 1921 if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) { 1922 /* To prevent any new references to the target during the 1923 * rename, we unhash the dentry in advance. 1924 */ 1925 if (!d_unhashed(new_dentry)) { 1926 d_drop(new_dentry); 1927 op->rename.rehash = new_dentry; 1928 } 1929 1930 if (d_count(new_dentry) > 2) { 1931 /* copy the target dentry's name */ 1932 ret = -ENOMEM; 1933 op->rename.tmp = d_alloc(new_dentry->d_parent, 1934 &new_dentry->d_name); 1935 if (!op->rename.tmp) 1936 goto error; 1937 1938 ret = afs_sillyrename(new_dvnode, 1939 AFS_FS_I(d_inode(new_dentry)), 1940 new_dentry, op->key); 1941 if (ret) 1942 goto error; 1943 1944 op->dentry_2 = op->rename.tmp; 1945 op->rename.rehash = NULL; 1946 op->rename.new_negative = true; 1947 } 1948 } 1949 1950 /* This bit is potentially nasty as there's a potential race with 1951 * afs_d_revalidate{,_rcu}(). We have to change d_fsdata on the dentry 1952 * to reflect it's new parent's new data_version after the op, but 1953 * d_revalidate may see old_dentry between the op having taken place 1954 * and the version being updated. 1955 * 1956 * So drop the old_dentry for now to make other threads go through 1957 * lookup instead - which we hold a lock against. 1958 */ 1959 d_drop(old_dentry); 1960 1961 return afs_do_sync_operation(op); 1962 1963 error: 1964 return afs_put_operation(op); 1965 } 1966 1967 /* 1968 * Release a directory page and clean up its private state if it's not busy 1969 * - return true if the page can now be released, false if not 1970 */ 1971 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags) 1972 { 1973 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host); 1974 1975 _enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index); 1976 1977 detach_page_private(page); 1978 1979 /* The directory will need reloading. */ 1980 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1981 afs_stat_v(dvnode, n_relpg); 1982 return 1; 1983 } 1984 1985 /* 1986 * invalidate part or all of a page 1987 * - release a page and clean up its private data if offset is 0 (indicating 1988 * the entire page) 1989 */ 1990 static void afs_dir_invalidatepage(struct page *page, unsigned int offset, 1991 unsigned int length) 1992 { 1993 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host); 1994 1995 _enter("{%lu},%u,%u", page->index, offset, length); 1996 1997 BUG_ON(!PageLocked(page)); 1998 1999 /* The directory will need reloading. */ 2000 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 2001 afs_stat_v(dvnode, n_inval); 2002 2003 /* we clean up only if the entire page is being invalidated */ 2004 if (offset == 0 && length == PAGE_SIZE) 2005 detach_page_private(page); 2006 } 2007