1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* dir.c: AFS filesystem directory handling 3 * 4 * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/fs.h> 10 #include <linux/namei.h> 11 #include <linux/pagemap.h> 12 #include <linux/swap.h> 13 #include <linux/ctype.h> 14 #include <linux/sched.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include "internal.h" 17 #include "afs_fs.h" 18 #include "xdr_fs.h" 19 20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry, 21 unsigned int flags); 22 static int afs_dir_open(struct inode *inode, struct file *file); 23 static int afs_readdir(struct file *file, struct dir_context *ctx); 24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags); 25 static int afs_d_delete(const struct dentry *dentry); 26 static void afs_d_iput(struct dentry *dentry, struct inode *inode); 27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen, 28 loff_t fpos, u64 ino, unsigned dtype); 29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen, 30 loff_t fpos, u64 ino, unsigned dtype); 31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 32 bool excl); 33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); 34 static int afs_rmdir(struct inode *dir, struct dentry *dentry); 35 static int afs_unlink(struct inode *dir, struct dentry *dentry); 36 static int afs_link(struct dentry *from, struct inode *dir, 37 struct dentry *dentry); 38 static int afs_symlink(struct inode *dir, struct dentry *dentry, 39 const char *content); 40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry, 41 struct inode *new_dir, struct dentry *new_dentry, 42 unsigned int flags); 43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags); 44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset, 45 unsigned int length); 46 47 static int afs_dir_set_page_dirty(struct page *page) 48 { 49 BUG(); /* This should never happen. */ 50 } 51 52 const struct file_operations afs_dir_file_operations = { 53 .open = afs_dir_open, 54 .release = afs_release, 55 .iterate_shared = afs_readdir, 56 .lock = afs_lock, 57 .llseek = generic_file_llseek, 58 }; 59 60 const struct inode_operations afs_dir_inode_operations = { 61 .create = afs_create, 62 .lookup = afs_lookup, 63 .link = afs_link, 64 .unlink = afs_unlink, 65 .symlink = afs_symlink, 66 .mkdir = afs_mkdir, 67 .rmdir = afs_rmdir, 68 .rename = afs_rename, 69 .permission = afs_permission, 70 .getattr = afs_getattr, 71 .setattr = afs_setattr, 72 .listxattr = afs_listxattr, 73 }; 74 75 const struct address_space_operations afs_dir_aops = { 76 .set_page_dirty = afs_dir_set_page_dirty, 77 .releasepage = afs_dir_releasepage, 78 .invalidatepage = afs_dir_invalidatepage, 79 }; 80 81 const struct dentry_operations afs_fs_dentry_operations = { 82 .d_revalidate = afs_d_revalidate, 83 .d_delete = afs_d_delete, 84 .d_release = afs_d_release, 85 .d_automount = afs_d_automount, 86 .d_iput = afs_d_iput, 87 }; 88 89 struct afs_lookup_one_cookie { 90 struct dir_context ctx; 91 struct qstr name; 92 bool found; 93 struct afs_fid fid; 94 }; 95 96 struct afs_lookup_cookie { 97 struct dir_context ctx; 98 struct qstr name; 99 bool found; 100 bool one_only; 101 unsigned short nr_fids; 102 struct inode **inodes; 103 struct afs_status_cb *statuses; 104 struct afs_fid fids[50]; 105 }; 106 107 /* 108 * check that a directory page is valid 109 */ 110 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page, 111 loff_t i_size) 112 { 113 struct afs_xdr_dir_page *dbuf; 114 loff_t latter, off; 115 int tmp, qty; 116 117 /* Determine how many magic numbers there should be in this page, but 118 * we must take care because the directory may change size under us. 119 */ 120 off = page_offset(page); 121 if (i_size <= off) 122 goto checked; 123 124 latter = i_size - off; 125 if (latter >= PAGE_SIZE) 126 qty = PAGE_SIZE; 127 else 128 qty = latter; 129 qty /= sizeof(union afs_xdr_dir_block); 130 131 /* check them */ 132 dbuf = kmap(page); 133 for (tmp = 0; tmp < qty; tmp++) { 134 if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) { 135 printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n", 136 __func__, dvnode->vfs_inode.i_ino, tmp, qty, 137 ntohs(dbuf->blocks[tmp].hdr.magic)); 138 trace_afs_dir_check_failed(dvnode, off, i_size); 139 kunmap(page); 140 trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic); 141 goto error; 142 } 143 144 /* Make sure each block is NUL terminated so we can reasonably 145 * use string functions on it. The filenames in the page 146 * *should* be NUL-terminated anyway. 147 */ 148 ((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0; 149 } 150 151 kunmap(page); 152 153 checked: 154 afs_stat_v(dvnode, n_read_dir); 155 return true; 156 157 error: 158 return false; 159 } 160 161 /* 162 * Check the contents of a directory that we've just read. 163 */ 164 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req) 165 { 166 struct afs_xdr_dir_page *dbuf; 167 unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block); 168 169 for (i = 0; i < req->nr_pages; i++) 170 if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len)) 171 goto bad; 172 return true; 173 174 bad: 175 pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n", 176 dvnode->fid.vid, dvnode->fid.vnode, 177 req->file_size, req->len, req->actual_len, req->remain); 178 pr_warn("DIR %llx %x %x %x\n", 179 req->pos, req->index, req->nr_pages, req->offset); 180 181 for (i = 0; i < req->nr_pages; i++) { 182 dbuf = kmap(req->pages[i]); 183 for (j = 0; j < qty; j++) { 184 union afs_xdr_dir_block *block = &dbuf->blocks[j]; 185 186 pr_warn("[%02x] %32phN\n", i * qty + j, block); 187 } 188 kunmap(req->pages[i]); 189 } 190 return false; 191 } 192 193 /* 194 * open an AFS directory file 195 */ 196 static int afs_dir_open(struct inode *inode, struct file *file) 197 { 198 _enter("{%lu}", inode->i_ino); 199 200 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 201 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 202 203 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags)) 204 return -ENOENT; 205 206 return afs_open(inode, file); 207 } 208 209 /* 210 * Read the directory into the pagecache in one go, scrubbing the previous 211 * contents. The list of pages is returned, pinning them so that they don't 212 * get reclaimed during the iteration. 213 */ 214 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key) 215 __acquires(&dvnode->validate_lock) 216 { 217 struct afs_read *req; 218 loff_t i_size; 219 int nr_pages, nr_inline, i, n; 220 int ret = -ENOMEM; 221 222 retry: 223 i_size = i_size_read(&dvnode->vfs_inode); 224 if (i_size < 2048) 225 return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small)); 226 if (i_size > 2048 * 1024) { 227 trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big); 228 return ERR_PTR(-EFBIG); 229 } 230 231 _enter("%llu", i_size); 232 233 /* Get a request record to hold the page list. We want to hold it 234 * inline if we can, but we don't want to make an order 1 allocation. 235 */ 236 nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE; 237 nr_inline = nr_pages; 238 if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *)) 239 nr_inline = 0; 240 241 req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL); 242 if (!req) 243 return ERR_PTR(-ENOMEM); 244 245 refcount_set(&req->usage, 1); 246 req->nr_pages = nr_pages; 247 req->actual_len = i_size; /* May change */ 248 req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */ 249 req->data_version = dvnode->status.data_version; /* May change */ 250 if (nr_inline > 0) { 251 req->pages = req->array; 252 } else { 253 req->pages = kcalloc(nr_pages, sizeof(struct page *), 254 GFP_KERNEL); 255 if (!req->pages) 256 goto error; 257 } 258 259 /* Get a list of all the pages that hold or will hold the directory 260 * content. We need to fill in any gaps that we might find where the 261 * memory reclaimer has been at work. If there are any gaps, we will 262 * need to reread the entire directory contents. 263 */ 264 i = 0; 265 do { 266 n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i, 267 req->nr_pages - i, 268 req->pages + i); 269 _debug("find %u at %u/%u", n, i, req->nr_pages); 270 if (n == 0) { 271 gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask; 272 273 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 274 afs_stat_v(dvnode, n_inval); 275 276 ret = -ENOMEM; 277 req->pages[i] = __page_cache_alloc(gfp); 278 if (!req->pages[i]) 279 goto error; 280 ret = add_to_page_cache_lru(req->pages[i], 281 dvnode->vfs_inode.i_mapping, 282 i, gfp); 283 if (ret < 0) 284 goto error; 285 286 set_page_private(req->pages[i], 1); 287 SetPagePrivate(req->pages[i]); 288 unlock_page(req->pages[i]); 289 i++; 290 } else { 291 i += n; 292 } 293 } while (i < req->nr_pages); 294 295 /* If we're going to reload, we need to lock all the pages to prevent 296 * races. 297 */ 298 ret = -ERESTARTSYS; 299 if (down_read_killable(&dvnode->validate_lock) < 0) 300 goto error; 301 302 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 303 goto success; 304 305 up_read(&dvnode->validate_lock); 306 if (down_write_killable(&dvnode->validate_lock) < 0) 307 goto error; 308 309 if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { 310 trace_afs_reload_dir(dvnode); 311 ret = afs_fetch_data(dvnode, key, req); 312 if (ret < 0) 313 goto error_unlock; 314 315 task_io_account_read(PAGE_SIZE * req->nr_pages); 316 317 if (req->len < req->file_size) 318 goto content_has_grown; 319 320 /* Validate the data we just read. */ 321 ret = -EIO; 322 if (!afs_dir_check_pages(dvnode, req)) 323 goto error_unlock; 324 325 // TODO: Trim excess pages 326 327 set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags); 328 } 329 330 downgrade_write(&dvnode->validate_lock); 331 success: 332 return req; 333 334 error_unlock: 335 up_write(&dvnode->validate_lock); 336 error: 337 afs_put_read(req); 338 _leave(" = %d", ret); 339 return ERR_PTR(ret); 340 341 content_has_grown: 342 up_write(&dvnode->validate_lock); 343 afs_put_read(req); 344 goto retry; 345 } 346 347 /* 348 * deal with one block in an AFS directory 349 */ 350 static int afs_dir_iterate_block(struct afs_vnode *dvnode, 351 struct dir_context *ctx, 352 union afs_xdr_dir_block *block, 353 unsigned blkoff) 354 { 355 union afs_xdr_dirent *dire; 356 unsigned offset, next, curr; 357 size_t nlen; 358 int tmp; 359 360 _enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block); 361 362 curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent); 363 364 /* walk through the block, an entry at a time */ 365 for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS); 366 offset < AFS_DIR_SLOTS_PER_BLOCK; 367 offset = next 368 ) { 369 next = offset + 1; 370 371 /* skip entries marked unused in the bitmap */ 372 if (!(block->hdr.bitmap[offset / 8] & 373 (1 << (offset % 8)))) { 374 _debug("ENT[%zu.%u]: unused", 375 blkoff / sizeof(union afs_xdr_dir_block), offset); 376 if (offset >= curr) 377 ctx->pos = blkoff + 378 next * sizeof(union afs_xdr_dirent); 379 continue; 380 } 381 382 /* got a valid entry */ 383 dire = &block->dirents[offset]; 384 nlen = strnlen(dire->u.name, 385 sizeof(*block) - 386 offset * sizeof(union afs_xdr_dirent)); 387 388 _debug("ENT[%zu.%u]: %s %zu \"%s\"", 389 blkoff / sizeof(union afs_xdr_dir_block), offset, 390 (offset < curr ? "skip" : "fill"), 391 nlen, dire->u.name); 392 393 /* work out where the next possible entry is */ 394 for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) { 395 if (next >= AFS_DIR_SLOTS_PER_BLOCK) { 396 _debug("ENT[%zu.%u]:" 397 " %u travelled beyond end dir block" 398 " (len %u/%zu)", 399 blkoff / sizeof(union afs_xdr_dir_block), 400 offset, next, tmp, nlen); 401 return afs_bad(dvnode, afs_file_error_dir_over_end); 402 } 403 if (!(block->hdr.bitmap[next / 8] & 404 (1 << (next % 8)))) { 405 _debug("ENT[%zu.%u]:" 406 " %u unmarked extension (len %u/%zu)", 407 blkoff / sizeof(union afs_xdr_dir_block), 408 offset, next, tmp, nlen); 409 return afs_bad(dvnode, afs_file_error_dir_unmarked_ext); 410 } 411 412 _debug("ENT[%zu.%u]: ext %u/%zu", 413 blkoff / sizeof(union afs_xdr_dir_block), 414 next, tmp, nlen); 415 next++; 416 } 417 418 /* skip if starts before the current position */ 419 if (offset < curr) 420 continue; 421 422 /* found the next entry */ 423 if (!dir_emit(ctx, dire->u.name, nlen, 424 ntohl(dire->u.vnode), 425 (ctx->actor == afs_lookup_filldir || 426 ctx->actor == afs_lookup_one_filldir)? 427 ntohl(dire->u.unique) : DT_UNKNOWN)) { 428 _leave(" = 0 [full]"); 429 return 0; 430 } 431 432 ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent); 433 } 434 435 _leave(" = 1 [more]"); 436 return 1; 437 } 438 439 /* 440 * iterate through the data blob that lists the contents of an AFS directory 441 */ 442 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx, 443 struct key *key, afs_dataversion_t *_dir_version) 444 { 445 struct afs_vnode *dvnode = AFS_FS_I(dir); 446 struct afs_xdr_dir_page *dbuf; 447 union afs_xdr_dir_block *dblock; 448 struct afs_read *req; 449 struct page *page; 450 unsigned blkoff, limit; 451 int ret; 452 453 _enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos); 454 455 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) { 456 _leave(" = -ESTALE"); 457 return -ESTALE; 458 } 459 460 req = afs_read_dir(dvnode, key); 461 if (IS_ERR(req)) 462 return PTR_ERR(req); 463 *_dir_version = req->data_version; 464 465 /* round the file position up to the next entry boundary */ 466 ctx->pos += sizeof(union afs_xdr_dirent) - 1; 467 ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1); 468 469 /* walk through the blocks in sequence */ 470 ret = 0; 471 while (ctx->pos < req->actual_len) { 472 blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1); 473 474 /* Fetch the appropriate page from the directory and re-add it 475 * to the LRU. 476 */ 477 page = req->pages[blkoff / PAGE_SIZE]; 478 if (!page) { 479 ret = afs_bad(dvnode, afs_file_error_dir_missing_page); 480 break; 481 } 482 mark_page_accessed(page); 483 484 limit = blkoff & ~(PAGE_SIZE - 1); 485 486 dbuf = kmap(page); 487 488 /* deal with the individual blocks stashed on this page */ 489 do { 490 dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) / 491 sizeof(union afs_xdr_dir_block)]; 492 ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff); 493 if (ret != 1) { 494 kunmap(page); 495 goto out; 496 } 497 498 blkoff += sizeof(union afs_xdr_dir_block); 499 500 } while (ctx->pos < dir->i_size && blkoff < limit); 501 502 kunmap(page); 503 ret = 0; 504 } 505 506 out: 507 up_read(&dvnode->validate_lock); 508 afs_put_read(req); 509 _leave(" = %d", ret); 510 return ret; 511 } 512 513 /* 514 * read an AFS directory 515 */ 516 static int afs_readdir(struct file *file, struct dir_context *ctx) 517 { 518 afs_dataversion_t dir_version; 519 520 return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file), 521 &dir_version); 522 } 523 524 /* 525 * Search the directory for a single name 526 * - if afs_dir_iterate_block() spots this function, it'll pass the FID 527 * uniquifier through dtype 528 */ 529 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, 530 int nlen, loff_t fpos, u64 ino, unsigned dtype) 531 { 532 struct afs_lookup_one_cookie *cookie = 533 container_of(ctx, struct afs_lookup_one_cookie, ctx); 534 535 _enter("{%s,%u},%s,%u,,%llu,%u", 536 cookie->name.name, cookie->name.len, name, nlen, 537 (unsigned long long) ino, dtype); 538 539 /* insanity checks first */ 540 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 541 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 542 543 if (cookie->name.len != nlen || 544 memcmp(cookie->name.name, name, nlen) != 0) { 545 _leave(" = 0 [no]"); 546 return 0; 547 } 548 549 cookie->fid.vnode = ino; 550 cookie->fid.unique = dtype; 551 cookie->found = 1; 552 553 _leave(" = -1 [found]"); 554 return -1; 555 } 556 557 /* 558 * Do a lookup of a single name in a directory 559 * - just returns the FID the dentry name maps to if found 560 */ 561 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry, 562 struct afs_fid *fid, struct key *key, 563 afs_dataversion_t *_dir_version) 564 { 565 struct afs_super_info *as = dir->i_sb->s_fs_info; 566 struct afs_lookup_one_cookie cookie = { 567 .ctx.actor = afs_lookup_one_filldir, 568 .name = dentry->d_name, 569 .fid.vid = as->volume->vid 570 }; 571 int ret; 572 573 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry); 574 575 /* search the directory */ 576 ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version); 577 if (ret < 0) { 578 _leave(" = %d [iter]", ret); 579 return ret; 580 } 581 582 ret = -ENOENT; 583 if (!cookie.found) { 584 _leave(" = -ENOENT [not found]"); 585 return -ENOENT; 586 } 587 588 *fid = cookie.fid; 589 _leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique); 590 return 0; 591 } 592 593 /* 594 * search the directory for a name 595 * - if afs_dir_iterate_block() spots this function, it'll pass the FID 596 * uniquifier through dtype 597 */ 598 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, 599 int nlen, loff_t fpos, u64 ino, unsigned dtype) 600 { 601 struct afs_lookup_cookie *cookie = 602 container_of(ctx, struct afs_lookup_cookie, ctx); 603 int ret; 604 605 _enter("{%s,%u},%s,%u,,%llu,%u", 606 cookie->name.name, cookie->name.len, name, nlen, 607 (unsigned long long) ino, dtype); 608 609 /* insanity checks first */ 610 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 611 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 612 613 if (cookie->found) { 614 if (cookie->nr_fids < 50) { 615 cookie->fids[cookie->nr_fids].vnode = ino; 616 cookie->fids[cookie->nr_fids].unique = dtype; 617 cookie->nr_fids++; 618 } 619 } else if (cookie->name.len == nlen && 620 memcmp(cookie->name.name, name, nlen) == 0) { 621 cookie->fids[0].vnode = ino; 622 cookie->fids[0].unique = dtype; 623 cookie->found = 1; 624 if (cookie->one_only) 625 return -1; 626 } 627 628 ret = cookie->nr_fids >= 50 ? -1 : 0; 629 _leave(" = %d", ret); 630 return ret; 631 } 632 633 /* 634 * Do a lookup in a directory. We make use of bulk lookup to query a slew of 635 * files in one go and create inodes for them. The inode of the file we were 636 * asked for is returned. 637 */ 638 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry, 639 struct key *key) 640 { 641 struct afs_lookup_cookie *cookie; 642 struct afs_cb_interest *dcbi, *cbi = NULL; 643 struct afs_super_info *as = dir->i_sb->s_fs_info; 644 struct afs_status_cb *scb; 645 struct afs_iget_data iget_data; 646 struct afs_fs_cursor fc; 647 struct afs_server *server; 648 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode; 649 struct inode *inode = NULL, *ti; 650 afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version); 651 int ret, i; 652 653 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry); 654 655 cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL); 656 if (!cookie) 657 return ERR_PTR(-ENOMEM); 658 659 cookie->ctx.actor = afs_lookup_filldir; 660 cookie->name = dentry->d_name; 661 cookie->nr_fids = 1; /* slot 0 is saved for the fid we actually want */ 662 663 read_seqlock_excl(&dvnode->cb_lock); 664 dcbi = rcu_dereference_protected(dvnode->cb_interest, 665 lockdep_is_held(&dvnode->cb_lock.lock)); 666 if (dcbi) { 667 server = dcbi->server; 668 if (server && 669 test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags)) 670 cookie->one_only = true; 671 } 672 read_sequnlock_excl(&dvnode->cb_lock); 673 674 for (i = 0; i < 50; i++) 675 cookie->fids[i].vid = as->volume->vid; 676 677 /* search the directory */ 678 ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version); 679 if (ret < 0) { 680 inode = ERR_PTR(ret); 681 goto out; 682 } 683 684 dentry->d_fsdata = (void *)(unsigned long)data_version; 685 686 inode = ERR_PTR(-ENOENT); 687 if (!cookie->found) 688 goto out; 689 690 /* Check to see if we already have an inode for the primary fid. */ 691 iget_data.fid = cookie->fids[0]; 692 iget_data.volume = dvnode->volume; 693 iget_data.cb_v_break = dvnode->volume->cb_v_break; 694 iget_data.cb_s_break = 0; 695 inode = ilookup5(dir->i_sb, cookie->fids[0].vnode, 696 afs_iget5_test, &iget_data); 697 if (inode) 698 goto out; 699 700 /* Need space for examining all the selected files */ 701 inode = ERR_PTR(-ENOMEM); 702 cookie->statuses = kvcalloc(cookie->nr_fids, sizeof(struct afs_status_cb), 703 GFP_KERNEL); 704 if (!cookie->statuses) 705 goto out; 706 707 cookie->inodes = kcalloc(cookie->nr_fids, sizeof(struct inode *), 708 GFP_KERNEL); 709 if (!cookie->inodes) 710 goto out_s; 711 712 for (i = 1; i < cookie->nr_fids; i++) { 713 scb = &cookie->statuses[i]; 714 715 /* Find any inodes that already exist and get their 716 * callback counters. 717 */ 718 iget_data.fid = cookie->fids[i]; 719 ti = ilookup5_nowait(dir->i_sb, iget_data.fid.vnode, 720 afs_iget5_test, &iget_data); 721 if (!IS_ERR_OR_NULL(ti)) { 722 vnode = AFS_FS_I(ti); 723 scb->cb_break = afs_calc_vnode_cb_break(vnode); 724 cookie->inodes[i] = ti; 725 } 726 } 727 728 /* Try FS.InlineBulkStatus first. Abort codes for the individual 729 * lookups contained therein are stored in the reply without aborting 730 * the whole operation. 731 */ 732 if (cookie->one_only) 733 goto no_inline_bulk_status; 734 735 inode = ERR_PTR(-ERESTARTSYS); 736 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 737 while (afs_select_fileserver(&fc)) { 738 if (test_bit(AFS_SERVER_FL_NO_IBULK, 739 &fc.cbi->server->flags)) { 740 fc.ac.abort_code = RX_INVALID_OPERATION; 741 fc.ac.error = -ECONNABORTED; 742 break; 743 } 744 iget_data.cb_v_break = dvnode->volume->cb_v_break; 745 iget_data.cb_s_break = fc.cbi->server->cb_s_break; 746 afs_fs_inline_bulk_status(&fc, 747 afs_v2net(dvnode), 748 cookie->fids, 749 cookie->statuses, 750 cookie->nr_fids, NULL); 751 } 752 753 if (fc.ac.error == 0) 754 cbi = afs_get_cb_interest(fc.cbi); 755 if (fc.ac.abort_code == RX_INVALID_OPERATION) 756 set_bit(AFS_SERVER_FL_NO_IBULK, &fc.cbi->server->flags); 757 inode = ERR_PTR(afs_end_vnode_operation(&fc)); 758 } 759 760 if (!IS_ERR(inode)) 761 goto success; 762 if (fc.ac.abort_code != RX_INVALID_OPERATION) 763 goto out_c; 764 765 no_inline_bulk_status: 766 /* We could try FS.BulkStatus next, but this aborts the entire op if 767 * any of the lookups fails - so, for the moment, revert to 768 * FS.FetchStatus for just the primary fid. 769 */ 770 inode = ERR_PTR(-ERESTARTSYS); 771 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 772 while (afs_select_fileserver(&fc)) { 773 iget_data.cb_v_break = dvnode->volume->cb_v_break; 774 iget_data.cb_s_break = fc.cbi->server->cb_s_break; 775 scb = &cookie->statuses[0]; 776 afs_fs_fetch_status(&fc, 777 afs_v2net(dvnode), 778 cookie->fids, 779 scb, 780 NULL); 781 } 782 783 if (fc.ac.error == 0) 784 cbi = afs_get_cb_interest(fc.cbi); 785 inode = ERR_PTR(afs_end_vnode_operation(&fc)); 786 } 787 788 if (IS_ERR(inode)) 789 goto out_c; 790 791 success: 792 /* Turn all the files into inodes and save the first one - which is the 793 * one we actually want. 794 */ 795 scb = &cookie->statuses[0]; 796 if (scb->status.abort_code != 0) 797 inode = ERR_PTR(afs_abort_to_error(scb->status.abort_code)); 798 799 for (i = 0; i < cookie->nr_fids; i++) { 800 struct afs_status_cb *scb = &cookie->statuses[i]; 801 802 if (!scb->have_status && !scb->have_error) 803 continue; 804 805 if (cookie->inodes[i]) { 806 struct afs_vnode *iv = AFS_FS_I(cookie->inodes[i]); 807 808 if (test_bit(AFS_VNODE_UNSET, &iv->flags)) 809 continue; 810 811 afs_vnode_commit_status(&fc, iv, 812 scb->cb_break, NULL, scb); 813 continue; 814 } 815 816 if (scb->status.abort_code != 0) 817 continue; 818 819 iget_data.fid = cookie->fids[i]; 820 ti = afs_iget(dir->i_sb, key, &iget_data, scb, cbi, dvnode); 821 if (!IS_ERR(ti)) 822 afs_cache_permit(AFS_FS_I(ti), key, 823 0 /* Assume vnode->cb_break is 0 */ + 824 iget_data.cb_v_break, 825 scb); 826 if (i == 0) { 827 inode = ti; 828 } else { 829 if (!IS_ERR(ti)) 830 iput(ti); 831 } 832 } 833 834 out_c: 835 afs_put_cb_interest(afs_v2net(dvnode), cbi); 836 if (cookie->inodes) { 837 for (i = 0; i < cookie->nr_fids; i++) 838 iput(cookie->inodes[i]); 839 kfree(cookie->inodes); 840 } 841 out_s: 842 kvfree(cookie->statuses); 843 out: 844 kfree(cookie); 845 return inode; 846 } 847 848 /* 849 * Look up an entry in a directory with @sys substitution. 850 */ 851 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry, 852 struct key *key) 853 { 854 struct afs_sysnames *subs; 855 struct afs_net *net = afs_i2net(dir); 856 struct dentry *ret; 857 char *buf, *p, *name; 858 int len, i; 859 860 _enter(""); 861 862 ret = ERR_PTR(-ENOMEM); 863 p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL); 864 if (!buf) 865 goto out_p; 866 if (dentry->d_name.len > 4) { 867 memcpy(p, dentry->d_name.name, dentry->d_name.len - 4); 868 p += dentry->d_name.len - 4; 869 } 870 871 /* There is an ordered list of substitutes that we have to try. */ 872 read_lock(&net->sysnames_lock); 873 subs = net->sysnames; 874 refcount_inc(&subs->usage); 875 read_unlock(&net->sysnames_lock); 876 877 for (i = 0; i < subs->nr; i++) { 878 name = subs->subs[i]; 879 len = dentry->d_name.len - 4 + strlen(name); 880 if (len >= AFSNAMEMAX) { 881 ret = ERR_PTR(-ENAMETOOLONG); 882 goto out_s; 883 } 884 885 strcpy(p, name); 886 ret = lookup_one_len(buf, dentry->d_parent, len); 887 if (IS_ERR(ret) || d_is_positive(ret)) 888 goto out_s; 889 dput(ret); 890 } 891 892 /* We don't want to d_add() the @sys dentry here as we don't want to 893 * the cached dentry to hide changes to the sysnames list. 894 */ 895 ret = NULL; 896 out_s: 897 afs_put_sysnames(subs); 898 kfree(buf); 899 out_p: 900 key_put(key); 901 return ret; 902 } 903 904 /* 905 * look up an entry in a directory 906 */ 907 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry, 908 unsigned int flags) 909 { 910 struct afs_vnode *dvnode = AFS_FS_I(dir); 911 struct inode *inode; 912 struct dentry *d; 913 struct key *key; 914 int ret; 915 916 _enter("{%llx:%llu},%p{%pd},", 917 dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry); 918 919 ASSERTCMP(d_inode(dentry), ==, NULL); 920 921 if (dentry->d_name.len >= AFSNAMEMAX) { 922 _leave(" = -ENAMETOOLONG"); 923 return ERR_PTR(-ENAMETOOLONG); 924 } 925 926 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) { 927 _leave(" = -ESTALE"); 928 return ERR_PTR(-ESTALE); 929 } 930 931 key = afs_request_key(dvnode->volume->cell); 932 if (IS_ERR(key)) { 933 _leave(" = %ld [key]", PTR_ERR(key)); 934 return ERR_CAST(key); 935 } 936 937 ret = afs_validate(dvnode, key); 938 if (ret < 0) { 939 key_put(key); 940 _leave(" = %d [val]", ret); 941 return ERR_PTR(ret); 942 } 943 944 if (dentry->d_name.len >= 4 && 945 dentry->d_name.name[dentry->d_name.len - 4] == '@' && 946 dentry->d_name.name[dentry->d_name.len - 3] == 's' && 947 dentry->d_name.name[dentry->d_name.len - 2] == 'y' && 948 dentry->d_name.name[dentry->d_name.len - 1] == 's') 949 return afs_lookup_atsys(dir, dentry, key); 950 951 afs_stat_v(dvnode, n_lookup); 952 inode = afs_do_lookup(dir, dentry, key); 953 key_put(key); 954 if (inode == ERR_PTR(-ENOENT)) { 955 inode = afs_try_auto_mntpt(dentry, dir); 956 } else { 957 dentry->d_fsdata = 958 (void *)(unsigned long)dvnode->status.data_version; 959 } 960 d = d_splice_alias(inode, dentry); 961 if (!IS_ERR_OR_NULL(d)) { 962 d->d_fsdata = dentry->d_fsdata; 963 trace_afs_lookup(dvnode, &d->d_name, 964 inode ? AFS_FS_I(inode) : NULL); 965 } else { 966 trace_afs_lookup(dvnode, &dentry->d_name, 967 IS_ERR_OR_NULL(inode) ? NULL 968 : AFS_FS_I(inode)); 969 } 970 return d; 971 } 972 973 /* 974 * Check the validity of a dentry under RCU conditions. 975 */ 976 static int afs_d_revalidate_rcu(struct dentry *dentry) 977 { 978 struct afs_vnode *dvnode, *vnode; 979 struct dentry *parent; 980 struct inode *dir, *inode; 981 long dir_version, de_version; 982 983 _enter("%p", dentry); 984 985 /* Check the parent directory is still valid first. */ 986 parent = READ_ONCE(dentry->d_parent); 987 dir = d_inode_rcu(parent); 988 if (!dir) 989 return -ECHILD; 990 dvnode = AFS_FS_I(dir); 991 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) 992 return -ECHILD; 993 994 if (!afs_check_validity(dvnode)) 995 return -ECHILD; 996 997 /* We only need to invalidate a dentry if the server's copy changed 998 * behind our back. If we made the change, it's no problem. Note that 999 * on a 32-bit system, we only have 32 bits in the dentry to store the 1000 * version. 1001 */ 1002 dir_version = (long)READ_ONCE(dvnode->status.data_version); 1003 de_version = (long)READ_ONCE(dentry->d_fsdata); 1004 if (de_version != dir_version) { 1005 dir_version = (long)READ_ONCE(dvnode->invalid_before); 1006 if (de_version - dir_version < 0) 1007 return -ECHILD; 1008 } 1009 1010 /* Check to see if the vnode referred to by the dentry still 1011 * has a callback. 1012 */ 1013 if (d_really_is_positive(dentry)) { 1014 inode = d_inode_rcu(dentry); 1015 if (inode) { 1016 vnode = AFS_FS_I(inode); 1017 if (!afs_check_validity(vnode)) 1018 return -ECHILD; 1019 } 1020 } 1021 1022 return 1; /* Still valid */ 1023 } 1024 1025 /* 1026 * check that a dentry lookup hit has found a valid entry 1027 * - NOTE! the hit can be a negative hit too, so we can't assume we have an 1028 * inode 1029 */ 1030 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags) 1031 { 1032 struct afs_vnode *vnode, *dir; 1033 struct afs_fid uninitialized_var(fid); 1034 struct dentry *parent; 1035 struct inode *inode; 1036 struct key *key; 1037 afs_dataversion_t dir_version; 1038 long de_version; 1039 int ret; 1040 1041 if (flags & LOOKUP_RCU) 1042 return afs_d_revalidate_rcu(dentry); 1043 1044 if (d_really_is_positive(dentry)) { 1045 vnode = AFS_FS_I(d_inode(dentry)); 1046 _enter("{v={%llx:%llu} n=%pd fl=%lx},", 1047 vnode->fid.vid, vnode->fid.vnode, dentry, 1048 vnode->flags); 1049 } else { 1050 _enter("{neg n=%pd}", dentry); 1051 } 1052 1053 key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell); 1054 if (IS_ERR(key)) 1055 key = NULL; 1056 1057 if (d_really_is_positive(dentry)) { 1058 inode = d_inode(dentry); 1059 if (inode) { 1060 vnode = AFS_FS_I(inode); 1061 afs_validate(vnode, key); 1062 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 1063 goto out_bad; 1064 } 1065 } 1066 1067 /* lock down the parent dentry so we can peer at it */ 1068 parent = dget_parent(dentry); 1069 dir = AFS_FS_I(d_inode(parent)); 1070 1071 /* validate the parent directory */ 1072 afs_validate(dir, key); 1073 1074 if (test_bit(AFS_VNODE_DELETED, &dir->flags)) { 1075 _debug("%pd: parent dir deleted", dentry); 1076 goto out_bad_parent; 1077 } 1078 1079 /* We only need to invalidate a dentry if the server's copy changed 1080 * behind our back. If we made the change, it's no problem. Note that 1081 * on a 32-bit system, we only have 32 bits in the dentry to store the 1082 * version. 1083 */ 1084 dir_version = dir->status.data_version; 1085 de_version = (long)dentry->d_fsdata; 1086 if (de_version == (long)dir_version) 1087 goto out_valid_noupdate; 1088 1089 dir_version = dir->invalid_before; 1090 if (de_version - (long)dir_version >= 0) 1091 goto out_valid; 1092 1093 _debug("dir modified"); 1094 afs_stat_v(dir, n_reval); 1095 1096 /* search the directory for this vnode */ 1097 ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version); 1098 switch (ret) { 1099 case 0: 1100 /* the filename maps to something */ 1101 if (d_really_is_negative(dentry)) 1102 goto out_bad_parent; 1103 inode = d_inode(dentry); 1104 if (is_bad_inode(inode)) { 1105 printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n", 1106 dentry); 1107 goto out_bad_parent; 1108 } 1109 1110 vnode = AFS_FS_I(inode); 1111 1112 /* if the vnode ID has changed, then the dirent points to a 1113 * different file */ 1114 if (fid.vnode != vnode->fid.vnode) { 1115 _debug("%pd: dirent changed [%llu != %llu]", 1116 dentry, fid.vnode, 1117 vnode->fid.vnode); 1118 goto not_found; 1119 } 1120 1121 /* if the vnode ID uniqifier has changed, then the file has 1122 * been deleted and replaced, and the original vnode ID has 1123 * been reused */ 1124 if (fid.unique != vnode->fid.unique) { 1125 _debug("%pd: file deleted (uq %u -> %u I:%u)", 1126 dentry, fid.unique, 1127 vnode->fid.unique, 1128 vnode->vfs_inode.i_generation); 1129 write_seqlock(&vnode->cb_lock); 1130 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1131 write_sequnlock(&vnode->cb_lock); 1132 goto not_found; 1133 } 1134 goto out_valid; 1135 1136 case -ENOENT: 1137 /* the filename is unknown */ 1138 _debug("%pd: dirent not found", dentry); 1139 if (d_really_is_positive(dentry)) 1140 goto not_found; 1141 goto out_valid; 1142 1143 default: 1144 _debug("failed to iterate dir %pd: %d", 1145 parent, ret); 1146 goto out_bad_parent; 1147 } 1148 1149 out_valid: 1150 dentry->d_fsdata = (void *)(unsigned long)dir_version; 1151 out_valid_noupdate: 1152 dput(parent); 1153 key_put(key); 1154 _leave(" = 1 [valid]"); 1155 return 1; 1156 1157 /* the dirent, if it exists, now points to a different vnode */ 1158 not_found: 1159 spin_lock(&dentry->d_lock); 1160 dentry->d_flags |= DCACHE_NFSFS_RENAMED; 1161 spin_unlock(&dentry->d_lock); 1162 1163 out_bad_parent: 1164 _debug("dropping dentry %pd2", dentry); 1165 dput(parent); 1166 out_bad: 1167 key_put(key); 1168 1169 _leave(" = 0 [bad]"); 1170 return 0; 1171 } 1172 1173 /* 1174 * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't 1175 * sleep) 1176 * - called from dput() when d_count is going to 0. 1177 * - return 1 to request dentry be unhashed, 0 otherwise 1178 */ 1179 static int afs_d_delete(const struct dentry *dentry) 1180 { 1181 _enter("%pd", dentry); 1182 1183 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1184 goto zap; 1185 1186 if (d_really_is_positive(dentry) && 1187 (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) || 1188 test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags))) 1189 goto zap; 1190 1191 _leave(" = 0 [keep]"); 1192 return 0; 1193 1194 zap: 1195 _leave(" = 1 [zap]"); 1196 return 1; 1197 } 1198 1199 /* 1200 * Clean up sillyrename files on dentry removal. 1201 */ 1202 static void afs_d_iput(struct dentry *dentry, struct inode *inode) 1203 { 1204 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1205 afs_silly_iput(dentry, inode); 1206 iput(inode); 1207 } 1208 1209 /* 1210 * handle dentry release 1211 */ 1212 void afs_d_release(struct dentry *dentry) 1213 { 1214 _enter("%pd", dentry); 1215 } 1216 1217 /* 1218 * Create a new inode for create/mkdir/symlink 1219 */ 1220 static void afs_vnode_new_inode(struct afs_fs_cursor *fc, 1221 struct dentry *new_dentry, 1222 struct afs_iget_data *new_data, 1223 struct afs_status_cb *new_scb) 1224 { 1225 struct afs_vnode *vnode; 1226 struct inode *inode; 1227 1228 if (fc->ac.error < 0) 1229 return; 1230 1231 inode = afs_iget(fc->vnode->vfs_inode.i_sb, fc->key, 1232 new_data, new_scb, fc->cbi, fc->vnode); 1233 if (IS_ERR(inode)) { 1234 /* ENOMEM or EINTR at a really inconvenient time - just abandon 1235 * the new directory on the server. 1236 */ 1237 fc->ac.error = PTR_ERR(inode); 1238 return; 1239 } 1240 1241 vnode = AFS_FS_I(inode); 1242 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 1243 if (fc->ac.error == 0) 1244 afs_cache_permit(vnode, fc->key, vnode->cb_break, new_scb); 1245 d_instantiate(new_dentry, inode); 1246 } 1247 1248 static void afs_prep_for_new_inode(struct afs_fs_cursor *fc, 1249 struct afs_iget_data *iget_data) 1250 { 1251 iget_data->volume = fc->vnode->volume; 1252 iget_data->cb_v_break = fc->vnode->volume->cb_v_break; 1253 iget_data->cb_s_break = fc->cbi->server->cb_s_break; 1254 } 1255 1256 /* 1257 * Note that a dentry got changed. We need to set d_fsdata to the data version 1258 * number derived from the result of the operation. It doesn't matter if 1259 * d_fsdata goes backwards as we'll just revalidate. 1260 */ 1261 static void afs_update_dentry_version(struct afs_fs_cursor *fc, 1262 struct dentry *dentry, 1263 struct afs_status_cb *scb) 1264 { 1265 if (fc->ac.error == 0) 1266 dentry->d_fsdata = 1267 (void *)(unsigned long)scb->status.data_version; 1268 } 1269 1270 /* 1271 * create a directory on an AFS filesystem 1272 */ 1273 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1274 { 1275 struct afs_iget_data iget_data; 1276 struct afs_status_cb *scb; 1277 struct afs_fs_cursor fc; 1278 struct afs_vnode *dvnode = AFS_FS_I(dir); 1279 struct key *key; 1280 int ret; 1281 1282 mode |= S_IFDIR; 1283 1284 _enter("{%llx:%llu},{%pd},%ho", 1285 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode); 1286 1287 ret = -ENOMEM; 1288 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL); 1289 if (!scb) 1290 goto error; 1291 1292 key = afs_request_key(dvnode->volume->cell); 1293 if (IS_ERR(key)) { 1294 ret = PTR_ERR(key); 1295 goto error_scb; 1296 } 1297 1298 ret = -ERESTARTSYS; 1299 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 1300 afs_dataversion_t data_version = dvnode->status.data_version + 1; 1301 1302 while (afs_select_fileserver(&fc)) { 1303 fc.cb_break = afs_calc_vnode_cb_break(dvnode); 1304 afs_prep_for_new_inode(&fc, &iget_data); 1305 afs_fs_create(&fc, dentry->d_name.name, mode, 1306 &scb[0], &iget_data.fid, &scb[1]); 1307 } 1308 1309 afs_check_for_remote_deletion(&fc, dvnode); 1310 afs_vnode_commit_status(&fc, dvnode, fc.cb_break, 1311 &data_version, &scb[0]); 1312 afs_update_dentry_version(&fc, dentry, &scb[0]); 1313 afs_vnode_new_inode(&fc, dentry, &iget_data, &scb[1]); 1314 ret = afs_end_vnode_operation(&fc); 1315 if (ret < 0) 1316 goto error_key; 1317 } else { 1318 goto error_key; 1319 } 1320 1321 if (ret == 0 && 1322 test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1323 afs_edit_dir_add(dvnode, &dentry->d_name, &iget_data.fid, 1324 afs_edit_dir_for_create); 1325 1326 key_put(key); 1327 kfree(scb); 1328 _leave(" = 0"); 1329 return 0; 1330 1331 error_key: 1332 key_put(key); 1333 error_scb: 1334 kfree(scb); 1335 error: 1336 d_drop(dentry); 1337 _leave(" = %d", ret); 1338 return ret; 1339 } 1340 1341 /* 1342 * Remove a subdir from a directory. 1343 */ 1344 static void afs_dir_remove_subdir(struct dentry *dentry) 1345 { 1346 if (d_really_is_positive(dentry)) { 1347 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1348 1349 clear_nlink(&vnode->vfs_inode); 1350 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1351 clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags); 1352 clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags); 1353 } 1354 } 1355 1356 /* 1357 * remove a directory from an AFS filesystem 1358 */ 1359 static int afs_rmdir(struct inode *dir, struct dentry *dentry) 1360 { 1361 struct afs_status_cb *scb; 1362 struct afs_fs_cursor fc; 1363 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL; 1364 struct key *key; 1365 int ret; 1366 1367 _enter("{%llx:%llu},{%pd}", 1368 dvnode->fid.vid, dvnode->fid.vnode, dentry); 1369 1370 scb = kzalloc(sizeof(struct afs_status_cb), GFP_KERNEL); 1371 if (!scb) 1372 return -ENOMEM; 1373 1374 key = afs_request_key(dvnode->volume->cell); 1375 if (IS_ERR(key)) { 1376 ret = PTR_ERR(key); 1377 goto error; 1378 } 1379 1380 /* Try to make sure we have a callback promise on the victim. */ 1381 if (d_really_is_positive(dentry)) { 1382 vnode = AFS_FS_I(d_inode(dentry)); 1383 ret = afs_validate(vnode, key); 1384 if (ret < 0) 1385 goto error_key; 1386 } 1387 1388 if (vnode) { 1389 ret = down_write_killable(&vnode->rmdir_lock); 1390 if (ret < 0) 1391 goto error_key; 1392 } 1393 1394 ret = -ERESTARTSYS; 1395 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 1396 afs_dataversion_t data_version = dvnode->status.data_version + 1; 1397 1398 while (afs_select_fileserver(&fc)) { 1399 fc.cb_break = afs_calc_vnode_cb_break(dvnode); 1400 afs_fs_remove(&fc, vnode, dentry->d_name.name, true, scb); 1401 } 1402 1403 afs_vnode_commit_status(&fc, dvnode, fc.cb_break, 1404 &data_version, scb); 1405 afs_update_dentry_version(&fc, dentry, scb); 1406 ret = afs_end_vnode_operation(&fc); 1407 if (ret == 0) { 1408 afs_dir_remove_subdir(dentry); 1409 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1410 afs_edit_dir_remove(dvnode, &dentry->d_name, 1411 afs_edit_dir_for_rmdir); 1412 } 1413 } 1414 1415 if (vnode) 1416 up_write(&vnode->rmdir_lock); 1417 error_key: 1418 key_put(key); 1419 error: 1420 kfree(scb); 1421 return ret; 1422 } 1423 1424 /* 1425 * Remove a link to a file or symlink from a directory. 1426 * 1427 * If the file was not deleted due to excess hard links, the fileserver will 1428 * break the callback promise on the file - if it had one - before it returns 1429 * to us, and if it was deleted, it won't 1430 * 1431 * However, if we didn't have a callback promise outstanding, or it was 1432 * outstanding on a different server, then it won't break it either... 1433 */ 1434 static int afs_dir_remove_link(struct afs_vnode *dvnode, struct dentry *dentry, 1435 struct key *key) 1436 { 1437 int ret = 0; 1438 1439 if (d_really_is_positive(dentry)) { 1440 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1441 1442 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) { 1443 /* Already done */ 1444 } else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { 1445 write_seqlock(&vnode->cb_lock); 1446 drop_nlink(&vnode->vfs_inode); 1447 if (vnode->vfs_inode.i_nlink == 0) { 1448 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1449 __afs_break_callback(vnode, afs_cb_break_for_unlink); 1450 } 1451 write_sequnlock(&vnode->cb_lock); 1452 ret = 0; 1453 } else { 1454 afs_break_callback(vnode, afs_cb_break_for_unlink); 1455 1456 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 1457 kdebug("AFS_VNODE_DELETED"); 1458 1459 ret = afs_validate(vnode, key); 1460 if (ret == -ESTALE) 1461 ret = 0; 1462 } 1463 _debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, ret); 1464 } 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * Remove a file or symlink from an AFS filesystem. 1471 */ 1472 static int afs_unlink(struct inode *dir, struct dentry *dentry) 1473 { 1474 struct afs_fs_cursor fc; 1475 struct afs_status_cb *scb; 1476 struct afs_vnode *dvnode = AFS_FS_I(dir); 1477 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1478 struct key *key; 1479 bool need_rehash = false; 1480 int ret; 1481 1482 _enter("{%llx:%llu},{%pd}", 1483 dvnode->fid.vid, dvnode->fid.vnode, dentry); 1484 1485 if (dentry->d_name.len >= AFSNAMEMAX) 1486 return -ENAMETOOLONG; 1487 1488 ret = -ENOMEM; 1489 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL); 1490 if (!scb) 1491 goto error; 1492 1493 key = afs_request_key(dvnode->volume->cell); 1494 if (IS_ERR(key)) { 1495 ret = PTR_ERR(key); 1496 goto error_scb; 1497 } 1498 1499 /* Try to make sure we have a callback promise on the victim. */ 1500 ret = afs_validate(vnode, key); 1501 if (ret < 0) 1502 goto error_key; 1503 1504 spin_lock(&dentry->d_lock); 1505 if (d_count(dentry) > 1) { 1506 spin_unlock(&dentry->d_lock); 1507 /* Start asynchronous writeout of the inode */ 1508 write_inode_now(d_inode(dentry), 0); 1509 ret = afs_sillyrename(dvnode, vnode, dentry, key); 1510 goto error_key; 1511 } 1512 if (!d_unhashed(dentry)) { 1513 /* Prevent a race with RCU lookup. */ 1514 __d_drop(dentry); 1515 need_rehash = true; 1516 } 1517 spin_unlock(&dentry->d_lock); 1518 1519 ret = -ERESTARTSYS; 1520 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 1521 afs_dataversion_t data_version = dvnode->status.data_version + 1; 1522 afs_dataversion_t data_version_2 = vnode->status.data_version; 1523 1524 while (afs_select_fileserver(&fc)) { 1525 fc.cb_break = afs_calc_vnode_cb_break(dvnode); 1526 fc.cb_break_2 = afs_calc_vnode_cb_break(vnode); 1527 1528 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc.cbi->server->flags) && 1529 !test_bit(AFS_SERVER_FL_NO_RM2, &fc.cbi->server->flags)) { 1530 yfs_fs_remove_file2(&fc, vnode, dentry->d_name.name, 1531 &scb[0], &scb[1]); 1532 if (fc.ac.error != -ECONNABORTED || 1533 fc.ac.abort_code != RXGEN_OPCODE) 1534 continue; 1535 set_bit(AFS_SERVER_FL_NO_RM2, &fc.cbi->server->flags); 1536 } 1537 1538 afs_fs_remove(&fc, vnode, dentry->d_name.name, false, &scb[0]); 1539 } 1540 1541 afs_vnode_commit_status(&fc, dvnode, fc.cb_break, 1542 &data_version, &scb[0]); 1543 afs_vnode_commit_status(&fc, vnode, fc.cb_break_2, 1544 &data_version_2, &scb[1]); 1545 afs_update_dentry_version(&fc, dentry, &scb[0]); 1546 ret = afs_end_vnode_operation(&fc); 1547 if (ret == 0 && !(scb[1].have_status || scb[1].have_error)) 1548 ret = afs_dir_remove_link(dvnode, dentry, key); 1549 if (ret == 0 && 1550 test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1551 afs_edit_dir_remove(dvnode, &dentry->d_name, 1552 afs_edit_dir_for_unlink); 1553 } 1554 1555 if (need_rehash && ret < 0 && ret != -ENOENT) 1556 d_rehash(dentry); 1557 1558 error_key: 1559 key_put(key); 1560 error_scb: 1561 kfree(scb); 1562 error: 1563 _leave(" = %d", ret); 1564 return ret; 1565 } 1566 1567 /* 1568 * create a regular file on an AFS filesystem 1569 */ 1570 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1571 bool excl) 1572 { 1573 struct afs_iget_data iget_data; 1574 struct afs_fs_cursor fc; 1575 struct afs_status_cb *scb; 1576 struct afs_vnode *dvnode = AFS_FS_I(dir); 1577 struct key *key; 1578 int ret; 1579 1580 mode |= S_IFREG; 1581 1582 _enter("{%llx:%llu},{%pd},%ho,", 1583 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode); 1584 1585 ret = -ENAMETOOLONG; 1586 if (dentry->d_name.len >= AFSNAMEMAX) 1587 goto error; 1588 1589 key = afs_request_key(dvnode->volume->cell); 1590 if (IS_ERR(key)) { 1591 ret = PTR_ERR(key); 1592 goto error; 1593 } 1594 1595 ret = -ENOMEM; 1596 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL); 1597 if (!scb) 1598 goto error_scb; 1599 1600 ret = -ERESTARTSYS; 1601 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 1602 afs_dataversion_t data_version = dvnode->status.data_version + 1; 1603 1604 while (afs_select_fileserver(&fc)) { 1605 fc.cb_break = afs_calc_vnode_cb_break(dvnode); 1606 afs_prep_for_new_inode(&fc, &iget_data); 1607 afs_fs_create(&fc, dentry->d_name.name, mode, 1608 &scb[0], &iget_data.fid, &scb[1]); 1609 } 1610 1611 afs_check_for_remote_deletion(&fc, dvnode); 1612 afs_vnode_commit_status(&fc, dvnode, fc.cb_break, 1613 &data_version, &scb[0]); 1614 afs_update_dentry_version(&fc, dentry, &scb[0]); 1615 afs_vnode_new_inode(&fc, dentry, &iget_data, &scb[1]); 1616 ret = afs_end_vnode_operation(&fc); 1617 if (ret < 0) 1618 goto error_key; 1619 } else { 1620 goto error_key; 1621 } 1622 1623 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1624 afs_edit_dir_add(dvnode, &dentry->d_name, &iget_data.fid, 1625 afs_edit_dir_for_create); 1626 1627 kfree(scb); 1628 key_put(key); 1629 _leave(" = 0"); 1630 return 0; 1631 1632 error_scb: 1633 kfree(scb); 1634 error_key: 1635 key_put(key); 1636 error: 1637 d_drop(dentry); 1638 _leave(" = %d", ret); 1639 return ret; 1640 } 1641 1642 /* 1643 * create a hard link between files in an AFS filesystem 1644 */ 1645 static int afs_link(struct dentry *from, struct inode *dir, 1646 struct dentry *dentry) 1647 { 1648 struct afs_fs_cursor fc; 1649 struct afs_status_cb *scb; 1650 struct afs_vnode *dvnode = AFS_FS_I(dir); 1651 struct afs_vnode *vnode = AFS_FS_I(d_inode(from)); 1652 struct key *key; 1653 int ret; 1654 1655 _enter("{%llx:%llu},{%llx:%llu},{%pd}", 1656 vnode->fid.vid, vnode->fid.vnode, 1657 dvnode->fid.vid, dvnode->fid.vnode, 1658 dentry); 1659 1660 ret = -ENAMETOOLONG; 1661 if (dentry->d_name.len >= AFSNAMEMAX) 1662 goto error; 1663 1664 ret = -ENOMEM; 1665 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL); 1666 if (!scb) 1667 goto error; 1668 1669 key = afs_request_key(dvnode->volume->cell); 1670 if (IS_ERR(key)) { 1671 ret = PTR_ERR(key); 1672 goto error_scb; 1673 } 1674 1675 ret = -ERESTARTSYS; 1676 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 1677 afs_dataversion_t data_version = dvnode->status.data_version + 1; 1678 1679 if (mutex_lock_interruptible_nested(&vnode->io_lock, 1) < 0) { 1680 afs_end_vnode_operation(&fc); 1681 goto error_key; 1682 } 1683 1684 while (afs_select_fileserver(&fc)) { 1685 fc.cb_break = afs_calc_vnode_cb_break(dvnode); 1686 fc.cb_break_2 = afs_calc_vnode_cb_break(vnode); 1687 afs_fs_link(&fc, vnode, dentry->d_name.name, 1688 &scb[0], &scb[1]); 1689 } 1690 1691 afs_vnode_commit_status(&fc, dvnode, fc.cb_break, 1692 &data_version, &scb[0]); 1693 afs_vnode_commit_status(&fc, vnode, fc.cb_break_2, 1694 NULL, &scb[1]); 1695 ihold(&vnode->vfs_inode); 1696 afs_update_dentry_version(&fc, dentry, &scb[0]); 1697 d_instantiate(dentry, &vnode->vfs_inode); 1698 1699 mutex_unlock(&vnode->io_lock); 1700 ret = afs_end_vnode_operation(&fc); 1701 if (ret < 0) 1702 goto error_key; 1703 } else { 1704 goto error_key; 1705 } 1706 1707 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1708 afs_edit_dir_add(dvnode, &dentry->d_name, &vnode->fid, 1709 afs_edit_dir_for_link); 1710 1711 key_put(key); 1712 kfree(scb); 1713 _leave(" = 0"); 1714 return 0; 1715 1716 error_key: 1717 key_put(key); 1718 error_scb: 1719 kfree(scb); 1720 error: 1721 d_drop(dentry); 1722 _leave(" = %d", ret); 1723 return ret; 1724 } 1725 1726 /* 1727 * create a symlink in an AFS filesystem 1728 */ 1729 static int afs_symlink(struct inode *dir, struct dentry *dentry, 1730 const char *content) 1731 { 1732 struct afs_iget_data iget_data; 1733 struct afs_fs_cursor fc; 1734 struct afs_status_cb *scb; 1735 struct afs_vnode *dvnode = AFS_FS_I(dir); 1736 struct key *key; 1737 int ret; 1738 1739 _enter("{%llx:%llu},{%pd},%s", 1740 dvnode->fid.vid, dvnode->fid.vnode, dentry, 1741 content); 1742 1743 ret = -ENAMETOOLONG; 1744 if (dentry->d_name.len >= AFSNAMEMAX) 1745 goto error; 1746 1747 ret = -EINVAL; 1748 if (strlen(content) >= AFSPATHMAX) 1749 goto error; 1750 1751 ret = -ENOMEM; 1752 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL); 1753 if (!scb) 1754 goto error; 1755 1756 key = afs_request_key(dvnode->volume->cell); 1757 if (IS_ERR(key)) { 1758 ret = PTR_ERR(key); 1759 goto error_scb; 1760 } 1761 1762 ret = -ERESTARTSYS; 1763 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) { 1764 afs_dataversion_t data_version = dvnode->status.data_version + 1; 1765 1766 while (afs_select_fileserver(&fc)) { 1767 fc.cb_break = afs_calc_vnode_cb_break(dvnode); 1768 afs_prep_for_new_inode(&fc, &iget_data); 1769 afs_fs_symlink(&fc, dentry->d_name.name, content, 1770 &scb[0], &iget_data.fid, &scb[1]); 1771 } 1772 1773 afs_check_for_remote_deletion(&fc, dvnode); 1774 afs_vnode_commit_status(&fc, dvnode, fc.cb_break, 1775 &data_version, &scb[0]); 1776 afs_update_dentry_version(&fc, dentry, &scb[0]); 1777 afs_vnode_new_inode(&fc, dentry, &iget_data, &scb[1]); 1778 ret = afs_end_vnode_operation(&fc); 1779 if (ret < 0) 1780 goto error_key; 1781 } else { 1782 goto error_key; 1783 } 1784 1785 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1786 afs_edit_dir_add(dvnode, &dentry->d_name, &iget_data.fid, 1787 afs_edit_dir_for_symlink); 1788 1789 key_put(key); 1790 kfree(scb); 1791 _leave(" = 0"); 1792 return 0; 1793 1794 error_key: 1795 key_put(key); 1796 error_scb: 1797 kfree(scb); 1798 error: 1799 d_drop(dentry); 1800 _leave(" = %d", ret); 1801 return ret; 1802 } 1803 1804 /* 1805 * rename a file in an AFS filesystem and/or move it between directories 1806 */ 1807 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry, 1808 struct inode *new_dir, struct dentry *new_dentry, 1809 unsigned int flags) 1810 { 1811 struct afs_fs_cursor fc; 1812 struct afs_status_cb *scb; 1813 struct afs_vnode *orig_dvnode, *new_dvnode, *vnode; 1814 struct dentry *tmp = NULL, *rehash = NULL; 1815 struct inode *new_inode; 1816 struct key *key; 1817 bool new_negative = d_is_negative(new_dentry); 1818 int ret; 1819 1820 if (flags) 1821 return -EINVAL; 1822 1823 /* Don't allow silly-rename files be moved around. */ 1824 if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED) 1825 return -EINVAL; 1826 1827 vnode = AFS_FS_I(d_inode(old_dentry)); 1828 orig_dvnode = AFS_FS_I(old_dir); 1829 new_dvnode = AFS_FS_I(new_dir); 1830 1831 _enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}", 1832 orig_dvnode->fid.vid, orig_dvnode->fid.vnode, 1833 vnode->fid.vid, vnode->fid.vnode, 1834 new_dvnode->fid.vid, new_dvnode->fid.vnode, 1835 new_dentry); 1836 1837 ret = -ENOMEM; 1838 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL); 1839 if (!scb) 1840 goto error; 1841 1842 key = afs_request_key(orig_dvnode->volume->cell); 1843 if (IS_ERR(key)) { 1844 ret = PTR_ERR(key); 1845 goto error_scb; 1846 } 1847 1848 /* For non-directories, check whether the target is busy and if so, 1849 * make a copy of the dentry and then do a silly-rename. If the 1850 * silly-rename succeeds, the copied dentry is hashed and becomes the 1851 * new target. 1852 */ 1853 if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) { 1854 /* To prevent any new references to the target during the 1855 * rename, we unhash the dentry in advance. 1856 */ 1857 if (!d_unhashed(new_dentry)) { 1858 d_drop(new_dentry); 1859 rehash = new_dentry; 1860 } 1861 1862 if (d_count(new_dentry) > 2) { 1863 /* copy the target dentry's name */ 1864 ret = -ENOMEM; 1865 tmp = d_alloc(new_dentry->d_parent, 1866 &new_dentry->d_name); 1867 if (!tmp) 1868 goto error_rehash; 1869 1870 ret = afs_sillyrename(new_dvnode, 1871 AFS_FS_I(d_inode(new_dentry)), 1872 new_dentry, key); 1873 if (ret) 1874 goto error_rehash; 1875 1876 new_dentry = tmp; 1877 rehash = NULL; 1878 new_negative = true; 1879 } 1880 } 1881 1882 /* This bit is potentially nasty as there's a potential race with 1883 * afs_d_revalidate{,_rcu}(). We have to change d_fsdata on the dentry 1884 * to reflect it's new parent's new data_version after the op, but 1885 * d_revalidate may see old_dentry between the op having taken place 1886 * and the version being updated. 1887 * 1888 * So drop the old_dentry for now to make other threads go through 1889 * lookup instead - which we hold a lock against. 1890 */ 1891 d_drop(old_dentry); 1892 1893 ret = -ERESTARTSYS; 1894 if (afs_begin_vnode_operation(&fc, orig_dvnode, key, true)) { 1895 afs_dataversion_t orig_data_version; 1896 afs_dataversion_t new_data_version; 1897 struct afs_status_cb *new_scb = &scb[1]; 1898 1899 orig_data_version = orig_dvnode->status.data_version + 1; 1900 1901 if (orig_dvnode != new_dvnode) { 1902 if (mutex_lock_interruptible_nested(&new_dvnode->io_lock, 1) < 0) { 1903 afs_end_vnode_operation(&fc); 1904 goto error_rehash_old; 1905 } 1906 new_data_version = new_dvnode->status.data_version + 1; 1907 } else { 1908 new_data_version = orig_data_version; 1909 new_scb = &scb[0]; 1910 } 1911 1912 while (afs_select_fileserver(&fc)) { 1913 fc.cb_break = afs_calc_vnode_cb_break(orig_dvnode); 1914 fc.cb_break_2 = afs_calc_vnode_cb_break(new_dvnode); 1915 afs_fs_rename(&fc, old_dentry->d_name.name, 1916 new_dvnode, new_dentry->d_name.name, 1917 &scb[0], new_scb); 1918 } 1919 1920 afs_vnode_commit_status(&fc, orig_dvnode, fc.cb_break, 1921 &orig_data_version, &scb[0]); 1922 if (new_dvnode != orig_dvnode) { 1923 afs_vnode_commit_status(&fc, new_dvnode, fc.cb_break_2, 1924 &new_data_version, &scb[1]); 1925 mutex_unlock(&new_dvnode->io_lock); 1926 } 1927 ret = afs_end_vnode_operation(&fc); 1928 if (ret < 0) 1929 goto error_rehash_old; 1930 } 1931 1932 if (ret == 0) { 1933 if (rehash) 1934 d_rehash(rehash); 1935 if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags)) 1936 afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name, 1937 afs_edit_dir_for_rename_0); 1938 1939 if (!new_negative && 1940 test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags)) 1941 afs_edit_dir_remove(new_dvnode, &new_dentry->d_name, 1942 afs_edit_dir_for_rename_1); 1943 1944 if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags)) 1945 afs_edit_dir_add(new_dvnode, &new_dentry->d_name, 1946 &vnode->fid, afs_edit_dir_for_rename_2); 1947 1948 new_inode = d_inode(new_dentry); 1949 if (new_inode) { 1950 spin_lock(&new_inode->i_lock); 1951 if (new_inode->i_nlink > 0) 1952 drop_nlink(new_inode); 1953 spin_unlock(&new_inode->i_lock); 1954 } 1955 1956 /* Now we can update d_fsdata on the dentries to reflect their 1957 * new parent's data_version. 1958 * 1959 * Note that if we ever implement RENAME_EXCHANGE, we'll have 1960 * to update both dentries with opposing dir versions. 1961 */ 1962 if (new_dvnode != orig_dvnode) { 1963 afs_update_dentry_version(&fc, old_dentry, &scb[1]); 1964 afs_update_dentry_version(&fc, new_dentry, &scb[1]); 1965 } else { 1966 afs_update_dentry_version(&fc, old_dentry, &scb[0]); 1967 afs_update_dentry_version(&fc, new_dentry, &scb[0]); 1968 } 1969 d_move(old_dentry, new_dentry); 1970 goto error_tmp; 1971 } 1972 1973 error_rehash_old: 1974 d_rehash(new_dentry); 1975 error_rehash: 1976 if (rehash) 1977 d_rehash(rehash); 1978 error_tmp: 1979 if (tmp) 1980 dput(tmp); 1981 key_put(key); 1982 error_scb: 1983 kfree(scb); 1984 error: 1985 _leave(" = %d", ret); 1986 return ret; 1987 } 1988 1989 /* 1990 * Release a directory page and clean up its private state if it's not busy 1991 * - return true if the page can now be released, false if not 1992 */ 1993 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags) 1994 { 1995 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host); 1996 1997 _enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index); 1998 1999 set_page_private(page, 0); 2000 ClearPagePrivate(page); 2001 2002 /* The directory will need reloading. */ 2003 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 2004 afs_stat_v(dvnode, n_relpg); 2005 return 1; 2006 } 2007 2008 /* 2009 * invalidate part or all of a page 2010 * - release a page and clean up its private data if offset is 0 (indicating 2011 * the entire page) 2012 */ 2013 static void afs_dir_invalidatepage(struct page *page, unsigned int offset, 2014 unsigned int length) 2015 { 2016 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host); 2017 2018 _enter("{%lu},%u,%u", page->index, offset, length); 2019 2020 BUG_ON(!PageLocked(page)); 2021 2022 /* The directory will need reloading. */ 2023 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 2024 afs_stat_v(dvnode, n_inval); 2025 2026 /* we clean up only if the entire page is being invalidated */ 2027 if (offset == 0 && length == PAGE_SIZE) { 2028 set_page_private(page, 0); 2029 ClearPagePrivate(page); 2030 } 2031 } 2032