1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* dir.c: AFS filesystem directory handling 3 * 4 * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/fs.h> 10 #include <linux/namei.h> 11 #include <linux/pagemap.h> 12 #include <linux/swap.h> 13 #include <linux/ctype.h> 14 #include <linux/sched.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include "internal.h" 17 #include "afs_fs.h" 18 #include "xdr_fs.h" 19 20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry, 21 unsigned int flags); 22 static int afs_dir_open(struct inode *inode, struct file *file); 23 static int afs_readdir(struct file *file, struct dir_context *ctx); 24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags); 25 static int afs_d_delete(const struct dentry *dentry); 26 static void afs_d_iput(struct dentry *dentry, struct inode *inode); 27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen, 28 loff_t fpos, u64 ino, unsigned dtype); 29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen, 30 loff_t fpos, u64 ino, unsigned dtype); 31 static int afs_create(struct user_namespace *mnt_userns, struct inode *dir, 32 struct dentry *dentry, umode_t mode, bool excl); 33 static int afs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 34 struct dentry *dentry, umode_t mode); 35 static int afs_rmdir(struct inode *dir, struct dentry *dentry); 36 static int afs_unlink(struct inode *dir, struct dentry *dentry); 37 static int afs_link(struct dentry *from, struct inode *dir, 38 struct dentry *dentry); 39 static int afs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 40 struct dentry *dentry, const char *content); 41 static int afs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 42 struct dentry *old_dentry, struct inode *new_dir, 43 struct dentry *new_dentry, unsigned int flags); 44 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags); 45 static void afs_dir_invalidatepage(struct page *page, unsigned int offset, 46 unsigned int length); 47 48 static int afs_dir_set_page_dirty(struct page *page) 49 { 50 BUG(); /* This should never happen. */ 51 } 52 53 const struct file_operations afs_dir_file_operations = { 54 .open = afs_dir_open, 55 .release = afs_release, 56 .iterate_shared = afs_readdir, 57 .lock = afs_lock, 58 .llseek = generic_file_llseek, 59 }; 60 61 const struct inode_operations afs_dir_inode_operations = { 62 .create = afs_create, 63 .lookup = afs_lookup, 64 .link = afs_link, 65 .unlink = afs_unlink, 66 .symlink = afs_symlink, 67 .mkdir = afs_mkdir, 68 .rmdir = afs_rmdir, 69 .rename = afs_rename, 70 .permission = afs_permission, 71 .getattr = afs_getattr, 72 .setattr = afs_setattr, 73 .listxattr = afs_listxattr, 74 }; 75 76 const struct address_space_operations afs_dir_aops = { 77 .set_page_dirty = afs_dir_set_page_dirty, 78 .releasepage = afs_dir_releasepage, 79 .invalidatepage = afs_dir_invalidatepage, 80 }; 81 82 const struct dentry_operations afs_fs_dentry_operations = { 83 .d_revalidate = afs_d_revalidate, 84 .d_delete = afs_d_delete, 85 .d_release = afs_d_release, 86 .d_automount = afs_d_automount, 87 .d_iput = afs_d_iput, 88 }; 89 90 struct afs_lookup_one_cookie { 91 struct dir_context ctx; 92 struct qstr name; 93 bool found; 94 struct afs_fid fid; 95 }; 96 97 struct afs_lookup_cookie { 98 struct dir_context ctx; 99 struct qstr name; 100 bool found; 101 bool one_only; 102 unsigned short nr_fids; 103 struct afs_fid fids[50]; 104 }; 105 106 /* 107 * check that a directory page is valid 108 */ 109 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page, 110 loff_t i_size) 111 { 112 struct afs_xdr_dir_page *dbuf; 113 loff_t latter, off; 114 int tmp, qty; 115 116 /* Determine how many magic numbers there should be in this page, but 117 * we must take care because the directory may change size under us. 118 */ 119 off = page_offset(page); 120 if (i_size <= off) 121 goto checked; 122 123 latter = i_size - off; 124 if (latter >= PAGE_SIZE) 125 qty = PAGE_SIZE; 126 else 127 qty = latter; 128 qty /= sizeof(union afs_xdr_dir_block); 129 130 /* check them */ 131 dbuf = kmap(page); 132 for (tmp = 0; tmp < qty; tmp++) { 133 if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) { 134 printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n", 135 __func__, dvnode->vfs_inode.i_ino, tmp, qty, 136 ntohs(dbuf->blocks[tmp].hdr.magic)); 137 trace_afs_dir_check_failed(dvnode, off, i_size); 138 kunmap(page); 139 trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic); 140 goto error; 141 } 142 143 /* Make sure each block is NUL terminated so we can reasonably 144 * use string functions on it. The filenames in the page 145 * *should* be NUL-terminated anyway. 146 */ 147 ((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0; 148 } 149 150 kunmap(page); 151 152 checked: 153 afs_stat_v(dvnode, n_read_dir); 154 return true; 155 156 error: 157 return false; 158 } 159 160 /* 161 * Check the contents of a directory that we've just read. 162 */ 163 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req) 164 { 165 struct afs_xdr_dir_page *dbuf; 166 unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block); 167 168 for (i = 0; i < req->nr_pages; i++) 169 if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len)) 170 goto bad; 171 return true; 172 173 bad: 174 pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n", 175 dvnode->fid.vid, dvnode->fid.vnode, 176 req->file_size, req->len, req->actual_len, req->remain); 177 pr_warn("DIR %llx %x %x %x\n", 178 req->pos, req->index, req->nr_pages, req->offset); 179 180 for (i = 0; i < req->nr_pages; i++) { 181 dbuf = kmap(req->pages[i]); 182 for (j = 0; j < qty; j++) { 183 union afs_xdr_dir_block *block = &dbuf->blocks[j]; 184 185 pr_warn("[%02x] %32phN\n", i * qty + j, block); 186 } 187 kunmap(req->pages[i]); 188 } 189 return false; 190 } 191 192 /* 193 * open an AFS directory file 194 */ 195 static int afs_dir_open(struct inode *inode, struct file *file) 196 { 197 _enter("{%lu}", inode->i_ino); 198 199 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 200 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 201 202 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags)) 203 return -ENOENT; 204 205 return afs_open(inode, file); 206 } 207 208 /* 209 * Read the directory into the pagecache in one go, scrubbing the previous 210 * contents. The list of pages is returned, pinning them so that they don't 211 * get reclaimed during the iteration. 212 */ 213 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key) 214 __acquires(&dvnode->validate_lock) 215 { 216 struct afs_read *req; 217 loff_t i_size; 218 int nr_pages, nr_inline, i, n; 219 int ret = -ENOMEM; 220 221 retry: 222 i_size = i_size_read(&dvnode->vfs_inode); 223 if (i_size < 2048) 224 return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small)); 225 if (i_size > 2048 * 1024) { 226 trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big); 227 return ERR_PTR(-EFBIG); 228 } 229 230 _enter("%llu", i_size); 231 232 /* Get a request record to hold the page list. We want to hold it 233 * inline if we can, but we don't want to make an order 1 allocation. 234 */ 235 nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE; 236 nr_inline = nr_pages; 237 if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *)) 238 nr_inline = 0; 239 240 req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL); 241 if (!req) 242 return ERR_PTR(-ENOMEM); 243 244 refcount_set(&req->usage, 1); 245 req->nr_pages = nr_pages; 246 req->actual_len = i_size; /* May change */ 247 req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */ 248 req->data_version = dvnode->status.data_version; /* May change */ 249 if (nr_inline > 0) { 250 req->pages = req->array; 251 } else { 252 req->pages = kcalloc(nr_pages, sizeof(struct page *), 253 GFP_KERNEL); 254 if (!req->pages) 255 goto error; 256 } 257 258 /* Get a list of all the pages that hold or will hold the directory 259 * content. We need to fill in any gaps that we might find where the 260 * memory reclaimer has been at work. If there are any gaps, we will 261 * need to reread the entire directory contents. 262 */ 263 i = 0; 264 do { 265 n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i, 266 req->nr_pages - i, 267 req->pages + i); 268 _debug("find %u at %u/%u", n, i, req->nr_pages); 269 if (n == 0) { 270 gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask; 271 272 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 273 afs_stat_v(dvnode, n_inval); 274 275 ret = -ENOMEM; 276 req->pages[i] = __page_cache_alloc(gfp); 277 if (!req->pages[i]) 278 goto error; 279 ret = add_to_page_cache_lru(req->pages[i], 280 dvnode->vfs_inode.i_mapping, 281 i, gfp); 282 if (ret < 0) 283 goto error; 284 285 attach_page_private(req->pages[i], (void *)1); 286 unlock_page(req->pages[i]); 287 i++; 288 } else { 289 i += n; 290 } 291 } while (i < req->nr_pages); 292 293 /* If we're going to reload, we need to lock all the pages to prevent 294 * races. 295 */ 296 ret = -ERESTARTSYS; 297 if (down_read_killable(&dvnode->validate_lock) < 0) 298 goto error; 299 300 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 301 goto success; 302 303 up_read(&dvnode->validate_lock); 304 if (down_write_killable(&dvnode->validate_lock) < 0) 305 goto error; 306 307 if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { 308 trace_afs_reload_dir(dvnode); 309 ret = afs_fetch_data(dvnode, key, req); 310 if (ret < 0) 311 goto error_unlock; 312 313 task_io_account_read(PAGE_SIZE * req->nr_pages); 314 315 if (req->len < req->file_size) 316 goto content_has_grown; 317 318 /* Validate the data we just read. */ 319 ret = -EIO; 320 if (!afs_dir_check_pages(dvnode, req)) 321 goto error_unlock; 322 323 // TODO: Trim excess pages 324 325 set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags); 326 } 327 328 downgrade_write(&dvnode->validate_lock); 329 success: 330 return req; 331 332 error_unlock: 333 up_write(&dvnode->validate_lock); 334 error: 335 afs_put_read(req); 336 _leave(" = %d", ret); 337 return ERR_PTR(ret); 338 339 content_has_grown: 340 up_write(&dvnode->validate_lock); 341 afs_put_read(req); 342 goto retry; 343 } 344 345 /* 346 * deal with one block in an AFS directory 347 */ 348 static int afs_dir_iterate_block(struct afs_vnode *dvnode, 349 struct dir_context *ctx, 350 union afs_xdr_dir_block *block, 351 unsigned blkoff) 352 { 353 union afs_xdr_dirent *dire; 354 unsigned offset, next, curr, nr_slots; 355 size_t nlen; 356 int tmp; 357 358 _enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block); 359 360 curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent); 361 362 /* walk through the block, an entry at a time */ 363 for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS); 364 offset < AFS_DIR_SLOTS_PER_BLOCK; 365 offset = next 366 ) { 367 /* skip entries marked unused in the bitmap */ 368 if (!(block->hdr.bitmap[offset / 8] & 369 (1 << (offset % 8)))) { 370 _debug("ENT[%zu.%u]: unused", 371 blkoff / sizeof(union afs_xdr_dir_block), offset); 372 next = offset + 1; 373 if (offset >= curr) 374 ctx->pos = blkoff + 375 next * sizeof(union afs_xdr_dirent); 376 continue; 377 } 378 379 /* got a valid entry */ 380 dire = &block->dirents[offset]; 381 nlen = strnlen(dire->u.name, 382 sizeof(*block) - 383 offset * sizeof(union afs_xdr_dirent)); 384 if (nlen > AFSNAMEMAX - 1) { 385 _debug("ENT[%zu]: name too long (len %u/%zu)", 386 blkoff / sizeof(union afs_xdr_dir_block), 387 offset, nlen); 388 return afs_bad(dvnode, afs_file_error_dir_name_too_long); 389 } 390 391 _debug("ENT[%zu.%u]: %s %zu \"%s\"", 392 blkoff / sizeof(union afs_xdr_dir_block), offset, 393 (offset < curr ? "skip" : "fill"), 394 nlen, dire->u.name); 395 396 nr_slots = afs_dir_calc_slots(nlen); 397 next = offset + nr_slots; 398 if (next > AFS_DIR_SLOTS_PER_BLOCK) { 399 _debug("ENT[%zu.%u]:" 400 " %u extends beyond end dir block" 401 " (len %zu)", 402 blkoff / sizeof(union afs_xdr_dir_block), 403 offset, next, nlen); 404 return afs_bad(dvnode, afs_file_error_dir_over_end); 405 } 406 407 /* Check that the name-extension dirents are all allocated */ 408 for (tmp = 1; tmp < nr_slots; tmp++) { 409 unsigned int ix = offset + tmp; 410 if (!(block->hdr.bitmap[ix / 8] & (1 << (ix % 8)))) { 411 _debug("ENT[%zu.u]:" 412 " %u unmarked extension (%u/%u)", 413 blkoff / sizeof(union afs_xdr_dir_block), 414 offset, tmp, nr_slots); 415 return afs_bad(dvnode, afs_file_error_dir_unmarked_ext); 416 } 417 } 418 419 /* skip if starts before the current position */ 420 if (offset < curr) 421 continue; 422 423 /* found the next entry */ 424 if (!dir_emit(ctx, dire->u.name, nlen, 425 ntohl(dire->u.vnode), 426 (ctx->actor == afs_lookup_filldir || 427 ctx->actor == afs_lookup_one_filldir)? 428 ntohl(dire->u.unique) : DT_UNKNOWN)) { 429 _leave(" = 0 [full]"); 430 return 0; 431 } 432 433 ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent); 434 } 435 436 _leave(" = 1 [more]"); 437 return 1; 438 } 439 440 /* 441 * iterate through the data blob that lists the contents of an AFS directory 442 */ 443 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx, 444 struct key *key, afs_dataversion_t *_dir_version) 445 { 446 struct afs_vnode *dvnode = AFS_FS_I(dir); 447 struct afs_xdr_dir_page *dbuf; 448 union afs_xdr_dir_block *dblock; 449 struct afs_read *req; 450 struct page *page; 451 unsigned blkoff, limit; 452 int ret; 453 454 _enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos); 455 456 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) { 457 _leave(" = -ESTALE"); 458 return -ESTALE; 459 } 460 461 req = afs_read_dir(dvnode, key); 462 if (IS_ERR(req)) 463 return PTR_ERR(req); 464 *_dir_version = req->data_version; 465 466 /* round the file position up to the next entry boundary */ 467 ctx->pos += sizeof(union afs_xdr_dirent) - 1; 468 ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1); 469 470 /* walk through the blocks in sequence */ 471 ret = 0; 472 while (ctx->pos < req->actual_len) { 473 blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1); 474 475 /* Fetch the appropriate page from the directory and re-add it 476 * to the LRU. 477 */ 478 page = req->pages[blkoff / PAGE_SIZE]; 479 if (!page) { 480 ret = afs_bad(dvnode, afs_file_error_dir_missing_page); 481 break; 482 } 483 mark_page_accessed(page); 484 485 limit = blkoff & ~(PAGE_SIZE - 1); 486 487 dbuf = kmap(page); 488 489 /* deal with the individual blocks stashed on this page */ 490 do { 491 dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) / 492 sizeof(union afs_xdr_dir_block)]; 493 ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff); 494 if (ret != 1) { 495 kunmap(page); 496 goto out; 497 } 498 499 blkoff += sizeof(union afs_xdr_dir_block); 500 501 } while (ctx->pos < dir->i_size && blkoff < limit); 502 503 kunmap(page); 504 ret = 0; 505 } 506 507 out: 508 up_read(&dvnode->validate_lock); 509 afs_put_read(req); 510 _leave(" = %d", ret); 511 return ret; 512 } 513 514 /* 515 * read an AFS directory 516 */ 517 static int afs_readdir(struct file *file, struct dir_context *ctx) 518 { 519 afs_dataversion_t dir_version; 520 521 return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file), 522 &dir_version); 523 } 524 525 /* 526 * Search the directory for a single name 527 * - if afs_dir_iterate_block() spots this function, it'll pass the FID 528 * uniquifier through dtype 529 */ 530 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, 531 int nlen, loff_t fpos, u64 ino, unsigned dtype) 532 { 533 struct afs_lookup_one_cookie *cookie = 534 container_of(ctx, struct afs_lookup_one_cookie, ctx); 535 536 _enter("{%s,%u},%s,%u,,%llu,%u", 537 cookie->name.name, cookie->name.len, name, nlen, 538 (unsigned long long) ino, dtype); 539 540 /* insanity checks first */ 541 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 542 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 543 544 if (cookie->name.len != nlen || 545 memcmp(cookie->name.name, name, nlen) != 0) { 546 _leave(" = 0 [no]"); 547 return 0; 548 } 549 550 cookie->fid.vnode = ino; 551 cookie->fid.unique = dtype; 552 cookie->found = 1; 553 554 _leave(" = -1 [found]"); 555 return -1; 556 } 557 558 /* 559 * Do a lookup of a single name in a directory 560 * - just returns the FID the dentry name maps to if found 561 */ 562 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry, 563 struct afs_fid *fid, struct key *key, 564 afs_dataversion_t *_dir_version) 565 { 566 struct afs_super_info *as = dir->i_sb->s_fs_info; 567 struct afs_lookup_one_cookie cookie = { 568 .ctx.actor = afs_lookup_one_filldir, 569 .name = dentry->d_name, 570 .fid.vid = as->volume->vid 571 }; 572 int ret; 573 574 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry); 575 576 /* search the directory */ 577 ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version); 578 if (ret < 0) { 579 _leave(" = %d [iter]", ret); 580 return ret; 581 } 582 583 ret = -ENOENT; 584 if (!cookie.found) { 585 _leave(" = -ENOENT [not found]"); 586 return -ENOENT; 587 } 588 589 *fid = cookie.fid; 590 _leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique); 591 return 0; 592 } 593 594 /* 595 * search the directory for a name 596 * - if afs_dir_iterate_block() spots this function, it'll pass the FID 597 * uniquifier through dtype 598 */ 599 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, 600 int nlen, loff_t fpos, u64 ino, unsigned dtype) 601 { 602 struct afs_lookup_cookie *cookie = 603 container_of(ctx, struct afs_lookup_cookie, ctx); 604 int ret; 605 606 _enter("{%s,%u},%s,%u,,%llu,%u", 607 cookie->name.name, cookie->name.len, name, nlen, 608 (unsigned long long) ino, dtype); 609 610 /* insanity checks first */ 611 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048); 612 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32); 613 614 if (cookie->found) { 615 if (cookie->nr_fids < 50) { 616 cookie->fids[cookie->nr_fids].vnode = ino; 617 cookie->fids[cookie->nr_fids].unique = dtype; 618 cookie->nr_fids++; 619 } 620 } else if (cookie->name.len == nlen && 621 memcmp(cookie->name.name, name, nlen) == 0) { 622 cookie->fids[1].vnode = ino; 623 cookie->fids[1].unique = dtype; 624 cookie->found = 1; 625 if (cookie->one_only) 626 return -1; 627 } 628 629 ret = cookie->nr_fids >= 50 ? -1 : 0; 630 _leave(" = %d", ret); 631 return ret; 632 } 633 634 /* 635 * Deal with the result of a successful lookup operation. Turn all the files 636 * into inodes and save the first one - which is the one we actually want. 637 */ 638 static void afs_do_lookup_success(struct afs_operation *op) 639 { 640 struct afs_vnode_param *vp; 641 struct afs_vnode *vnode; 642 struct inode *inode; 643 u32 abort_code; 644 int i; 645 646 _enter(""); 647 648 for (i = 0; i < op->nr_files; i++) { 649 switch (i) { 650 case 0: 651 vp = &op->file[0]; 652 abort_code = vp->scb.status.abort_code; 653 if (abort_code != 0) { 654 op->ac.abort_code = abort_code; 655 op->error = afs_abort_to_error(abort_code); 656 } 657 break; 658 659 case 1: 660 vp = &op->file[1]; 661 break; 662 663 default: 664 vp = &op->more_files[i - 2]; 665 break; 666 } 667 668 if (!vp->scb.have_status && !vp->scb.have_error) 669 continue; 670 671 _debug("do [%u]", i); 672 if (vp->vnode) { 673 if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags)) 674 afs_vnode_commit_status(op, vp); 675 } else if (vp->scb.status.abort_code == 0) { 676 inode = afs_iget(op, vp); 677 if (!IS_ERR(inode)) { 678 vnode = AFS_FS_I(inode); 679 afs_cache_permit(vnode, op->key, 680 0 /* Assume vnode->cb_break is 0 */ + 681 op->cb_v_break, 682 &vp->scb); 683 vp->vnode = vnode; 684 vp->put_vnode = true; 685 } 686 } else { 687 _debug("- abort %d %llx:%llx.%x", 688 vp->scb.status.abort_code, 689 vp->fid.vid, vp->fid.vnode, vp->fid.unique); 690 } 691 } 692 693 _leave(""); 694 } 695 696 static const struct afs_operation_ops afs_inline_bulk_status_operation = { 697 .issue_afs_rpc = afs_fs_inline_bulk_status, 698 .issue_yfs_rpc = yfs_fs_inline_bulk_status, 699 .success = afs_do_lookup_success, 700 }; 701 702 static const struct afs_operation_ops afs_lookup_fetch_status_operation = { 703 .issue_afs_rpc = afs_fs_fetch_status, 704 .issue_yfs_rpc = yfs_fs_fetch_status, 705 .success = afs_do_lookup_success, 706 .aborted = afs_check_for_remote_deletion, 707 }; 708 709 /* 710 * See if we know that the server we expect to use doesn't support 711 * FS.InlineBulkStatus. 712 */ 713 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode) 714 { 715 struct afs_server_list *slist; 716 struct afs_volume *volume = dvnode->volume; 717 struct afs_server *server; 718 bool ret = true; 719 int i; 720 721 if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags)) 722 return true; 723 724 rcu_read_lock(); 725 slist = rcu_dereference(volume->servers); 726 727 for (i = 0; i < slist->nr_servers; i++) { 728 server = slist->servers[i].server; 729 if (server == dvnode->cb_server) { 730 if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags)) 731 ret = false; 732 break; 733 } 734 } 735 736 rcu_read_unlock(); 737 return ret; 738 } 739 740 /* 741 * Do a lookup in a directory. We make use of bulk lookup to query a slew of 742 * files in one go and create inodes for them. The inode of the file we were 743 * asked for is returned. 744 */ 745 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry, 746 struct key *key) 747 { 748 struct afs_lookup_cookie *cookie; 749 struct afs_vnode_param *vp; 750 struct afs_operation *op; 751 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode; 752 struct inode *inode = NULL, *ti; 753 afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version); 754 long ret; 755 int i; 756 757 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry); 758 759 cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL); 760 if (!cookie) 761 return ERR_PTR(-ENOMEM); 762 763 for (i = 0; i < ARRAY_SIZE(cookie->fids); i++) 764 cookie->fids[i].vid = dvnode->fid.vid; 765 cookie->ctx.actor = afs_lookup_filldir; 766 cookie->name = dentry->d_name; 767 cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want 768 * and slot 1 for the directory */ 769 770 if (!afs_server_supports_ibulk(dvnode)) 771 cookie->one_only = true; 772 773 /* search the directory */ 774 ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version); 775 if (ret < 0) 776 goto out; 777 778 dentry->d_fsdata = (void *)(unsigned long)data_version; 779 780 ret = -ENOENT; 781 if (!cookie->found) 782 goto out; 783 784 /* Check to see if we already have an inode for the primary fid. */ 785 inode = ilookup5(dir->i_sb, cookie->fids[1].vnode, 786 afs_ilookup5_test_by_fid, &cookie->fids[1]); 787 if (inode) 788 goto out; /* We do */ 789 790 /* Okay, we didn't find it. We need to query the server - and whilst 791 * we're doing that, we're going to attempt to look up a bunch of other 792 * vnodes also. 793 */ 794 op = afs_alloc_operation(NULL, dvnode->volume); 795 if (IS_ERR(op)) { 796 ret = PTR_ERR(op); 797 goto out; 798 } 799 800 afs_op_set_vnode(op, 0, dvnode); 801 afs_op_set_fid(op, 1, &cookie->fids[1]); 802 803 op->nr_files = cookie->nr_fids; 804 _debug("nr_files %u", op->nr_files); 805 806 /* Need space for examining all the selected files */ 807 op->error = -ENOMEM; 808 if (op->nr_files > 2) { 809 op->more_files = kvcalloc(op->nr_files - 2, 810 sizeof(struct afs_vnode_param), 811 GFP_KERNEL); 812 if (!op->more_files) 813 goto out_op; 814 815 for (i = 2; i < op->nr_files; i++) { 816 vp = &op->more_files[i - 2]; 817 vp->fid = cookie->fids[i]; 818 819 /* Find any inodes that already exist and get their 820 * callback counters. 821 */ 822 ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode, 823 afs_ilookup5_test_by_fid, &vp->fid); 824 if (!IS_ERR_OR_NULL(ti)) { 825 vnode = AFS_FS_I(ti); 826 vp->dv_before = vnode->status.data_version; 827 vp->cb_break_before = afs_calc_vnode_cb_break(vnode); 828 vp->vnode = vnode; 829 vp->put_vnode = true; 830 vp->speculative = true; /* vnode not locked */ 831 } 832 } 833 } 834 835 /* Try FS.InlineBulkStatus first. Abort codes for the individual 836 * lookups contained therein are stored in the reply without aborting 837 * the whole operation. 838 */ 839 op->error = -ENOTSUPP; 840 if (!cookie->one_only) { 841 op->ops = &afs_inline_bulk_status_operation; 842 afs_begin_vnode_operation(op); 843 afs_wait_for_operation(op); 844 } 845 846 if (op->error == -ENOTSUPP) { 847 /* We could try FS.BulkStatus next, but this aborts the entire 848 * op if any of the lookups fails - so, for the moment, revert 849 * to FS.FetchStatus for op->file[1]. 850 */ 851 op->fetch_status.which = 1; 852 op->ops = &afs_lookup_fetch_status_operation; 853 afs_begin_vnode_operation(op); 854 afs_wait_for_operation(op); 855 } 856 inode = ERR_PTR(op->error); 857 858 out_op: 859 if (op->error == 0) { 860 inode = &op->file[1].vnode->vfs_inode; 861 op->file[1].vnode = NULL; 862 } 863 864 if (op->file[0].scb.have_status) 865 dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version; 866 else 867 dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before; 868 ret = afs_put_operation(op); 869 out: 870 kfree(cookie); 871 _leave(""); 872 return inode ?: ERR_PTR(ret); 873 } 874 875 /* 876 * Look up an entry in a directory with @sys substitution. 877 */ 878 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry, 879 struct key *key) 880 { 881 struct afs_sysnames *subs; 882 struct afs_net *net = afs_i2net(dir); 883 struct dentry *ret; 884 char *buf, *p, *name; 885 int len, i; 886 887 _enter(""); 888 889 ret = ERR_PTR(-ENOMEM); 890 p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL); 891 if (!buf) 892 goto out_p; 893 if (dentry->d_name.len > 4) { 894 memcpy(p, dentry->d_name.name, dentry->d_name.len - 4); 895 p += dentry->d_name.len - 4; 896 } 897 898 /* There is an ordered list of substitutes that we have to try. */ 899 read_lock(&net->sysnames_lock); 900 subs = net->sysnames; 901 refcount_inc(&subs->usage); 902 read_unlock(&net->sysnames_lock); 903 904 for (i = 0; i < subs->nr; i++) { 905 name = subs->subs[i]; 906 len = dentry->d_name.len - 4 + strlen(name); 907 if (len >= AFSNAMEMAX) { 908 ret = ERR_PTR(-ENAMETOOLONG); 909 goto out_s; 910 } 911 912 strcpy(p, name); 913 ret = lookup_one_len(buf, dentry->d_parent, len); 914 if (IS_ERR(ret) || d_is_positive(ret)) 915 goto out_s; 916 dput(ret); 917 } 918 919 /* We don't want to d_add() the @sys dentry here as we don't want to 920 * the cached dentry to hide changes to the sysnames list. 921 */ 922 ret = NULL; 923 out_s: 924 afs_put_sysnames(subs); 925 kfree(buf); 926 out_p: 927 key_put(key); 928 return ret; 929 } 930 931 /* 932 * look up an entry in a directory 933 */ 934 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry, 935 unsigned int flags) 936 { 937 struct afs_vnode *dvnode = AFS_FS_I(dir); 938 struct afs_fid fid = {}; 939 struct inode *inode; 940 struct dentry *d; 941 struct key *key; 942 int ret; 943 944 _enter("{%llx:%llu},%p{%pd},", 945 dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry); 946 947 ASSERTCMP(d_inode(dentry), ==, NULL); 948 949 if (dentry->d_name.len >= AFSNAMEMAX) { 950 _leave(" = -ENAMETOOLONG"); 951 return ERR_PTR(-ENAMETOOLONG); 952 } 953 954 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) { 955 _leave(" = -ESTALE"); 956 return ERR_PTR(-ESTALE); 957 } 958 959 key = afs_request_key(dvnode->volume->cell); 960 if (IS_ERR(key)) { 961 _leave(" = %ld [key]", PTR_ERR(key)); 962 return ERR_CAST(key); 963 } 964 965 ret = afs_validate(dvnode, key); 966 if (ret < 0) { 967 key_put(key); 968 _leave(" = %d [val]", ret); 969 return ERR_PTR(ret); 970 } 971 972 if (dentry->d_name.len >= 4 && 973 dentry->d_name.name[dentry->d_name.len - 4] == '@' && 974 dentry->d_name.name[dentry->d_name.len - 3] == 's' && 975 dentry->d_name.name[dentry->d_name.len - 2] == 'y' && 976 dentry->d_name.name[dentry->d_name.len - 1] == 's') 977 return afs_lookup_atsys(dir, dentry, key); 978 979 afs_stat_v(dvnode, n_lookup); 980 inode = afs_do_lookup(dir, dentry, key); 981 key_put(key); 982 if (inode == ERR_PTR(-ENOENT)) 983 inode = afs_try_auto_mntpt(dentry, dir); 984 985 if (!IS_ERR_OR_NULL(inode)) 986 fid = AFS_FS_I(inode)->fid; 987 988 _debug("splice %p", dentry->d_inode); 989 d = d_splice_alias(inode, dentry); 990 if (!IS_ERR_OR_NULL(d)) { 991 d->d_fsdata = dentry->d_fsdata; 992 trace_afs_lookup(dvnode, &d->d_name, &fid); 993 } else { 994 trace_afs_lookup(dvnode, &dentry->d_name, &fid); 995 } 996 _leave(""); 997 return d; 998 } 999 1000 /* 1001 * Check the validity of a dentry under RCU conditions. 1002 */ 1003 static int afs_d_revalidate_rcu(struct dentry *dentry) 1004 { 1005 struct afs_vnode *dvnode, *vnode; 1006 struct dentry *parent; 1007 struct inode *dir, *inode; 1008 long dir_version, de_version; 1009 1010 _enter("%p", dentry); 1011 1012 /* Check the parent directory is still valid first. */ 1013 parent = READ_ONCE(dentry->d_parent); 1014 dir = d_inode_rcu(parent); 1015 if (!dir) 1016 return -ECHILD; 1017 dvnode = AFS_FS_I(dir); 1018 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) 1019 return -ECHILD; 1020 1021 if (!afs_check_validity(dvnode)) 1022 return -ECHILD; 1023 1024 /* We only need to invalidate a dentry if the server's copy changed 1025 * behind our back. If we made the change, it's no problem. Note that 1026 * on a 32-bit system, we only have 32 bits in the dentry to store the 1027 * version. 1028 */ 1029 dir_version = (long)READ_ONCE(dvnode->status.data_version); 1030 de_version = (long)READ_ONCE(dentry->d_fsdata); 1031 if (de_version != dir_version) { 1032 dir_version = (long)READ_ONCE(dvnode->invalid_before); 1033 if (de_version - dir_version < 0) 1034 return -ECHILD; 1035 } 1036 1037 /* Check to see if the vnode referred to by the dentry still 1038 * has a callback. 1039 */ 1040 if (d_really_is_positive(dentry)) { 1041 inode = d_inode_rcu(dentry); 1042 if (inode) { 1043 vnode = AFS_FS_I(inode); 1044 if (!afs_check_validity(vnode)) 1045 return -ECHILD; 1046 } 1047 } 1048 1049 return 1; /* Still valid */ 1050 } 1051 1052 /* 1053 * check that a dentry lookup hit has found a valid entry 1054 * - NOTE! the hit can be a negative hit too, so we can't assume we have an 1055 * inode 1056 */ 1057 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags) 1058 { 1059 struct afs_vnode *vnode, *dir; 1060 struct afs_fid fid; 1061 struct dentry *parent; 1062 struct inode *inode; 1063 struct key *key; 1064 afs_dataversion_t dir_version, invalid_before; 1065 long de_version; 1066 int ret; 1067 1068 if (flags & LOOKUP_RCU) 1069 return afs_d_revalidate_rcu(dentry); 1070 1071 if (d_really_is_positive(dentry)) { 1072 vnode = AFS_FS_I(d_inode(dentry)); 1073 _enter("{v={%llx:%llu} n=%pd fl=%lx},", 1074 vnode->fid.vid, vnode->fid.vnode, dentry, 1075 vnode->flags); 1076 } else { 1077 _enter("{neg n=%pd}", dentry); 1078 } 1079 1080 key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell); 1081 if (IS_ERR(key)) 1082 key = NULL; 1083 1084 if (d_really_is_positive(dentry)) { 1085 inode = d_inode(dentry); 1086 if (inode) { 1087 vnode = AFS_FS_I(inode); 1088 afs_validate(vnode, key); 1089 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 1090 goto out_bad; 1091 } 1092 } 1093 1094 /* lock down the parent dentry so we can peer at it */ 1095 parent = dget_parent(dentry); 1096 dir = AFS_FS_I(d_inode(parent)); 1097 1098 /* validate the parent directory */ 1099 afs_validate(dir, key); 1100 1101 if (test_bit(AFS_VNODE_DELETED, &dir->flags)) { 1102 _debug("%pd: parent dir deleted", dentry); 1103 goto out_bad_parent; 1104 } 1105 1106 /* We only need to invalidate a dentry if the server's copy changed 1107 * behind our back. If we made the change, it's no problem. Note that 1108 * on a 32-bit system, we only have 32 bits in the dentry to store the 1109 * version. 1110 */ 1111 dir_version = dir->status.data_version; 1112 de_version = (long)dentry->d_fsdata; 1113 if (de_version == (long)dir_version) 1114 goto out_valid_noupdate; 1115 1116 invalid_before = dir->invalid_before; 1117 if (de_version - (long)invalid_before >= 0) 1118 goto out_valid; 1119 1120 _debug("dir modified"); 1121 afs_stat_v(dir, n_reval); 1122 1123 /* search the directory for this vnode */ 1124 ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version); 1125 switch (ret) { 1126 case 0: 1127 /* the filename maps to something */ 1128 if (d_really_is_negative(dentry)) 1129 goto out_bad_parent; 1130 inode = d_inode(dentry); 1131 if (is_bad_inode(inode)) { 1132 printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n", 1133 dentry); 1134 goto out_bad_parent; 1135 } 1136 1137 vnode = AFS_FS_I(inode); 1138 1139 /* if the vnode ID has changed, then the dirent points to a 1140 * different file */ 1141 if (fid.vnode != vnode->fid.vnode) { 1142 _debug("%pd: dirent changed [%llu != %llu]", 1143 dentry, fid.vnode, 1144 vnode->fid.vnode); 1145 goto not_found; 1146 } 1147 1148 /* if the vnode ID uniqifier has changed, then the file has 1149 * been deleted and replaced, and the original vnode ID has 1150 * been reused */ 1151 if (fid.unique != vnode->fid.unique) { 1152 _debug("%pd: file deleted (uq %u -> %u I:%u)", 1153 dentry, fid.unique, 1154 vnode->fid.unique, 1155 vnode->vfs_inode.i_generation); 1156 write_seqlock(&vnode->cb_lock); 1157 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1158 write_sequnlock(&vnode->cb_lock); 1159 goto not_found; 1160 } 1161 goto out_valid; 1162 1163 case -ENOENT: 1164 /* the filename is unknown */ 1165 _debug("%pd: dirent not found", dentry); 1166 if (d_really_is_positive(dentry)) 1167 goto not_found; 1168 goto out_valid; 1169 1170 default: 1171 _debug("failed to iterate dir %pd: %d", 1172 parent, ret); 1173 goto out_bad_parent; 1174 } 1175 1176 out_valid: 1177 dentry->d_fsdata = (void *)(unsigned long)dir_version; 1178 out_valid_noupdate: 1179 dput(parent); 1180 key_put(key); 1181 _leave(" = 1 [valid]"); 1182 return 1; 1183 1184 /* the dirent, if it exists, now points to a different vnode */ 1185 not_found: 1186 spin_lock(&dentry->d_lock); 1187 dentry->d_flags |= DCACHE_NFSFS_RENAMED; 1188 spin_unlock(&dentry->d_lock); 1189 1190 out_bad_parent: 1191 _debug("dropping dentry %pd2", dentry); 1192 dput(parent); 1193 out_bad: 1194 key_put(key); 1195 1196 _leave(" = 0 [bad]"); 1197 return 0; 1198 } 1199 1200 /* 1201 * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't 1202 * sleep) 1203 * - called from dput() when d_count is going to 0. 1204 * - return 1 to request dentry be unhashed, 0 otherwise 1205 */ 1206 static int afs_d_delete(const struct dentry *dentry) 1207 { 1208 _enter("%pd", dentry); 1209 1210 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1211 goto zap; 1212 1213 if (d_really_is_positive(dentry) && 1214 (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) || 1215 test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags))) 1216 goto zap; 1217 1218 _leave(" = 0 [keep]"); 1219 return 0; 1220 1221 zap: 1222 _leave(" = 1 [zap]"); 1223 return 1; 1224 } 1225 1226 /* 1227 * Clean up sillyrename files on dentry removal. 1228 */ 1229 static void afs_d_iput(struct dentry *dentry, struct inode *inode) 1230 { 1231 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1232 afs_silly_iput(dentry, inode); 1233 iput(inode); 1234 } 1235 1236 /* 1237 * handle dentry release 1238 */ 1239 void afs_d_release(struct dentry *dentry) 1240 { 1241 _enter("%pd", dentry); 1242 } 1243 1244 void afs_check_for_remote_deletion(struct afs_operation *op) 1245 { 1246 struct afs_vnode *vnode = op->file[0].vnode; 1247 1248 switch (op->ac.abort_code) { 1249 case VNOVNODE: 1250 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1251 afs_break_callback(vnode, afs_cb_break_for_deleted); 1252 } 1253 } 1254 1255 /* 1256 * Create a new inode for create/mkdir/symlink 1257 */ 1258 static void afs_vnode_new_inode(struct afs_operation *op) 1259 { 1260 struct afs_vnode_param *vp = &op->file[1]; 1261 struct afs_vnode *vnode; 1262 struct inode *inode; 1263 1264 _enter(""); 1265 1266 ASSERTCMP(op->error, ==, 0); 1267 1268 inode = afs_iget(op, vp); 1269 if (IS_ERR(inode)) { 1270 /* ENOMEM or EINTR at a really inconvenient time - just abandon 1271 * the new directory on the server. 1272 */ 1273 op->error = PTR_ERR(inode); 1274 return; 1275 } 1276 1277 vnode = AFS_FS_I(inode); 1278 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 1279 if (!op->error) 1280 afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb); 1281 d_instantiate(op->dentry, inode); 1282 } 1283 1284 static void afs_create_success(struct afs_operation *op) 1285 { 1286 _enter("op=%08x", op->debug_id); 1287 op->ctime = op->file[0].scb.status.mtime_client; 1288 afs_vnode_commit_status(op, &op->file[0]); 1289 afs_update_dentry_version(op, &op->file[0], op->dentry); 1290 afs_vnode_new_inode(op); 1291 } 1292 1293 static void afs_create_edit_dir(struct afs_operation *op) 1294 { 1295 struct afs_vnode_param *dvp = &op->file[0]; 1296 struct afs_vnode_param *vp = &op->file[1]; 1297 struct afs_vnode *dvnode = dvp->vnode; 1298 1299 _enter("op=%08x", op->debug_id); 1300 1301 down_write(&dvnode->validate_lock); 1302 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) && 1303 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta) 1304 afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid, 1305 op->create.reason); 1306 up_write(&dvnode->validate_lock); 1307 } 1308 1309 static void afs_create_put(struct afs_operation *op) 1310 { 1311 _enter("op=%08x", op->debug_id); 1312 1313 if (op->error) 1314 d_drop(op->dentry); 1315 } 1316 1317 static const struct afs_operation_ops afs_mkdir_operation = { 1318 .issue_afs_rpc = afs_fs_make_dir, 1319 .issue_yfs_rpc = yfs_fs_make_dir, 1320 .success = afs_create_success, 1321 .aborted = afs_check_for_remote_deletion, 1322 .edit_dir = afs_create_edit_dir, 1323 .put = afs_create_put, 1324 }; 1325 1326 /* 1327 * create a directory on an AFS filesystem 1328 */ 1329 static int afs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 1330 struct dentry *dentry, umode_t mode) 1331 { 1332 struct afs_operation *op; 1333 struct afs_vnode *dvnode = AFS_FS_I(dir); 1334 1335 _enter("{%llx:%llu},{%pd},%ho", 1336 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode); 1337 1338 op = afs_alloc_operation(NULL, dvnode->volume); 1339 if (IS_ERR(op)) { 1340 d_drop(dentry); 1341 return PTR_ERR(op); 1342 } 1343 1344 afs_op_set_vnode(op, 0, dvnode); 1345 op->file[0].dv_delta = 1; 1346 op->file[0].update_ctime = true; 1347 op->dentry = dentry; 1348 op->create.mode = S_IFDIR | mode; 1349 op->create.reason = afs_edit_dir_for_mkdir; 1350 op->ops = &afs_mkdir_operation; 1351 return afs_do_sync_operation(op); 1352 } 1353 1354 /* 1355 * Remove a subdir from a directory. 1356 */ 1357 static void afs_dir_remove_subdir(struct dentry *dentry) 1358 { 1359 if (d_really_is_positive(dentry)) { 1360 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1361 1362 clear_nlink(&vnode->vfs_inode); 1363 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1364 clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags); 1365 clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags); 1366 } 1367 } 1368 1369 static void afs_rmdir_success(struct afs_operation *op) 1370 { 1371 _enter("op=%08x", op->debug_id); 1372 op->ctime = op->file[0].scb.status.mtime_client; 1373 afs_vnode_commit_status(op, &op->file[0]); 1374 afs_update_dentry_version(op, &op->file[0], op->dentry); 1375 } 1376 1377 static void afs_rmdir_edit_dir(struct afs_operation *op) 1378 { 1379 struct afs_vnode_param *dvp = &op->file[0]; 1380 struct afs_vnode *dvnode = dvp->vnode; 1381 1382 _enter("op=%08x", op->debug_id); 1383 afs_dir_remove_subdir(op->dentry); 1384 1385 down_write(&dvnode->validate_lock); 1386 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) && 1387 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta) 1388 afs_edit_dir_remove(dvnode, &op->dentry->d_name, 1389 afs_edit_dir_for_rmdir); 1390 up_write(&dvnode->validate_lock); 1391 } 1392 1393 static void afs_rmdir_put(struct afs_operation *op) 1394 { 1395 _enter("op=%08x", op->debug_id); 1396 if (op->file[1].vnode) 1397 up_write(&op->file[1].vnode->rmdir_lock); 1398 } 1399 1400 static const struct afs_operation_ops afs_rmdir_operation = { 1401 .issue_afs_rpc = afs_fs_remove_dir, 1402 .issue_yfs_rpc = yfs_fs_remove_dir, 1403 .success = afs_rmdir_success, 1404 .aborted = afs_check_for_remote_deletion, 1405 .edit_dir = afs_rmdir_edit_dir, 1406 .put = afs_rmdir_put, 1407 }; 1408 1409 /* 1410 * remove a directory from an AFS filesystem 1411 */ 1412 static int afs_rmdir(struct inode *dir, struct dentry *dentry) 1413 { 1414 struct afs_operation *op; 1415 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL; 1416 int ret; 1417 1418 _enter("{%llx:%llu},{%pd}", 1419 dvnode->fid.vid, dvnode->fid.vnode, dentry); 1420 1421 op = afs_alloc_operation(NULL, dvnode->volume); 1422 if (IS_ERR(op)) 1423 return PTR_ERR(op); 1424 1425 afs_op_set_vnode(op, 0, dvnode); 1426 op->file[0].dv_delta = 1; 1427 op->file[0].update_ctime = true; 1428 1429 op->dentry = dentry; 1430 op->ops = &afs_rmdir_operation; 1431 1432 /* Try to make sure we have a callback promise on the victim. */ 1433 if (d_really_is_positive(dentry)) { 1434 vnode = AFS_FS_I(d_inode(dentry)); 1435 ret = afs_validate(vnode, op->key); 1436 if (ret < 0) 1437 goto error; 1438 } 1439 1440 if (vnode) { 1441 ret = down_write_killable(&vnode->rmdir_lock); 1442 if (ret < 0) 1443 goto error; 1444 op->file[1].vnode = vnode; 1445 } 1446 1447 return afs_do_sync_operation(op); 1448 1449 error: 1450 return afs_put_operation(op); 1451 } 1452 1453 /* 1454 * Remove a link to a file or symlink from a directory. 1455 * 1456 * If the file was not deleted due to excess hard links, the fileserver will 1457 * break the callback promise on the file - if it had one - before it returns 1458 * to us, and if it was deleted, it won't 1459 * 1460 * However, if we didn't have a callback promise outstanding, or it was 1461 * outstanding on a different server, then it won't break it either... 1462 */ 1463 static void afs_dir_remove_link(struct afs_operation *op) 1464 { 1465 struct afs_vnode *dvnode = op->file[0].vnode; 1466 struct afs_vnode *vnode = op->file[1].vnode; 1467 struct dentry *dentry = op->dentry; 1468 int ret; 1469 1470 if (op->error != 0 || 1471 (op->file[1].scb.have_status && op->file[1].scb.have_error)) 1472 return; 1473 if (d_really_is_positive(dentry)) 1474 return; 1475 1476 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) { 1477 /* Already done */ 1478 } else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { 1479 write_seqlock(&vnode->cb_lock); 1480 drop_nlink(&vnode->vfs_inode); 1481 if (vnode->vfs_inode.i_nlink == 0) { 1482 set_bit(AFS_VNODE_DELETED, &vnode->flags); 1483 __afs_break_callback(vnode, afs_cb_break_for_unlink); 1484 } 1485 write_sequnlock(&vnode->cb_lock); 1486 } else { 1487 afs_break_callback(vnode, afs_cb_break_for_unlink); 1488 1489 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 1490 _debug("AFS_VNODE_DELETED"); 1491 1492 ret = afs_validate(vnode, op->key); 1493 if (ret != -ESTALE) 1494 op->error = ret; 1495 } 1496 1497 _debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error); 1498 } 1499 1500 static void afs_unlink_success(struct afs_operation *op) 1501 { 1502 _enter("op=%08x", op->debug_id); 1503 op->ctime = op->file[0].scb.status.mtime_client; 1504 afs_check_dir_conflict(op, &op->file[0]); 1505 afs_vnode_commit_status(op, &op->file[0]); 1506 afs_vnode_commit_status(op, &op->file[1]); 1507 afs_update_dentry_version(op, &op->file[0], op->dentry); 1508 afs_dir_remove_link(op); 1509 } 1510 1511 static void afs_unlink_edit_dir(struct afs_operation *op) 1512 { 1513 struct afs_vnode_param *dvp = &op->file[0]; 1514 struct afs_vnode *dvnode = dvp->vnode; 1515 1516 _enter("op=%08x", op->debug_id); 1517 down_write(&dvnode->validate_lock); 1518 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) && 1519 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta) 1520 afs_edit_dir_remove(dvnode, &op->dentry->d_name, 1521 afs_edit_dir_for_unlink); 1522 up_write(&dvnode->validate_lock); 1523 } 1524 1525 static void afs_unlink_put(struct afs_operation *op) 1526 { 1527 _enter("op=%08x", op->debug_id); 1528 if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT) 1529 d_rehash(op->dentry); 1530 } 1531 1532 static const struct afs_operation_ops afs_unlink_operation = { 1533 .issue_afs_rpc = afs_fs_remove_file, 1534 .issue_yfs_rpc = yfs_fs_remove_file, 1535 .success = afs_unlink_success, 1536 .aborted = afs_check_for_remote_deletion, 1537 .edit_dir = afs_unlink_edit_dir, 1538 .put = afs_unlink_put, 1539 }; 1540 1541 /* 1542 * Remove a file or symlink from an AFS filesystem. 1543 */ 1544 static int afs_unlink(struct inode *dir, struct dentry *dentry) 1545 { 1546 struct afs_operation *op; 1547 struct afs_vnode *dvnode = AFS_FS_I(dir); 1548 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 1549 int ret; 1550 1551 _enter("{%llx:%llu},{%pd}", 1552 dvnode->fid.vid, dvnode->fid.vnode, dentry); 1553 1554 if (dentry->d_name.len >= AFSNAMEMAX) 1555 return -ENAMETOOLONG; 1556 1557 op = afs_alloc_operation(NULL, dvnode->volume); 1558 if (IS_ERR(op)) 1559 return PTR_ERR(op); 1560 1561 afs_op_set_vnode(op, 0, dvnode); 1562 op->file[0].dv_delta = 1; 1563 op->file[0].update_ctime = true; 1564 1565 /* Try to make sure we have a callback promise on the victim. */ 1566 ret = afs_validate(vnode, op->key); 1567 if (ret < 0) { 1568 op->error = ret; 1569 goto error; 1570 } 1571 1572 spin_lock(&dentry->d_lock); 1573 if (d_count(dentry) > 1) { 1574 spin_unlock(&dentry->d_lock); 1575 /* Start asynchronous writeout of the inode */ 1576 write_inode_now(d_inode(dentry), 0); 1577 op->error = afs_sillyrename(dvnode, vnode, dentry, op->key); 1578 goto error; 1579 } 1580 if (!d_unhashed(dentry)) { 1581 /* Prevent a race with RCU lookup. */ 1582 __d_drop(dentry); 1583 op->unlink.need_rehash = true; 1584 } 1585 spin_unlock(&dentry->d_lock); 1586 1587 op->file[1].vnode = vnode; 1588 op->file[1].update_ctime = true; 1589 op->file[1].op_unlinked = true; 1590 op->dentry = dentry; 1591 op->ops = &afs_unlink_operation; 1592 afs_begin_vnode_operation(op); 1593 afs_wait_for_operation(op); 1594 1595 /* If there was a conflict with a third party, check the status of the 1596 * unlinked vnode. 1597 */ 1598 if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) { 1599 op->file[1].update_ctime = false; 1600 op->fetch_status.which = 1; 1601 op->ops = &afs_fetch_status_operation; 1602 afs_begin_vnode_operation(op); 1603 afs_wait_for_operation(op); 1604 } 1605 1606 return afs_put_operation(op); 1607 1608 error: 1609 return afs_put_operation(op); 1610 } 1611 1612 static const struct afs_operation_ops afs_create_operation = { 1613 .issue_afs_rpc = afs_fs_create_file, 1614 .issue_yfs_rpc = yfs_fs_create_file, 1615 .success = afs_create_success, 1616 .aborted = afs_check_for_remote_deletion, 1617 .edit_dir = afs_create_edit_dir, 1618 .put = afs_create_put, 1619 }; 1620 1621 /* 1622 * create a regular file on an AFS filesystem 1623 */ 1624 static int afs_create(struct user_namespace *mnt_userns, struct inode *dir, 1625 struct dentry *dentry, umode_t mode, bool excl) 1626 { 1627 struct afs_operation *op; 1628 struct afs_vnode *dvnode = AFS_FS_I(dir); 1629 int ret = -ENAMETOOLONG; 1630 1631 _enter("{%llx:%llu},{%pd},%ho", 1632 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode); 1633 1634 if (dentry->d_name.len >= AFSNAMEMAX) 1635 goto error; 1636 1637 op = afs_alloc_operation(NULL, dvnode->volume); 1638 if (IS_ERR(op)) { 1639 ret = PTR_ERR(op); 1640 goto error; 1641 } 1642 1643 afs_op_set_vnode(op, 0, dvnode); 1644 op->file[0].dv_delta = 1; 1645 op->file[0].update_ctime = true; 1646 1647 op->dentry = dentry; 1648 op->create.mode = S_IFREG | mode; 1649 op->create.reason = afs_edit_dir_for_create; 1650 op->ops = &afs_create_operation; 1651 return afs_do_sync_operation(op); 1652 1653 error: 1654 d_drop(dentry); 1655 _leave(" = %d", ret); 1656 return ret; 1657 } 1658 1659 static void afs_link_success(struct afs_operation *op) 1660 { 1661 struct afs_vnode_param *dvp = &op->file[0]; 1662 struct afs_vnode_param *vp = &op->file[1]; 1663 1664 _enter("op=%08x", op->debug_id); 1665 op->ctime = dvp->scb.status.mtime_client; 1666 afs_vnode_commit_status(op, dvp); 1667 afs_vnode_commit_status(op, vp); 1668 afs_update_dentry_version(op, dvp, op->dentry); 1669 if (op->dentry_2->d_parent == op->dentry->d_parent) 1670 afs_update_dentry_version(op, dvp, op->dentry_2); 1671 ihold(&vp->vnode->vfs_inode); 1672 d_instantiate(op->dentry, &vp->vnode->vfs_inode); 1673 } 1674 1675 static void afs_link_put(struct afs_operation *op) 1676 { 1677 _enter("op=%08x", op->debug_id); 1678 if (op->error) 1679 d_drop(op->dentry); 1680 } 1681 1682 static const struct afs_operation_ops afs_link_operation = { 1683 .issue_afs_rpc = afs_fs_link, 1684 .issue_yfs_rpc = yfs_fs_link, 1685 .success = afs_link_success, 1686 .aborted = afs_check_for_remote_deletion, 1687 .edit_dir = afs_create_edit_dir, 1688 .put = afs_link_put, 1689 }; 1690 1691 /* 1692 * create a hard link between files in an AFS filesystem 1693 */ 1694 static int afs_link(struct dentry *from, struct inode *dir, 1695 struct dentry *dentry) 1696 { 1697 struct afs_operation *op; 1698 struct afs_vnode *dvnode = AFS_FS_I(dir); 1699 struct afs_vnode *vnode = AFS_FS_I(d_inode(from)); 1700 int ret = -ENAMETOOLONG; 1701 1702 _enter("{%llx:%llu},{%llx:%llu},{%pd}", 1703 vnode->fid.vid, vnode->fid.vnode, 1704 dvnode->fid.vid, dvnode->fid.vnode, 1705 dentry); 1706 1707 if (dentry->d_name.len >= AFSNAMEMAX) 1708 goto error; 1709 1710 op = afs_alloc_operation(NULL, dvnode->volume); 1711 if (IS_ERR(op)) { 1712 ret = PTR_ERR(op); 1713 goto error; 1714 } 1715 1716 afs_op_set_vnode(op, 0, dvnode); 1717 afs_op_set_vnode(op, 1, vnode); 1718 op->file[0].dv_delta = 1; 1719 op->file[0].update_ctime = true; 1720 op->file[1].update_ctime = true; 1721 1722 op->dentry = dentry; 1723 op->dentry_2 = from; 1724 op->ops = &afs_link_operation; 1725 op->create.reason = afs_edit_dir_for_link; 1726 return afs_do_sync_operation(op); 1727 1728 error: 1729 d_drop(dentry); 1730 _leave(" = %d", ret); 1731 return ret; 1732 } 1733 1734 static const struct afs_operation_ops afs_symlink_operation = { 1735 .issue_afs_rpc = afs_fs_symlink, 1736 .issue_yfs_rpc = yfs_fs_symlink, 1737 .success = afs_create_success, 1738 .aborted = afs_check_for_remote_deletion, 1739 .edit_dir = afs_create_edit_dir, 1740 .put = afs_create_put, 1741 }; 1742 1743 /* 1744 * create a symlink in an AFS filesystem 1745 */ 1746 static int afs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 1747 struct dentry *dentry, const char *content) 1748 { 1749 struct afs_operation *op; 1750 struct afs_vnode *dvnode = AFS_FS_I(dir); 1751 int ret; 1752 1753 _enter("{%llx:%llu},{%pd},%s", 1754 dvnode->fid.vid, dvnode->fid.vnode, dentry, 1755 content); 1756 1757 ret = -ENAMETOOLONG; 1758 if (dentry->d_name.len >= AFSNAMEMAX) 1759 goto error; 1760 1761 ret = -EINVAL; 1762 if (strlen(content) >= AFSPATHMAX) 1763 goto error; 1764 1765 op = afs_alloc_operation(NULL, dvnode->volume); 1766 if (IS_ERR(op)) { 1767 ret = PTR_ERR(op); 1768 goto error; 1769 } 1770 1771 afs_op_set_vnode(op, 0, dvnode); 1772 op->file[0].dv_delta = 1; 1773 1774 op->dentry = dentry; 1775 op->ops = &afs_symlink_operation; 1776 op->create.reason = afs_edit_dir_for_symlink; 1777 op->create.symlink = content; 1778 return afs_do_sync_operation(op); 1779 1780 error: 1781 d_drop(dentry); 1782 _leave(" = %d", ret); 1783 return ret; 1784 } 1785 1786 static void afs_rename_success(struct afs_operation *op) 1787 { 1788 _enter("op=%08x", op->debug_id); 1789 1790 op->ctime = op->file[0].scb.status.mtime_client; 1791 afs_check_dir_conflict(op, &op->file[1]); 1792 afs_vnode_commit_status(op, &op->file[0]); 1793 if (op->file[1].vnode != op->file[0].vnode) { 1794 op->ctime = op->file[1].scb.status.mtime_client; 1795 afs_vnode_commit_status(op, &op->file[1]); 1796 } 1797 } 1798 1799 static void afs_rename_edit_dir(struct afs_operation *op) 1800 { 1801 struct afs_vnode_param *orig_dvp = &op->file[0]; 1802 struct afs_vnode_param *new_dvp = &op->file[1]; 1803 struct afs_vnode *orig_dvnode = orig_dvp->vnode; 1804 struct afs_vnode *new_dvnode = new_dvp->vnode; 1805 struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry)); 1806 struct dentry *old_dentry = op->dentry; 1807 struct dentry *new_dentry = op->dentry_2; 1808 struct inode *new_inode; 1809 1810 _enter("op=%08x", op->debug_id); 1811 1812 if (op->rename.rehash) { 1813 d_rehash(op->rename.rehash); 1814 op->rename.rehash = NULL; 1815 } 1816 1817 down_write(&orig_dvnode->validate_lock); 1818 if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) && 1819 orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta) 1820 afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name, 1821 afs_edit_dir_for_rename_0); 1822 1823 if (new_dvnode != orig_dvnode) { 1824 up_write(&orig_dvnode->validate_lock); 1825 down_write(&new_dvnode->validate_lock); 1826 } 1827 1828 if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) && 1829 new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) { 1830 if (!op->rename.new_negative) 1831 afs_edit_dir_remove(new_dvnode, &new_dentry->d_name, 1832 afs_edit_dir_for_rename_1); 1833 1834 afs_edit_dir_add(new_dvnode, &new_dentry->d_name, 1835 &vnode->fid, afs_edit_dir_for_rename_2); 1836 } 1837 1838 new_inode = d_inode(new_dentry); 1839 if (new_inode) { 1840 spin_lock(&new_inode->i_lock); 1841 if (new_inode->i_nlink > 0) 1842 drop_nlink(new_inode); 1843 spin_unlock(&new_inode->i_lock); 1844 } 1845 1846 /* Now we can update d_fsdata on the dentries to reflect their 1847 * new parent's data_version. 1848 * 1849 * Note that if we ever implement RENAME_EXCHANGE, we'll have 1850 * to update both dentries with opposing dir versions. 1851 */ 1852 afs_update_dentry_version(op, new_dvp, op->dentry); 1853 afs_update_dentry_version(op, new_dvp, op->dentry_2); 1854 1855 d_move(old_dentry, new_dentry); 1856 1857 up_write(&new_dvnode->validate_lock); 1858 } 1859 1860 static void afs_rename_put(struct afs_operation *op) 1861 { 1862 _enter("op=%08x", op->debug_id); 1863 if (op->rename.rehash) 1864 d_rehash(op->rename.rehash); 1865 dput(op->rename.tmp); 1866 if (op->error) 1867 d_rehash(op->dentry); 1868 } 1869 1870 static const struct afs_operation_ops afs_rename_operation = { 1871 .issue_afs_rpc = afs_fs_rename, 1872 .issue_yfs_rpc = yfs_fs_rename, 1873 .success = afs_rename_success, 1874 .edit_dir = afs_rename_edit_dir, 1875 .put = afs_rename_put, 1876 }; 1877 1878 /* 1879 * rename a file in an AFS filesystem and/or move it between directories 1880 */ 1881 static int afs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 1882 struct dentry *old_dentry, struct inode *new_dir, 1883 struct dentry *new_dentry, unsigned int flags) 1884 { 1885 struct afs_operation *op; 1886 struct afs_vnode *orig_dvnode, *new_dvnode, *vnode; 1887 int ret; 1888 1889 if (flags) 1890 return -EINVAL; 1891 1892 /* Don't allow silly-rename files be moved around. */ 1893 if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED) 1894 return -EINVAL; 1895 1896 vnode = AFS_FS_I(d_inode(old_dentry)); 1897 orig_dvnode = AFS_FS_I(old_dir); 1898 new_dvnode = AFS_FS_I(new_dir); 1899 1900 _enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}", 1901 orig_dvnode->fid.vid, orig_dvnode->fid.vnode, 1902 vnode->fid.vid, vnode->fid.vnode, 1903 new_dvnode->fid.vid, new_dvnode->fid.vnode, 1904 new_dentry); 1905 1906 op = afs_alloc_operation(NULL, orig_dvnode->volume); 1907 if (IS_ERR(op)) 1908 return PTR_ERR(op); 1909 1910 afs_op_set_vnode(op, 0, orig_dvnode); 1911 afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */ 1912 op->file[0].dv_delta = 1; 1913 op->file[1].dv_delta = 1; 1914 op->file[0].update_ctime = true; 1915 op->file[1].update_ctime = true; 1916 1917 op->dentry = old_dentry; 1918 op->dentry_2 = new_dentry; 1919 op->rename.new_negative = d_is_negative(new_dentry); 1920 op->ops = &afs_rename_operation; 1921 1922 /* For non-directories, check whether the target is busy and if so, 1923 * make a copy of the dentry and then do a silly-rename. If the 1924 * silly-rename succeeds, the copied dentry is hashed and becomes the 1925 * new target. 1926 */ 1927 if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) { 1928 /* To prevent any new references to the target during the 1929 * rename, we unhash the dentry in advance. 1930 */ 1931 if (!d_unhashed(new_dentry)) { 1932 d_drop(new_dentry); 1933 op->rename.rehash = new_dentry; 1934 } 1935 1936 if (d_count(new_dentry) > 2) { 1937 /* copy the target dentry's name */ 1938 ret = -ENOMEM; 1939 op->rename.tmp = d_alloc(new_dentry->d_parent, 1940 &new_dentry->d_name); 1941 if (!op->rename.tmp) 1942 goto error; 1943 1944 ret = afs_sillyrename(new_dvnode, 1945 AFS_FS_I(d_inode(new_dentry)), 1946 new_dentry, op->key); 1947 if (ret) 1948 goto error; 1949 1950 op->dentry_2 = op->rename.tmp; 1951 op->rename.rehash = NULL; 1952 op->rename.new_negative = true; 1953 } 1954 } 1955 1956 /* This bit is potentially nasty as there's a potential race with 1957 * afs_d_revalidate{,_rcu}(). We have to change d_fsdata on the dentry 1958 * to reflect it's new parent's new data_version after the op, but 1959 * d_revalidate may see old_dentry between the op having taken place 1960 * and the version being updated. 1961 * 1962 * So drop the old_dentry for now to make other threads go through 1963 * lookup instead - which we hold a lock against. 1964 */ 1965 d_drop(old_dentry); 1966 1967 return afs_do_sync_operation(op); 1968 1969 error: 1970 return afs_put_operation(op); 1971 } 1972 1973 /* 1974 * Release a directory page and clean up its private state if it's not busy 1975 * - return true if the page can now be released, false if not 1976 */ 1977 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags) 1978 { 1979 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host); 1980 1981 _enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index); 1982 1983 detach_page_private(page); 1984 1985 /* The directory will need reloading. */ 1986 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 1987 afs_stat_v(dvnode, n_relpg); 1988 return 1; 1989 } 1990 1991 /* 1992 * invalidate part or all of a page 1993 * - release a page and clean up its private data if offset is 0 (indicating 1994 * the entire page) 1995 */ 1996 static void afs_dir_invalidatepage(struct page *page, unsigned int offset, 1997 unsigned int length) 1998 { 1999 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host); 2000 2001 _enter("{%lu},%u,%u", page->index, offset, length); 2002 2003 BUG_ON(!PageLocked(page)); 2004 2005 /* The directory will need reloading. */ 2006 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) 2007 afs_stat_v(dvnode, n_inval); 2008 2009 /* we clean up only if the entire page is being invalidated */ 2010 if (offset == 0 && length == PAGE_SIZE) 2011 detach_page_private(page); 2012 } 2013