xref: /openbmc/linux/fs/afs/dir.c (revision 64195f02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
3  *
4  * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include "internal.h"
17 #include "afs_fs.h"
18 #include "xdr_fs.h"
19 
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
21 				 unsigned int flags);
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 				  loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 			      loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
32 		      bool excl);
33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
34 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
35 static int afs_unlink(struct inode *dir, struct dentry *dentry);
36 static int afs_link(struct dentry *from, struct inode *dir,
37 		    struct dentry *dentry);
38 static int afs_symlink(struct inode *dir, struct dentry *dentry,
39 		       const char *content);
40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
41 		      struct inode *new_dir, struct dentry *new_dentry,
42 		      unsigned int flags);
43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
45 				   unsigned int length);
46 
47 static int afs_dir_set_page_dirty(struct page *page)
48 {
49 	BUG(); /* This should never happen. */
50 }
51 
52 const struct file_operations afs_dir_file_operations = {
53 	.open		= afs_dir_open,
54 	.release	= afs_release,
55 	.iterate_shared	= afs_readdir,
56 	.lock		= afs_lock,
57 	.llseek		= generic_file_llseek,
58 };
59 
60 const struct inode_operations afs_dir_inode_operations = {
61 	.create		= afs_create,
62 	.lookup		= afs_lookup,
63 	.link		= afs_link,
64 	.unlink		= afs_unlink,
65 	.symlink	= afs_symlink,
66 	.mkdir		= afs_mkdir,
67 	.rmdir		= afs_rmdir,
68 	.rename		= afs_rename,
69 	.permission	= afs_permission,
70 	.getattr	= afs_getattr,
71 	.setattr	= afs_setattr,
72 };
73 
74 const struct address_space_operations afs_dir_aops = {
75 	.set_page_dirty	= afs_dir_set_page_dirty,
76 	.releasepage	= afs_dir_releasepage,
77 	.invalidatepage	= afs_dir_invalidatepage,
78 };
79 
80 const struct dentry_operations afs_fs_dentry_operations = {
81 	.d_revalidate	= afs_d_revalidate,
82 	.d_delete	= afs_d_delete,
83 	.d_release	= afs_d_release,
84 	.d_automount	= afs_d_automount,
85 	.d_iput		= afs_d_iput,
86 };
87 
88 struct afs_lookup_one_cookie {
89 	struct dir_context	ctx;
90 	struct qstr		name;
91 	bool			found;
92 	struct afs_fid		fid;
93 };
94 
95 struct afs_lookup_cookie {
96 	struct dir_context	ctx;
97 	struct qstr		name;
98 	bool			found;
99 	bool			one_only;
100 	unsigned short		nr_fids;
101 	struct afs_fid		fids[50];
102 };
103 
104 /*
105  * check that a directory page is valid
106  */
107 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
108 			       loff_t i_size)
109 {
110 	struct afs_xdr_dir_page *dbuf;
111 	loff_t latter, off;
112 	int tmp, qty;
113 
114 	/* Determine how many magic numbers there should be in this page, but
115 	 * we must take care because the directory may change size under us.
116 	 */
117 	off = page_offset(page);
118 	if (i_size <= off)
119 		goto checked;
120 
121 	latter = i_size - off;
122 	if (latter >= PAGE_SIZE)
123 		qty = PAGE_SIZE;
124 	else
125 		qty = latter;
126 	qty /= sizeof(union afs_xdr_dir_block);
127 
128 	/* check them */
129 	dbuf = kmap(page);
130 	for (tmp = 0; tmp < qty; tmp++) {
131 		if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
132 			printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
133 			       __func__, dvnode->vfs_inode.i_ino, tmp, qty,
134 			       ntohs(dbuf->blocks[tmp].hdr.magic));
135 			trace_afs_dir_check_failed(dvnode, off, i_size);
136 			kunmap(page);
137 			trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
138 			goto error;
139 		}
140 
141 		/* Make sure each block is NUL terminated so we can reasonably
142 		 * use string functions on it.  The filenames in the page
143 		 * *should* be NUL-terminated anyway.
144 		 */
145 		((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
146 	}
147 
148 	kunmap(page);
149 
150 checked:
151 	afs_stat_v(dvnode, n_read_dir);
152 	return true;
153 
154 error:
155 	return false;
156 }
157 
158 /*
159  * Check the contents of a directory that we've just read.
160  */
161 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
162 {
163 	struct afs_xdr_dir_page *dbuf;
164 	unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
165 
166 	for (i = 0; i < req->nr_pages; i++)
167 		if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
168 			goto bad;
169 	return true;
170 
171 bad:
172 	pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
173 		dvnode->fid.vid, dvnode->fid.vnode,
174 		req->file_size, req->len, req->actual_len, req->remain);
175 	pr_warn("DIR %llx %x %x %x\n",
176 		req->pos, req->index, req->nr_pages, req->offset);
177 
178 	for (i = 0; i < req->nr_pages; i++) {
179 		dbuf = kmap(req->pages[i]);
180 		for (j = 0; j < qty; j++) {
181 			union afs_xdr_dir_block *block = &dbuf->blocks[j];
182 
183 			pr_warn("[%02x] %32phN\n", i * qty + j, block);
184 		}
185 		kunmap(req->pages[i]);
186 	}
187 	return false;
188 }
189 
190 /*
191  * open an AFS directory file
192  */
193 static int afs_dir_open(struct inode *inode, struct file *file)
194 {
195 	_enter("{%lu}", inode->i_ino);
196 
197 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
198 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
199 
200 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
201 		return -ENOENT;
202 
203 	return afs_open(inode, file);
204 }
205 
206 /*
207  * Read the directory into the pagecache in one go, scrubbing the previous
208  * contents.  The list of pages is returned, pinning them so that they don't
209  * get reclaimed during the iteration.
210  */
211 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
212 	__acquires(&dvnode->validate_lock)
213 {
214 	struct afs_read *req;
215 	loff_t i_size;
216 	int nr_pages, nr_inline, i, n;
217 	int ret = -ENOMEM;
218 
219 retry:
220 	i_size = i_size_read(&dvnode->vfs_inode);
221 	if (i_size < 2048)
222 		return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
223 	if (i_size > 2048 * 1024) {
224 		trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
225 		return ERR_PTR(-EFBIG);
226 	}
227 
228 	_enter("%llu", i_size);
229 
230 	/* Get a request record to hold the page list.  We want to hold it
231 	 * inline if we can, but we don't want to make an order 1 allocation.
232 	 */
233 	nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
234 	nr_inline = nr_pages;
235 	if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
236 		nr_inline = 0;
237 
238 	req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
239 	if (!req)
240 		return ERR_PTR(-ENOMEM);
241 
242 	refcount_set(&req->usage, 1);
243 	req->nr_pages = nr_pages;
244 	req->actual_len = i_size; /* May change */
245 	req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
246 	req->data_version = dvnode->status.data_version; /* May change */
247 	if (nr_inline > 0) {
248 		req->pages = req->array;
249 	} else {
250 		req->pages = kcalloc(nr_pages, sizeof(struct page *),
251 				     GFP_KERNEL);
252 		if (!req->pages)
253 			goto error;
254 	}
255 
256 	/* Get a list of all the pages that hold or will hold the directory
257 	 * content.  We need to fill in any gaps that we might find where the
258 	 * memory reclaimer has been at work.  If there are any gaps, we will
259 	 * need to reread the entire directory contents.
260 	 */
261 	i = 0;
262 	do {
263 		n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
264 					  req->nr_pages - i,
265 					  req->pages + i);
266 		_debug("find %u at %u/%u", n, i, req->nr_pages);
267 		if (n == 0) {
268 			gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
269 
270 			if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
271 				afs_stat_v(dvnode, n_inval);
272 
273 			ret = -ENOMEM;
274 			req->pages[i] = __page_cache_alloc(gfp);
275 			if (!req->pages[i])
276 				goto error;
277 			ret = add_to_page_cache_lru(req->pages[i],
278 						    dvnode->vfs_inode.i_mapping,
279 						    i, gfp);
280 			if (ret < 0)
281 				goto error;
282 
283 			attach_page_private(req->pages[i], (void *)1);
284 			unlock_page(req->pages[i]);
285 			i++;
286 		} else {
287 			i += n;
288 		}
289 	} while (i < req->nr_pages);
290 
291 	/* If we're going to reload, we need to lock all the pages to prevent
292 	 * races.
293 	 */
294 	ret = -ERESTARTSYS;
295 	if (down_read_killable(&dvnode->validate_lock) < 0)
296 		goto error;
297 
298 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
299 		goto success;
300 
301 	up_read(&dvnode->validate_lock);
302 	if (down_write_killable(&dvnode->validate_lock) < 0)
303 		goto error;
304 
305 	if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
306 		trace_afs_reload_dir(dvnode);
307 		ret = afs_fetch_data(dvnode, key, req);
308 		if (ret < 0)
309 			goto error_unlock;
310 
311 		task_io_account_read(PAGE_SIZE * req->nr_pages);
312 
313 		if (req->len < req->file_size)
314 			goto content_has_grown;
315 
316 		/* Validate the data we just read. */
317 		ret = -EIO;
318 		if (!afs_dir_check_pages(dvnode, req))
319 			goto error_unlock;
320 
321 		// TODO: Trim excess pages
322 
323 		set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
324 	}
325 
326 	downgrade_write(&dvnode->validate_lock);
327 success:
328 	return req;
329 
330 error_unlock:
331 	up_write(&dvnode->validate_lock);
332 error:
333 	afs_put_read(req);
334 	_leave(" = %d", ret);
335 	return ERR_PTR(ret);
336 
337 content_has_grown:
338 	up_write(&dvnode->validate_lock);
339 	afs_put_read(req);
340 	goto retry;
341 }
342 
343 /*
344  * deal with one block in an AFS directory
345  */
346 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
347 				 struct dir_context *ctx,
348 				 union afs_xdr_dir_block *block,
349 				 unsigned blkoff)
350 {
351 	union afs_xdr_dirent *dire;
352 	unsigned offset, next, curr;
353 	size_t nlen;
354 	int tmp;
355 
356 	_enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
357 
358 	curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
359 
360 	/* walk through the block, an entry at a time */
361 	for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
362 	     offset < AFS_DIR_SLOTS_PER_BLOCK;
363 	     offset = next
364 	     ) {
365 		next = offset + 1;
366 
367 		/* skip entries marked unused in the bitmap */
368 		if (!(block->hdr.bitmap[offset / 8] &
369 		      (1 << (offset % 8)))) {
370 			_debug("ENT[%zu.%u]: unused",
371 			       blkoff / sizeof(union afs_xdr_dir_block), offset);
372 			if (offset >= curr)
373 				ctx->pos = blkoff +
374 					next * sizeof(union afs_xdr_dirent);
375 			continue;
376 		}
377 
378 		/* got a valid entry */
379 		dire = &block->dirents[offset];
380 		nlen = strnlen(dire->u.name,
381 			       sizeof(*block) -
382 			       offset * sizeof(union afs_xdr_dirent));
383 
384 		_debug("ENT[%zu.%u]: %s %zu \"%s\"",
385 		       blkoff / sizeof(union afs_xdr_dir_block), offset,
386 		       (offset < curr ? "skip" : "fill"),
387 		       nlen, dire->u.name);
388 
389 		/* work out where the next possible entry is */
390 		for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) {
391 			if (next >= AFS_DIR_SLOTS_PER_BLOCK) {
392 				_debug("ENT[%zu.%u]:"
393 				       " %u travelled beyond end dir block"
394 				       " (len %u/%zu)",
395 				       blkoff / sizeof(union afs_xdr_dir_block),
396 				       offset, next, tmp, nlen);
397 				return afs_bad(dvnode, afs_file_error_dir_over_end);
398 			}
399 			if (!(block->hdr.bitmap[next / 8] &
400 			      (1 << (next % 8)))) {
401 				_debug("ENT[%zu.%u]:"
402 				       " %u unmarked extension (len %u/%zu)",
403 				       blkoff / sizeof(union afs_xdr_dir_block),
404 				       offset, next, tmp, nlen);
405 				return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
406 			}
407 
408 			_debug("ENT[%zu.%u]: ext %u/%zu",
409 			       blkoff / sizeof(union afs_xdr_dir_block),
410 			       next, tmp, nlen);
411 			next++;
412 		}
413 
414 		/* skip if starts before the current position */
415 		if (offset < curr)
416 			continue;
417 
418 		/* found the next entry */
419 		if (!dir_emit(ctx, dire->u.name, nlen,
420 			      ntohl(dire->u.vnode),
421 			      (ctx->actor == afs_lookup_filldir ||
422 			       ctx->actor == afs_lookup_one_filldir)?
423 			      ntohl(dire->u.unique) : DT_UNKNOWN)) {
424 			_leave(" = 0 [full]");
425 			return 0;
426 		}
427 
428 		ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
429 	}
430 
431 	_leave(" = 1 [more]");
432 	return 1;
433 }
434 
435 /*
436  * iterate through the data blob that lists the contents of an AFS directory
437  */
438 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
439 			   struct key *key, afs_dataversion_t *_dir_version)
440 {
441 	struct afs_vnode *dvnode = AFS_FS_I(dir);
442 	struct afs_xdr_dir_page *dbuf;
443 	union afs_xdr_dir_block *dblock;
444 	struct afs_read *req;
445 	struct page *page;
446 	unsigned blkoff, limit;
447 	int ret;
448 
449 	_enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
450 
451 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
452 		_leave(" = -ESTALE");
453 		return -ESTALE;
454 	}
455 
456 	req = afs_read_dir(dvnode, key);
457 	if (IS_ERR(req))
458 		return PTR_ERR(req);
459 	*_dir_version = req->data_version;
460 
461 	/* round the file position up to the next entry boundary */
462 	ctx->pos += sizeof(union afs_xdr_dirent) - 1;
463 	ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
464 
465 	/* walk through the blocks in sequence */
466 	ret = 0;
467 	while (ctx->pos < req->actual_len) {
468 		blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
469 
470 		/* Fetch the appropriate page from the directory and re-add it
471 		 * to the LRU.
472 		 */
473 		page = req->pages[blkoff / PAGE_SIZE];
474 		if (!page) {
475 			ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
476 			break;
477 		}
478 		mark_page_accessed(page);
479 
480 		limit = blkoff & ~(PAGE_SIZE - 1);
481 
482 		dbuf = kmap(page);
483 
484 		/* deal with the individual blocks stashed on this page */
485 		do {
486 			dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
487 					       sizeof(union afs_xdr_dir_block)];
488 			ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
489 			if (ret != 1) {
490 				kunmap(page);
491 				goto out;
492 			}
493 
494 			blkoff += sizeof(union afs_xdr_dir_block);
495 
496 		} while (ctx->pos < dir->i_size && blkoff < limit);
497 
498 		kunmap(page);
499 		ret = 0;
500 	}
501 
502 out:
503 	up_read(&dvnode->validate_lock);
504 	afs_put_read(req);
505 	_leave(" = %d", ret);
506 	return ret;
507 }
508 
509 /*
510  * read an AFS directory
511  */
512 static int afs_readdir(struct file *file, struct dir_context *ctx)
513 {
514 	afs_dataversion_t dir_version;
515 
516 	return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
517 			       &dir_version);
518 }
519 
520 /*
521  * Search the directory for a single name
522  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
523  *   uniquifier through dtype
524  */
525 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
526 				  int nlen, loff_t fpos, u64 ino, unsigned dtype)
527 {
528 	struct afs_lookup_one_cookie *cookie =
529 		container_of(ctx, struct afs_lookup_one_cookie, ctx);
530 
531 	_enter("{%s,%u},%s,%u,,%llu,%u",
532 	       cookie->name.name, cookie->name.len, name, nlen,
533 	       (unsigned long long) ino, dtype);
534 
535 	/* insanity checks first */
536 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
537 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
538 
539 	if (cookie->name.len != nlen ||
540 	    memcmp(cookie->name.name, name, nlen) != 0) {
541 		_leave(" = 0 [no]");
542 		return 0;
543 	}
544 
545 	cookie->fid.vnode = ino;
546 	cookie->fid.unique = dtype;
547 	cookie->found = 1;
548 
549 	_leave(" = -1 [found]");
550 	return -1;
551 }
552 
553 /*
554  * Do a lookup of a single name in a directory
555  * - just returns the FID the dentry name maps to if found
556  */
557 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
558 			     struct afs_fid *fid, struct key *key,
559 			     afs_dataversion_t *_dir_version)
560 {
561 	struct afs_super_info *as = dir->i_sb->s_fs_info;
562 	struct afs_lookup_one_cookie cookie = {
563 		.ctx.actor = afs_lookup_one_filldir,
564 		.name = dentry->d_name,
565 		.fid.vid = as->volume->vid
566 	};
567 	int ret;
568 
569 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
570 
571 	/* search the directory */
572 	ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
573 	if (ret < 0) {
574 		_leave(" = %d [iter]", ret);
575 		return ret;
576 	}
577 
578 	ret = -ENOENT;
579 	if (!cookie.found) {
580 		_leave(" = -ENOENT [not found]");
581 		return -ENOENT;
582 	}
583 
584 	*fid = cookie.fid;
585 	_leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
586 	return 0;
587 }
588 
589 /*
590  * search the directory for a name
591  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
592  *   uniquifier through dtype
593  */
594 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
595 			      int nlen, loff_t fpos, u64 ino, unsigned dtype)
596 {
597 	struct afs_lookup_cookie *cookie =
598 		container_of(ctx, struct afs_lookup_cookie, ctx);
599 	int ret;
600 
601 	_enter("{%s,%u},%s,%u,,%llu,%u",
602 	       cookie->name.name, cookie->name.len, name, nlen,
603 	       (unsigned long long) ino, dtype);
604 
605 	/* insanity checks first */
606 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
607 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
608 
609 	if (cookie->found) {
610 		if (cookie->nr_fids < 50) {
611 			cookie->fids[cookie->nr_fids].vnode	= ino;
612 			cookie->fids[cookie->nr_fids].unique	= dtype;
613 			cookie->nr_fids++;
614 		}
615 	} else if (cookie->name.len == nlen &&
616 		   memcmp(cookie->name.name, name, nlen) == 0) {
617 		cookie->fids[1].vnode	= ino;
618 		cookie->fids[1].unique	= dtype;
619 		cookie->found = 1;
620 		if (cookie->one_only)
621 			return -1;
622 	}
623 
624 	ret = cookie->nr_fids >= 50 ? -1 : 0;
625 	_leave(" = %d", ret);
626 	return ret;
627 }
628 
629 /*
630  * Deal with the result of a successful lookup operation.  Turn all the files
631  * into inodes and save the first one - which is the one we actually want.
632  */
633 static void afs_do_lookup_success(struct afs_operation *op)
634 {
635 	struct afs_vnode_param *vp;
636 	struct afs_vnode *vnode;
637 	struct inode *inode;
638 	u32 abort_code;
639 	int i;
640 
641 	_enter("");
642 
643 	for (i = 0; i < op->nr_files; i++) {
644 		switch (i) {
645 		case 0:
646 			vp = &op->file[0];
647 			abort_code = vp->scb.status.abort_code;
648 			if (abort_code != 0) {
649 				op->ac.abort_code = abort_code;
650 				op->error = afs_abort_to_error(abort_code);
651 			}
652 			break;
653 
654 		case 1:
655 			vp = &op->file[1];
656 			break;
657 
658 		default:
659 			vp = &op->more_files[i - 2];
660 			break;
661 		}
662 
663 		if (!vp->scb.have_status && !vp->scb.have_error)
664 			continue;
665 
666 		_debug("do [%u]", i);
667 		if (vp->vnode) {
668 			if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags))
669 				afs_vnode_commit_status(op, vp);
670 		} else if (vp->scb.status.abort_code == 0) {
671 			inode = afs_iget(op, vp);
672 			if (!IS_ERR(inode)) {
673 				vnode = AFS_FS_I(inode);
674 				afs_cache_permit(vnode, op->key,
675 						 0 /* Assume vnode->cb_break is 0 */ +
676 						 op->cb_v_break,
677 						 &vp->scb);
678 				vp->vnode = vnode;
679 				vp->put_vnode = true;
680 			}
681 		} else {
682 			_debug("- abort %d %llx:%llx.%x",
683 			       vp->scb.status.abort_code,
684 			       vp->fid.vid, vp->fid.vnode, vp->fid.unique);
685 		}
686 	}
687 
688 	_leave("");
689 }
690 
691 static const struct afs_operation_ops afs_inline_bulk_status_operation = {
692 	.issue_afs_rpc	= afs_fs_inline_bulk_status,
693 	.issue_yfs_rpc	= yfs_fs_inline_bulk_status,
694 	.success	= afs_do_lookup_success,
695 };
696 
697 static const struct afs_operation_ops afs_lookup_fetch_status_operation = {
698 	.issue_afs_rpc	= afs_fs_fetch_status,
699 	.issue_yfs_rpc	= yfs_fs_fetch_status,
700 	.success	= afs_do_lookup_success,
701 	.aborted	= afs_check_for_remote_deletion,
702 };
703 
704 /*
705  * See if we know that the server we expect to use doesn't support
706  * FS.InlineBulkStatus.
707  */
708 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode)
709 {
710 	struct afs_server_list *slist;
711 	struct afs_volume *volume = dvnode->volume;
712 	struct afs_server *server;
713 	bool ret = true;
714 	int i;
715 
716 	if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags))
717 		return true;
718 
719 	rcu_read_lock();
720 	slist = rcu_dereference(volume->servers);
721 
722 	for (i = 0; i < slist->nr_servers; i++) {
723 		server = slist->servers[i].server;
724 		if (server == dvnode->cb_server) {
725 			if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
726 				ret = false;
727 			break;
728 		}
729 	}
730 
731 	rcu_read_unlock();
732 	return ret;
733 }
734 
735 /*
736  * Do a lookup in a directory.  We make use of bulk lookup to query a slew of
737  * files in one go and create inodes for them.  The inode of the file we were
738  * asked for is returned.
739  */
740 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
741 				   struct key *key)
742 {
743 	struct afs_lookup_cookie *cookie;
744 	struct afs_vnode_param *vp;
745 	struct afs_operation *op;
746 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
747 	struct inode *inode = NULL, *ti;
748 	afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
749 	long ret;
750 	int i;
751 
752 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
753 
754 	cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
755 	if (!cookie)
756 		return ERR_PTR(-ENOMEM);
757 
758 	for (i = 0; i < ARRAY_SIZE(cookie->fids); i++)
759 		cookie->fids[i].vid = dvnode->fid.vid;
760 	cookie->ctx.actor = afs_lookup_filldir;
761 	cookie->name = dentry->d_name;
762 	cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want
763 			      * and slot 1 for the directory */
764 
765 	if (!afs_server_supports_ibulk(dvnode))
766 		cookie->one_only = true;
767 
768 	/* search the directory */
769 	ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
770 	if (ret < 0)
771 		goto out;
772 
773 	dentry->d_fsdata = (void *)(unsigned long)data_version;
774 
775 	ret = -ENOENT;
776 	if (!cookie->found)
777 		goto out;
778 
779 	/* Check to see if we already have an inode for the primary fid. */
780 	inode = ilookup5(dir->i_sb, cookie->fids[1].vnode,
781 			 afs_ilookup5_test_by_fid, &cookie->fids[1]);
782 	if (inode)
783 		goto out; /* We do */
784 
785 	/* Okay, we didn't find it.  We need to query the server - and whilst
786 	 * we're doing that, we're going to attempt to look up a bunch of other
787 	 * vnodes also.
788 	 */
789 	op = afs_alloc_operation(NULL, dvnode->volume);
790 	if (IS_ERR(op)) {
791 		ret = PTR_ERR(op);
792 		goto out;
793 	}
794 
795 	afs_op_set_vnode(op, 0, dvnode);
796 	afs_op_set_fid(op, 1, &cookie->fids[1]);
797 
798 	op->nr_files = cookie->nr_fids;
799 	_debug("nr_files %u", op->nr_files);
800 
801 	/* Need space for examining all the selected files */
802 	op->error = -ENOMEM;
803 	if (op->nr_files > 2) {
804 		op->more_files = kvcalloc(op->nr_files - 2,
805 					  sizeof(struct afs_vnode_param),
806 					  GFP_KERNEL);
807 		if (!op->more_files)
808 			goto out_op;
809 
810 		for (i = 2; i < op->nr_files; i++) {
811 			vp = &op->more_files[i - 2];
812 			vp->fid = cookie->fids[i];
813 
814 			/* Find any inodes that already exist and get their
815 			 * callback counters.
816 			 */
817 			ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode,
818 					     afs_ilookup5_test_by_fid, &vp->fid);
819 			if (!IS_ERR_OR_NULL(ti)) {
820 				vnode = AFS_FS_I(ti);
821 				vp->dv_before = vnode->status.data_version;
822 				vp->cb_break_before = afs_calc_vnode_cb_break(vnode);
823 				vp->vnode = vnode;
824 				vp->put_vnode = true;
825 				vp->speculative = true; /* vnode not locked */
826 			}
827 		}
828 	}
829 
830 	/* Try FS.InlineBulkStatus first.  Abort codes for the individual
831 	 * lookups contained therein are stored in the reply without aborting
832 	 * the whole operation.
833 	 */
834 	op->error = -ENOTSUPP;
835 	if (!cookie->one_only) {
836 		op->ops = &afs_inline_bulk_status_operation;
837 		afs_begin_vnode_operation(op);
838 		afs_wait_for_operation(op);
839 	}
840 
841 	if (op->error == -ENOTSUPP) {
842 		/* We could try FS.BulkStatus next, but this aborts the entire
843 		 * op if any of the lookups fails - so, for the moment, revert
844 		 * to FS.FetchStatus for op->file[1].
845 		 */
846 		op->fetch_status.which = 1;
847 		op->ops = &afs_lookup_fetch_status_operation;
848 		afs_begin_vnode_operation(op);
849 		afs_wait_for_operation(op);
850 	}
851 	inode = ERR_PTR(op->error);
852 
853 out_op:
854 	if (op->error == 0) {
855 		inode = &op->file[1].vnode->vfs_inode;
856 		op->file[1].vnode = NULL;
857 	}
858 
859 	if (op->file[0].scb.have_status)
860 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version;
861 	else
862 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before;
863 	ret = afs_put_operation(op);
864 out:
865 	kfree(cookie);
866 	_leave("");
867 	return inode ?: ERR_PTR(ret);
868 }
869 
870 /*
871  * Look up an entry in a directory with @sys substitution.
872  */
873 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
874 				       struct key *key)
875 {
876 	struct afs_sysnames *subs;
877 	struct afs_net *net = afs_i2net(dir);
878 	struct dentry *ret;
879 	char *buf, *p, *name;
880 	int len, i;
881 
882 	_enter("");
883 
884 	ret = ERR_PTR(-ENOMEM);
885 	p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
886 	if (!buf)
887 		goto out_p;
888 	if (dentry->d_name.len > 4) {
889 		memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
890 		p += dentry->d_name.len - 4;
891 	}
892 
893 	/* There is an ordered list of substitutes that we have to try. */
894 	read_lock(&net->sysnames_lock);
895 	subs = net->sysnames;
896 	refcount_inc(&subs->usage);
897 	read_unlock(&net->sysnames_lock);
898 
899 	for (i = 0; i < subs->nr; i++) {
900 		name = subs->subs[i];
901 		len = dentry->d_name.len - 4 + strlen(name);
902 		if (len >= AFSNAMEMAX) {
903 			ret = ERR_PTR(-ENAMETOOLONG);
904 			goto out_s;
905 		}
906 
907 		strcpy(p, name);
908 		ret = lookup_one_len(buf, dentry->d_parent, len);
909 		if (IS_ERR(ret) || d_is_positive(ret))
910 			goto out_s;
911 		dput(ret);
912 	}
913 
914 	/* We don't want to d_add() the @sys dentry here as we don't want to
915 	 * the cached dentry to hide changes to the sysnames list.
916 	 */
917 	ret = NULL;
918 out_s:
919 	afs_put_sysnames(subs);
920 	kfree(buf);
921 out_p:
922 	key_put(key);
923 	return ret;
924 }
925 
926 /*
927  * look up an entry in a directory
928  */
929 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
930 				 unsigned int flags)
931 {
932 	struct afs_vnode *dvnode = AFS_FS_I(dir);
933 	struct afs_fid fid = {};
934 	struct inode *inode;
935 	struct dentry *d;
936 	struct key *key;
937 	int ret;
938 
939 	_enter("{%llx:%llu},%p{%pd},",
940 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
941 
942 	ASSERTCMP(d_inode(dentry), ==, NULL);
943 
944 	if (dentry->d_name.len >= AFSNAMEMAX) {
945 		_leave(" = -ENAMETOOLONG");
946 		return ERR_PTR(-ENAMETOOLONG);
947 	}
948 
949 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
950 		_leave(" = -ESTALE");
951 		return ERR_PTR(-ESTALE);
952 	}
953 
954 	key = afs_request_key(dvnode->volume->cell);
955 	if (IS_ERR(key)) {
956 		_leave(" = %ld [key]", PTR_ERR(key));
957 		return ERR_CAST(key);
958 	}
959 
960 	ret = afs_validate(dvnode, key);
961 	if (ret < 0) {
962 		key_put(key);
963 		_leave(" = %d [val]", ret);
964 		return ERR_PTR(ret);
965 	}
966 
967 	if (dentry->d_name.len >= 4 &&
968 	    dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
969 	    dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
970 	    dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
971 	    dentry->d_name.name[dentry->d_name.len - 1] == 's')
972 		return afs_lookup_atsys(dir, dentry, key);
973 
974 	afs_stat_v(dvnode, n_lookup);
975 	inode = afs_do_lookup(dir, dentry, key);
976 	key_put(key);
977 	if (inode == ERR_PTR(-ENOENT))
978 		inode = afs_try_auto_mntpt(dentry, dir);
979 
980 	if (!IS_ERR_OR_NULL(inode))
981 		fid = AFS_FS_I(inode)->fid;
982 
983 	_debug("splice %p", dentry->d_inode);
984 	d = d_splice_alias(inode, dentry);
985 	if (!IS_ERR_OR_NULL(d)) {
986 		d->d_fsdata = dentry->d_fsdata;
987 		trace_afs_lookup(dvnode, &d->d_name, &fid);
988 	} else {
989 		trace_afs_lookup(dvnode, &dentry->d_name, &fid);
990 	}
991 	_leave("");
992 	return d;
993 }
994 
995 /*
996  * Check the validity of a dentry under RCU conditions.
997  */
998 static int afs_d_revalidate_rcu(struct dentry *dentry)
999 {
1000 	struct afs_vnode *dvnode, *vnode;
1001 	struct dentry *parent;
1002 	struct inode *dir, *inode;
1003 	long dir_version, de_version;
1004 
1005 	_enter("%p", dentry);
1006 
1007 	/* Check the parent directory is still valid first. */
1008 	parent = READ_ONCE(dentry->d_parent);
1009 	dir = d_inode_rcu(parent);
1010 	if (!dir)
1011 		return -ECHILD;
1012 	dvnode = AFS_FS_I(dir);
1013 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
1014 		return -ECHILD;
1015 
1016 	if (!afs_check_validity(dvnode))
1017 		return -ECHILD;
1018 
1019 	/* We only need to invalidate a dentry if the server's copy changed
1020 	 * behind our back.  If we made the change, it's no problem.  Note that
1021 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1022 	 * version.
1023 	 */
1024 	dir_version = (long)READ_ONCE(dvnode->status.data_version);
1025 	de_version = (long)READ_ONCE(dentry->d_fsdata);
1026 	if (de_version != dir_version) {
1027 		dir_version = (long)READ_ONCE(dvnode->invalid_before);
1028 		if (de_version - dir_version < 0)
1029 			return -ECHILD;
1030 	}
1031 
1032 	/* Check to see if the vnode referred to by the dentry still
1033 	 * has a callback.
1034 	 */
1035 	if (d_really_is_positive(dentry)) {
1036 		inode = d_inode_rcu(dentry);
1037 		if (inode) {
1038 			vnode = AFS_FS_I(inode);
1039 			if (!afs_check_validity(vnode))
1040 				return -ECHILD;
1041 		}
1042 	}
1043 
1044 	return 1; /* Still valid */
1045 }
1046 
1047 /*
1048  * check that a dentry lookup hit has found a valid entry
1049  * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1050  *   inode
1051  */
1052 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1053 {
1054 	struct afs_vnode *vnode, *dir;
1055 	struct afs_fid fid;
1056 	struct dentry *parent;
1057 	struct inode *inode;
1058 	struct key *key;
1059 	afs_dataversion_t dir_version, invalid_before;
1060 	long de_version;
1061 	int ret;
1062 
1063 	if (flags & LOOKUP_RCU)
1064 		return afs_d_revalidate_rcu(dentry);
1065 
1066 	if (d_really_is_positive(dentry)) {
1067 		vnode = AFS_FS_I(d_inode(dentry));
1068 		_enter("{v={%llx:%llu} n=%pd fl=%lx},",
1069 		       vnode->fid.vid, vnode->fid.vnode, dentry,
1070 		       vnode->flags);
1071 	} else {
1072 		_enter("{neg n=%pd}", dentry);
1073 	}
1074 
1075 	key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1076 	if (IS_ERR(key))
1077 		key = NULL;
1078 
1079 	if (d_really_is_positive(dentry)) {
1080 		inode = d_inode(dentry);
1081 		if (inode) {
1082 			vnode = AFS_FS_I(inode);
1083 			afs_validate(vnode, key);
1084 			if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1085 				goto out_bad;
1086 		}
1087 	}
1088 
1089 	/* lock down the parent dentry so we can peer at it */
1090 	parent = dget_parent(dentry);
1091 	dir = AFS_FS_I(d_inode(parent));
1092 
1093 	/* validate the parent directory */
1094 	afs_validate(dir, key);
1095 
1096 	if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1097 		_debug("%pd: parent dir deleted", dentry);
1098 		goto out_bad_parent;
1099 	}
1100 
1101 	/* We only need to invalidate a dentry if the server's copy changed
1102 	 * behind our back.  If we made the change, it's no problem.  Note that
1103 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1104 	 * version.
1105 	 */
1106 	dir_version = dir->status.data_version;
1107 	de_version = (long)dentry->d_fsdata;
1108 	if (de_version == (long)dir_version)
1109 		goto out_valid_noupdate;
1110 
1111 	invalid_before = dir->invalid_before;
1112 	if (de_version - (long)invalid_before >= 0)
1113 		goto out_valid;
1114 
1115 	_debug("dir modified");
1116 	afs_stat_v(dir, n_reval);
1117 
1118 	/* search the directory for this vnode */
1119 	ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1120 	switch (ret) {
1121 	case 0:
1122 		/* the filename maps to something */
1123 		if (d_really_is_negative(dentry))
1124 			goto out_bad_parent;
1125 		inode = d_inode(dentry);
1126 		if (is_bad_inode(inode)) {
1127 			printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1128 			       dentry);
1129 			goto out_bad_parent;
1130 		}
1131 
1132 		vnode = AFS_FS_I(inode);
1133 
1134 		/* if the vnode ID has changed, then the dirent points to a
1135 		 * different file */
1136 		if (fid.vnode != vnode->fid.vnode) {
1137 			_debug("%pd: dirent changed [%llu != %llu]",
1138 			       dentry, fid.vnode,
1139 			       vnode->fid.vnode);
1140 			goto not_found;
1141 		}
1142 
1143 		/* if the vnode ID uniqifier has changed, then the file has
1144 		 * been deleted and replaced, and the original vnode ID has
1145 		 * been reused */
1146 		if (fid.unique != vnode->fid.unique) {
1147 			_debug("%pd: file deleted (uq %u -> %u I:%u)",
1148 			       dentry, fid.unique,
1149 			       vnode->fid.unique,
1150 			       vnode->vfs_inode.i_generation);
1151 			write_seqlock(&vnode->cb_lock);
1152 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1153 			write_sequnlock(&vnode->cb_lock);
1154 			goto not_found;
1155 		}
1156 		goto out_valid;
1157 
1158 	case -ENOENT:
1159 		/* the filename is unknown */
1160 		_debug("%pd: dirent not found", dentry);
1161 		if (d_really_is_positive(dentry))
1162 			goto not_found;
1163 		goto out_valid;
1164 
1165 	default:
1166 		_debug("failed to iterate dir %pd: %d",
1167 		       parent, ret);
1168 		goto out_bad_parent;
1169 	}
1170 
1171 out_valid:
1172 	dentry->d_fsdata = (void *)(unsigned long)dir_version;
1173 out_valid_noupdate:
1174 	dput(parent);
1175 	key_put(key);
1176 	_leave(" = 1 [valid]");
1177 	return 1;
1178 
1179 	/* the dirent, if it exists, now points to a different vnode */
1180 not_found:
1181 	spin_lock(&dentry->d_lock);
1182 	dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1183 	spin_unlock(&dentry->d_lock);
1184 
1185 out_bad_parent:
1186 	_debug("dropping dentry %pd2", dentry);
1187 	dput(parent);
1188 out_bad:
1189 	key_put(key);
1190 
1191 	_leave(" = 0 [bad]");
1192 	return 0;
1193 }
1194 
1195 /*
1196  * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1197  * sleep)
1198  * - called from dput() when d_count is going to 0.
1199  * - return 1 to request dentry be unhashed, 0 otherwise
1200  */
1201 static int afs_d_delete(const struct dentry *dentry)
1202 {
1203 	_enter("%pd", dentry);
1204 
1205 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1206 		goto zap;
1207 
1208 	if (d_really_is_positive(dentry) &&
1209 	    (test_bit(AFS_VNODE_DELETED,   &AFS_FS_I(d_inode(dentry))->flags) ||
1210 	     test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1211 		goto zap;
1212 
1213 	_leave(" = 0 [keep]");
1214 	return 0;
1215 
1216 zap:
1217 	_leave(" = 1 [zap]");
1218 	return 1;
1219 }
1220 
1221 /*
1222  * Clean up sillyrename files on dentry removal.
1223  */
1224 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1225 {
1226 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1227 		afs_silly_iput(dentry, inode);
1228 	iput(inode);
1229 }
1230 
1231 /*
1232  * handle dentry release
1233  */
1234 void afs_d_release(struct dentry *dentry)
1235 {
1236 	_enter("%pd", dentry);
1237 }
1238 
1239 void afs_check_for_remote_deletion(struct afs_operation *op)
1240 {
1241 	struct afs_vnode *vnode = op->file[0].vnode;
1242 
1243 	switch (op->ac.abort_code) {
1244 	case VNOVNODE:
1245 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1246 		afs_break_callback(vnode, afs_cb_break_for_deleted);
1247 	}
1248 }
1249 
1250 /*
1251  * Create a new inode for create/mkdir/symlink
1252  */
1253 static void afs_vnode_new_inode(struct afs_operation *op)
1254 {
1255 	struct afs_vnode_param *vp = &op->file[1];
1256 	struct afs_vnode *vnode;
1257 	struct inode *inode;
1258 
1259 	_enter("");
1260 
1261 	ASSERTCMP(op->error, ==, 0);
1262 
1263 	inode = afs_iget(op, vp);
1264 	if (IS_ERR(inode)) {
1265 		/* ENOMEM or EINTR at a really inconvenient time - just abandon
1266 		 * the new directory on the server.
1267 		 */
1268 		op->error = PTR_ERR(inode);
1269 		return;
1270 	}
1271 
1272 	vnode = AFS_FS_I(inode);
1273 	set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1274 	if (!op->error)
1275 		afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb);
1276 	d_instantiate(op->dentry, inode);
1277 }
1278 
1279 static void afs_create_success(struct afs_operation *op)
1280 {
1281 	_enter("op=%08x", op->debug_id);
1282 	op->ctime = op->file[0].scb.status.mtime_client;
1283 	afs_vnode_commit_status(op, &op->file[0]);
1284 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1285 	afs_vnode_new_inode(op);
1286 }
1287 
1288 static void afs_create_edit_dir(struct afs_operation *op)
1289 {
1290 	struct afs_vnode_param *dvp = &op->file[0];
1291 	struct afs_vnode_param *vp = &op->file[1];
1292 	struct afs_vnode *dvnode = dvp->vnode;
1293 
1294 	_enter("op=%08x", op->debug_id);
1295 
1296 	down_write(&dvnode->validate_lock);
1297 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1298 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1299 		afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid,
1300 				 op->create.reason);
1301 	up_write(&dvnode->validate_lock);
1302 }
1303 
1304 static void afs_create_put(struct afs_operation *op)
1305 {
1306 	_enter("op=%08x", op->debug_id);
1307 
1308 	if (op->error)
1309 		d_drop(op->dentry);
1310 }
1311 
1312 static const struct afs_operation_ops afs_mkdir_operation = {
1313 	.issue_afs_rpc	= afs_fs_make_dir,
1314 	.issue_yfs_rpc	= yfs_fs_make_dir,
1315 	.success	= afs_create_success,
1316 	.aborted	= afs_check_for_remote_deletion,
1317 	.edit_dir	= afs_create_edit_dir,
1318 	.put		= afs_create_put,
1319 };
1320 
1321 /*
1322  * create a directory on an AFS filesystem
1323  */
1324 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1325 {
1326 	struct afs_operation *op;
1327 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1328 
1329 	_enter("{%llx:%llu},{%pd},%ho",
1330 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1331 
1332 	op = afs_alloc_operation(NULL, dvnode->volume);
1333 	if (IS_ERR(op)) {
1334 		d_drop(dentry);
1335 		return PTR_ERR(op);
1336 	}
1337 
1338 	afs_op_set_vnode(op, 0, dvnode);
1339 	op->file[0].dv_delta = 1;
1340 	op->file[0].update_ctime = true;
1341 	op->dentry	= dentry;
1342 	op->create.mode	= S_IFDIR | mode;
1343 	op->create.reason = afs_edit_dir_for_mkdir;
1344 	op->ops		= &afs_mkdir_operation;
1345 	return afs_do_sync_operation(op);
1346 }
1347 
1348 /*
1349  * Remove a subdir from a directory.
1350  */
1351 static void afs_dir_remove_subdir(struct dentry *dentry)
1352 {
1353 	if (d_really_is_positive(dentry)) {
1354 		struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1355 
1356 		clear_nlink(&vnode->vfs_inode);
1357 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1358 		clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1359 		clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1360 	}
1361 }
1362 
1363 static void afs_rmdir_success(struct afs_operation *op)
1364 {
1365 	_enter("op=%08x", op->debug_id);
1366 	op->ctime = op->file[0].scb.status.mtime_client;
1367 	afs_vnode_commit_status(op, &op->file[0]);
1368 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1369 }
1370 
1371 static void afs_rmdir_edit_dir(struct afs_operation *op)
1372 {
1373 	struct afs_vnode_param *dvp = &op->file[0];
1374 	struct afs_vnode *dvnode = dvp->vnode;
1375 
1376 	_enter("op=%08x", op->debug_id);
1377 	afs_dir_remove_subdir(op->dentry);
1378 
1379 	down_write(&dvnode->validate_lock);
1380 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1381 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1382 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1383 				    afs_edit_dir_for_rmdir);
1384 	up_write(&dvnode->validate_lock);
1385 }
1386 
1387 static void afs_rmdir_put(struct afs_operation *op)
1388 {
1389 	_enter("op=%08x", op->debug_id);
1390 	if (op->file[1].vnode)
1391 		up_write(&op->file[1].vnode->rmdir_lock);
1392 }
1393 
1394 static const struct afs_operation_ops afs_rmdir_operation = {
1395 	.issue_afs_rpc	= afs_fs_remove_dir,
1396 	.issue_yfs_rpc	= yfs_fs_remove_dir,
1397 	.success	= afs_rmdir_success,
1398 	.aborted	= afs_check_for_remote_deletion,
1399 	.edit_dir	= afs_rmdir_edit_dir,
1400 	.put		= afs_rmdir_put,
1401 };
1402 
1403 /*
1404  * remove a directory from an AFS filesystem
1405  */
1406 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1407 {
1408 	struct afs_operation *op;
1409 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1410 	int ret;
1411 
1412 	_enter("{%llx:%llu},{%pd}",
1413 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1414 
1415 	op = afs_alloc_operation(NULL, dvnode->volume);
1416 	if (IS_ERR(op))
1417 		return PTR_ERR(op);
1418 
1419 	afs_op_set_vnode(op, 0, dvnode);
1420 	op->file[0].dv_delta = 1;
1421 	op->file[0].update_ctime = true;
1422 
1423 	op->dentry	= dentry;
1424 	op->ops		= &afs_rmdir_operation;
1425 
1426 	/* Try to make sure we have a callback promise on the victim. */
1427 	if (d_really_is_positive(dentry)) {
1428 		vnode = AFS_FS_I(d_inode(dentry));
1429 		ret = afs_validate(vnode, op->key);
1430 		if (ret < 0)
1431 			goto error;
1432 	}
1433 
1434 	if (vnode) {
1435 		ret = down_write_killable(&vnode->rmdir_lock);
1436 		if (ret < 0)
1437 			goto error;
1438 		op->file[1].vnode = vnode;
1439 	}
1440 
1441 	return afs_do_sync_operation(op);
1442 
1443 error:
1444 	return afs_put_operation(op);
1445 }
1446 
1447 /*
1448  * Remove a link to a file or symlink from a directory.
1449  *
1450  * If the file was not deleted due to excess hard links, the fileserver will
1451  * break the callback promise on the file - if it had one - before it returns
1452  * to us, and if it was deleted, it won't
1453  *
1454  * However, if we didn't have a callback promise outstanding, or it was
1455  * outstanding on a different server, then it won't break it either...
1456  */
1457 static void afs_dir_remove_link(struct afs_operation *op)
1458 {
1459 	struct afs_vnode *dvnode = op->file[0].vnode;
1460 	struct afs_vnode *vnode = op->file[1].vnode;
1461 	struct dentry *dentry = op->dentry;
1462 	int ret;
1463 
1464 	if (op->error != 0 ||
1465 	    (op->file[1].scb.have_status && op->file[1].scb.have_error))
1466 		return;
1467 	if (d_really_is_positive(dentry))
1468 		return;
1469 
1470 	if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1471 		/* Already done */
1472 	} else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1473 		write_seqlock(&vnode->cb_lock);
1474 		drop_nlink(&vnode->vfs_inode);
1475 		if (vnode->vfs_inode.i_nlink == 0) {
1476 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1477 			__afs_break_callback(vnode, afs_cb_break_for_unlink);
1478 		}
1479 		write_sequnlock(&vnode->cb_lock);
1480 	} else {
1481 		afs_break_callback(vnode, afs_cb_break_for_unlink);
1482 
1483 		if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1484 			_debug("AFS_VNODE_DELETED");
1485 
1486 		ret = afs_validate(vnode, op->key);
1487 		if (ret != -ESTALE)
1488 			op->error = ret;
1489 	}
1490 
1491 	_debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error);
1492 }
1493 
1494 static void afs_unlink_success(struct afs_operation *op)
1495 {
1496 	_enter("op=%08x", op->debug_id);
1497 	op->ctime = op->file[0].scb.status.mtime_client;
1498 	afs_check_dir_conflict(op, &op->file[0]);
1499 	afs_vnode_commit_status(op, &op->file[0]);
1500 	afs_vnode_commit_status(op, &op->file[1]);
1501 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1502 	afs_dir_remove_link(op);
1503 }
1504 
1505 static void afs_unlink_edit_dir(struct afs_operation *op)
1506 {
1507 	struct afs_vnode_param *dvp = &op->file[0];
1508 	struct afs_vnode *dvnode = dvp->vnode;
1509 
1510 	_enter("op=%08x", op->debug_id);
1511 	down_write(&dvnode->validate_lock);
1512 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1513 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1514 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1515 				    afs_edit_dir_for_unlink);
1516 	up_write(&dvnode->validate_lock);
1517 }
1518 
1519 static void afs_unlink_put(struct afs_operation *op)
1520 {
1521 	_enter("op=%08x", op->debug_id);
1522 	if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT)
1523 		d_rehash(op->dentry);
1524 }
1525 
1526 static const struct afs_operation_ops afs_unlink_operation = {
1527 	.issue_afs_rpc	= afs_fs_remove_file,
1528 	.issue_yfs_rpc	= yfs_fs_remove_file,
1529 	.success	= afs_unlink_success,
1530 	.aborted	= afs_check_for_remote_deletion,
1531 	.edit_dir	= afs_unlink_edit_dir,
1532 	.put		= afs_unlink_put,
1533 };
1534 
1535 /*
1536  * Remove a file or symlink from an AFS filesystem.
1537  */
1538 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1539 {
1540 	struct afs_operation *op;
1541 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1542 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1543 	int ret;
1544 
1545 	_enter("{%llx:%llu},{%pd}",
1546 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1547 
1548 	if (dentry->d_name.len >= AFSNAMEMAX)
1549 		return -ENAMETOOLONG;
1550 
1551 	op = afs_alloc_operation(NULL, dvnode->volume);
1552 	if (IS_ERR(op))
1553 		return PTR_ERR(op);
1554 
1555 	afs_op_set_vnode(op, 0, dvnode);
1556 	op->file[0].dv_delta = 1;
1557 	op->file[0].update_ctime = true;
1558 
1559 	/* Try to make sure we have a callback promise on the victim. */
1560 	ret = afs_validate(vnode, op->key);
1561 	if (ret < 0) {
1562 		op->error = ret;
1563 		goto error;
1564 	}
1565 
1566 	spin_lock(&dentry->d_lock);
1567 	if (d_count(dentry) > 1) {
1568 		spin_unlock(&dentry->d_lock);
1569 		/* Start asynchronous writeout of the inode */
1570 		write_inode_now(d_inode(dentry), 0);
1571 		op->error = afs_sillyrename(dvnode, vnode, dentry, op->key);
1572 		goto error;
1573 	}
1574 	if (!d_unhashed(dentry)) {
1575 		/* Prevent a race with RCU lookup. */
1576 		__d_drop(dentry);
1577 		op->unlink.need_rehash = true;
1578 	}
1579 	spin_unlock(&dentry->d_lock);
1580 
1581 	op->file[1].vnode = vnode;
1582 	op->file[1].update_ctime = true;
1583 	op->file[1].op_unlinked = true;
1584 	op->dentry	= dentry;
1585 	op->ops		= &afs_unlink_operation;
1586 	afs_begin_vnode_operation(op);
1587 	afs_wait_for_operation(op);
1588 
1589 	/* If there was a conflict with a third party, check the status of the
1590 	 * unlinked vnode.
1591 	 */
1592 	if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) {
1593 		op->file[1].update_ctime = false;
1594 		op->fetch_status.which = 1;
1595 		op->ops = &afs_fetch_status_operation;
1596 		afs_begin_vnode_operation(op);
1597 		afs_wait_for_operation(op);
1598 	}
1599 
1600 	return afs_put_operation(op);
1601 
1602 error:
1603 	return afs_put_operation(op);
1604 }
1605 
1606 static const struct afs_operation_ops afs_create_operation = {
1607 	.issue_afs_rpc	= afs_fs_create_file,
1608 	.issue_yfs_rpc	= yfs_fs_create_file,
1609 	.success	= afs_create_success,
1610 	.aborted	= afs_check_for_remote_deletion,
1611 	.edit_dir	= afs_create_edit_dir,
1612 	.put		= afs_create_put,
1613 };
1614 
1615 /*
1616  * create a regular file on an AFS filesystem
1617  */
1618 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1619 		      bool excl)
1620 {
1621 	struct afs_operation *op;
1622 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1623 	int ret = -ENAMETOOLONG;
1624 
1625 	_enter("{%llx:%llu},{%pd},%ho",
1626 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1627 
1628 	if (dentry->d_name.len >= AFSNAMEMAX)
1629 		goto error;
1630 
1631 	op = afs_alloc_operation(NULL, dvnode->volume);
1632 	if (IS_ERR(op)) {
1633 		ret = PTR_ERR(op);
1634 		goto error;
1635 	}
1636 
1637 	afs_op_set_vnode(op, 0, dvnode);
1638 	op->file[0].dv_delta = 1;
1639 	op->file[0].update_ctime = true;
1640 
1641 	op->dentry	= dentry;
1642 	op->create.mode	= S_IFREG | mode;
1643 	op->create.reason = afs_edit_dir_for_create;
1644 	op->ops		= &afs_create_operation;
1645 	return afs_do_sync_operation(op);
1646 
1647 error:
1648 	d_drop(dentry);
1649 	_leave(" = %d", ret);
1650 	return ret;
1651 }
1652 
1653 static void afs_link_success(struct afs_operation *op)
1654 {
1655 	struct afs_vnode_param *dvp = &op->file[0];
1656 	struct afs_vnode_param *vp = &op->file[1];
1657 
1658 	_enter("op=%08x", op->debug_id);
1659 	op->ctime = dvp->scb.status.mtime_client;
1660 	afs_vnode_commit_status(op, dvp);
1661 	afs_vnode_commit_status(op, vp);
1662 	afs_update_dentry_version(op, dvp, op->dentry);
1663 	if (op->dentry_2->d_parent == op->dentry->d_parent)
1664 		afs_update_dentry_version(op, dvp, op->dentry_2);
1665 	ihold(&vp->vnode->vfs_inode);
1666 	d_instantiate(op->dentry, &vp->vnode->vfs_inode);
1667 }
1668 
1669 static void afs_link_put(struct afs_operation *op)
1670 {
1671 	_enter("op=%08x", op->debug_id);
1672 	if (op->error)
1673 		d_drop(op->dentry);
1674 }
1675 
1676 static const struct afs_operation_ops afs_link_operation = {
1677 	.issue_afs_rpc	= afs_fs_link,
1678 	.issue_yfs_rpc	= yfs_fs_link,
1679 	.success	= afs_link_success,
1680 	.aborted	= afs_check_for_remote_deletion,
1681 	.edit_dir	= afs_create_edit_dir,
1682 	.put		= afs_link_put,
1683 };
1684 
1685 /*
1686  * create a hard link between files in an AFS filesystem
1687  */
1688 static int afs_link(struct dentry *from, struct inode *dir,
1689 		    struct dentry *dentry)
1690 {
1691 	struct afs_operation *op;
1692 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1693 	struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1694 	int ret = -ENAMETOOLONG;
1695 
1696 	_enter("{%llx:%llu},{%llx:%llu},{%pd}",
1697 	       vnode->fid.vid, vnode->fid.vnode,
1698 	       dvnode->fid.vid, dvnode->fid.vnode,
1699 	       dentry);
1700 
1701 	if (dentry->d_name.len >= AFSNAMEMAX)
1702 		goto error;
1703 
1704 	op = afs_alloc_operation(NULL, dvnode->volume);
1705 	if (IS_ERR(op)) {
1706 		ret = PTR_ERR(op);
1707 		goto error;
1708 	}
1709 
1710 	afs_op_set_vnode(op, 0, dvnode);
1711 	afs_op_set_vnode(op, 1, vnode);
1712 	op->file[0].dv_delta = 1;
1713 	op->file[0].update_ctime = true;
1714 	op->file[1].update_ctime = true;
1715 
1716 	op->dentry		= dentry;
1717 	op->dentry_2		= from;
1718 	op->ops			= &afs_link_operation;
1719 	op->create.reason	= afs_edit_dir_for_link;
1720 	return afs_do_sync_operation(op);
1721 
1722 error:
1723 	d_drop(dentry);
1724 	_leave(" = %d", ret);
1725 	return ret;
1726 }
1727 
1728 static const struct afs_operation_ops afs_symlink_operation = {
1729 	.issue_afs_rpc	= afs_fs_symlink,
1730 	.issue_yfs_rpc	= yfs_fs_symlink,
1731 	.success	= afs_create_success,
1732 	.aborted	= afs_check_for_remote_deletion,
1733 	.edit_dir	= afs_create_edit_dir,
1734 	.put		= afs_create_put,
1735 };
1736 
1737 /*
1738  * create a symlink in an AFS filesystem
1739  */
1740 static int afs_symlink(struct inode *dir, struct dentry *dentry,
1741 		       const char *content)
1742 {
1743 	struct afs_operation *op;
1744 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1745 	int ret;
1746 
1747 	_enter("{%llx:%llu},{%pd},%s",
1748 	       dvnode->fid.vid, dvnode->fid.vnode, dentry,
1749 	       content);
1750 
1751 	ret = -ENAMETOOLONG;
1752 	if (dentry->d_name.len >= AFSNAMEMAX)
1753 		goto error;
1754 
1755 	ret = -EINVAL;
1756 	if (strlen(content) >= AFSPATHMAX)
1757 		goto error;
1758 
1759 	op = afs_alloc_operation(NULL, dvnode->volume);
1760 	if (IS_ERR(op)) {
1761 		ret = PTR_ERR(op);
1762 		goto error;
1763 	}
1764 
1765 	afs_op_set_vnode(op, 0, dvnode);
1766 	op->file[0].dv_delta = 1;
1767 
1768 	op->dentry		= dentry;
1769 	op->ops			= &afs_symlink_operation;
1770 	op->create.reason	= afs_edit_dir_for_symlink;
1771 	op->create.symlink	= content;
1772 	return afs_do_sync_operation(op);
1773 
1774 error:
1775 	d_drop(dentry);
1776 	_leave(" = %d", ret);
1777 	return ret;
1778 }
1779 
1780 static void afs_rename_success(struct afs_operation *op)
1781 {
1782 	_enter("op=%08x", op->debug_id);
1783 
1784 	op->ctime = op->file[0].scb.status.mtime_client;
1785 	afs_check_dir_conflict(op, &op->file[1]);
1786 	afs_vnode_commit_status(op, &op->file[0]);
1787 	if (op->file[1].vnode != op->file[0].vnode) {
1788 		op->ctime = op->file[1].scb.status.mtime_client;
1789 		afs_vnode_commit_status(op, &op->file[1]);
1790 	}
1791 }
1792 
1793 static void afs_rename_edit_dir(struct afs_operation *op)
1794 {
1795 	struct afs_vnode_param *orig_dvp = &op->file[0];
1796 	struct afs_vnode_param *new_dvp = &op->file[1];
1797 	struct afs_vnode *orig_dvnode = orig_dvp->vnode;
1798 	struct afs_vnode *new_dvnode = new_dvp->vnode;
1799 	struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry));
1800 	struct dentry *old_dentry = op->dentry;
1801 	struct dentry *new_dentry = op->dentry_2;
1802 	struct inode *new_inode;
1803 
1804 	_enter("op=%08x", op->debug_id);
1805 
1806 	if (op->rename.rehash) {
1807 		d_rehash(op->rename.rehash);
1808 		op->rename.rehash = NULL;
1809 	}
1810 
1811 	down_write(&orig_dvnode->validate_lock);
1812 	if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) &&
1813 	    orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta)
1814 		afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1815 				    afs_edit_dir_for_rename_0);
1816 
1817 	if (new_dvnode != orig_dvnode) {
1818 		up_write(&orig_dvnode->validate_lock);
1819 		down_write(&new_dvnode->validate_lock);
1820 	}
1821 
1822 	if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) &&
1823 	    new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) {
1824 		if (!op->rename.new_negative)
1825 			afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1826 					    afs_edit_dir_for_rename_1);
1827 
1828 		afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1829 				 &vnode->fid, afs_edit_dir_for_rename_2);
1830 	}
1831 
1832 	new_inode = d_inode(new_dentry);
1833 	if (new_inode) {
1834 		spin_lock(&new_inode->i_lock);
1835 		if (new_inode->i_nlink > 0)
1836 			drop_nlink(new_inode);
1837 		spin_unlock(&new_inode->i_lock);
1838 	}
1839 
1840 	/* Now we can update d_fsdata on the dentries to reflect their
1841 	 * new parent's data_version.
1842 	 *
1843 	 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1844 	 * to update both dentries with opposing dir versions.
1845 	 */
1846 	afs_update_dentry_version(op, new_dvp, op->dentry);
1847 	afs_update_dentry_version(op, new_dvp, op->dentry_2);
1848 
1849 	d_move(old_dentry, new_dentry);
1850 
1851 	up_write(&new_dvnode->validate_lock);
1852 }
1853 
1854 static void afs_rename_put(struct afs_operation *op)
1855 {
1856 	_enter("op=%08x", op->debug_id);
1857 	if (op->rename.rehash)
1858 		d_rehash(op->rename.rehash);
1859 	dput(op->rename.tmp);
1860 	if (op->error)
1861 		d_rehash(op->dentry);
1862 }
1863 
1864 static const struct afs_operation_ops afs_rename_operation = {
1865 	.issue_afs_rpc	= afs_fs_rename,
1866 	.issue_yfs_rpc	= yfs_fs_rename,
1867 	.success	= afs_rename_success,
1868 	.edit_dir	= afs_rename_edit_dir,
1869 	.put		= afs_rename_put,
1870 };
1871 
1872 /*
1873  * rename a file in an AFS filesystem and/or move it between directories
1874  */
1875 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
1876 		      struct inode *new_dir, struct dentry *new_dentry,
1877 		      unsigned int flags)
1878 {
1879 	struct afs_operation *op;
1880 	struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1881 	int ret;
1882 
1883 	if (flags)
1884 		return -EINVAL;
1885 
1886 	/* Don't allow silly-rename files be moved around. */
1887 	if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1888 		return -EINVAL;
1889 
1890 	vnode = AFS_FS_I(d_inode(old_dentry));
1891 	orig_dvnode = AFS_FS_I(old_dir);
1892 	new_dvnode = AFS_FS_I(new_dir);
1893 
1894 	_enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1895 	       orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1896 	       vnode->fid.vid, vnode->fid.vnode,
1897 	       new_dvnode->fid.vid, new_dvnode->fid.vnode,
1898 	       new_dentry);
1899 
1900 	op = afs_alloc_operation(NULL, orig_dvnode->volume);
1901 	if (IS_ERR(op))
1902 		return PTR_ERR(op);
1903 
1904 	afs_op_set_vnode(op, 0, orig_dvnode);
1905 	afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */
1906 	op->file[0].dv_delta = 1;
1907 	op->file[1].dv_delta = 1;
1908 	op->file[0].update_ctime = true;
1909 	op->file[1].update_ctime = true;
1910 
1911 	op->dentry		= old_dentry;
1912 	op->dentry_2		= new_dentry;
1913 	op->rename.new_negative	= d_is_negative(new_dentry);
1914 	op->ops			= &afs_rename_operation;
1915 
1916 	/* For non-directories, check whether the target is busy and if so,
1917 	 * make a copy of the dentry and then do a silly-rename.  If the
1918 	 * silly-rename succeeds, the copied dentry is hashed and becomes the
1919 	 * new target.
1920 	 */
1921 	if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1922 		/* To prevent any new references to the target during the
1923 		 * rename, we unhash the dentry in advance.
1924 		 */
1925 		if (!d_unhashed(new_dentry)) {
1926 			d_drop(new_dentry);
1927 			op->rename.rehash = new_dentry;
1928 		}
1929 
1930 		if (d_count(new_dentry) > 2) {
1931 			/* copy the target dentry's name */
1932 			ret = -ENOMEM;
1933 			op->rename.tmp = d_alloc(new_dentry->d_parent,
1934 						 &new_dentry->d_name);
1935 			if (!op->rename.tmp)
1936 				goto error;
1937 
1938 			ret = afs_sillyrename(new_dvnode,
1939 					      AFS_FS_I(d_inode(new_dentry)),
1940 					      new_dentry, op->key);
1941 			if (ret)
1942 				goto error;
1943 
1944 			op->dentry_2 = op->rename.tmp;
1945 			op->rename.rehash = NULL;
1946 			op->rename.new_negative = true;
1947 		}
1948 	}
1949 
1950 	/* This bit is potentially nasty as there's a potential race with
1951 	 * afs_d_revalidate{,_rcu}().  We have to change d_fsdata on the dentry
1952 	 * to reflect it's new parent's new data_version after the op, but
1953 	 * d_revalidate may see old_dentry between the op having taken place
1954 	 * and the version being updated.
1955 	 *
1956 	 * So drop the old_dentry for now to make other threads go through
1957 	 * lookup instead - which we hold a lock against.
1958 	 */
1959 	d_drop(old_dentry);
1960 
1961 	return afs_do_sync_operation(op);
1962 
1963 error:
1964 	return afs_put_operation(op);
1965 }
1966 
1967 /*
1968  * Release a directory page and clean up its private state if it's not busy
1969  * - return true if the page can now be released, false if not
1970  */
1971 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1972 {
1973 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1974 
1975 	_enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1976 
1977 	detach_page_private(page);
1978 
1979 	/* The directory will need reloading. */
1980 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1981 		afs_stat_v(dvnode, n_relpg);
1982 	return 1;
1983 }
1984 
1985 /*
1986  * invalidate part or all of a page
1987  * - release a page and clean up its private data if offset is 0 (indicating
1988  *   the entire page)
1989  */
1990 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
1991 				   unsigned int length)
1992 {
1993 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1994 
1995 	_enter("{%lu},%u,%u", page->index, offset, length);
1996 
1997 	BUG_ON(!PageLocked(page));
1998 
1999 	/* The directory will need reloading. */
2000 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2001 		afs_stat_v(dvnode, n_inval);
2002 
2003 	/* we clean up only if the entire page is being invalidated */
2004 	if (offset == 0 && length == PAGE_SIZE)
2005 		detach_page_private(page);
2006 }
2007