xref: /openbmc/linux/fs/afs/dir.c (revision 44767c35)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
3  *
4  * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include "internal.h"
17 #include "afs_fs.h"
18 #include "xdr_fs.h"
19 
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
21 				 unsigned int flags);
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 				  loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 			      loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
32 		      bool excl);
33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
34 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
35 static int afs_unlink(struct inode *dir, struct dentry *dentry);
36 static int afs_link(struct dentry *from, struct inode *dir,
37 		    struct dentry *dentry);
38 static int afs_symlink(struct inode *dir, struct dentry *dentry,
39 		       const char *content);
40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
41 		      struct inode *new_dir, struct dentry *new_dentry,
42 		      unsigned int flags);
43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
45 				   unsigned int length);
46 
47 static int afs_dir_set_page_dirty(struct page *page)
48 {
49 	BUG(); /* This should never happen. */
50 }
51 
52 const struct file_operations afs_dir_file_operations = {
53 	.open		= afs_dir_open,
54 	.release	= afs_release,
55 	.iterate_shared	= afs_readdir,
56 	.lock		= afs_lock,
57 	.llseek		= generic_file_llseek,
58 };
59 
60 const struct inode_operations afs_dir_inode_operations = {
61 	.create		= afs_create,
62 	.lookup		= afs_lookup,
63 	.link		= afs_link,
64 	.unlink		= afs_unlink,
65 	.symlink	= afs_symlink,
66 	.mkdir		= afs_mkdir,
67 	.rmdir		= afs_rmdir,
68 	.rename		= afs_rename,
69 	.permission	= afs_permission,
70 	.getattr	= afs_getattr,
71 	.setattr	= afs_setattr,
72 	.listxattr	= afs_listxattr,
73 };
74 
75 const struct address_space_operations afs_dir_aops = {
76 	.set_page_dirty	= afs_dir_set_page_dirty,
77 	.releasepage	= afs_dir_releasepage,
78 	.invalidatepage	= afs_dir_invalidatepage,
79 };
80 
81 const struct dentry_operations afs_fs_dentry_operations = {
82 	.d_revalidate	= afs_d_revalidate,
83 	.d_delete	= afs_d_delete,
84 	.d_release	= afs_d_release,
85 	.d_automount	= afs_d_automount,
86 	.d_iput		= afs_d_iput,
87 };
88 
89 struct afs_lookup_one_cookie {
90 	struct dir_context	ctx;
91 	struct qstr		name;
92 	bool			found;
93 	struct afs_fid		fid;
94 };
95 
96 struct afs_lookup_cookie {
97 	struct dir_context	ctx;
98 	struct qstr		name;
99 	bool			found;
100 	bool			one_only;
101 	unsigned short		nr_fids;
102 	struct afs_fid		fids[50];
103 };
104 
105 /*
106  * check that a directory page is valid
107  */
108 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
109 			       loff_t i_size)
110 {
111 	struct afs_xdr_dir_page *dbuf;
112 	loff_t latter, off;
113 	int tmp, qty;
114 
115 	/* Determine how many magic numbers there should be in this page, but
116 	 * we must take care because the directory may change size under us.
117 	 */
118 	off = page_offset(page);
119 	if (i_size <= off)
120 		goto checked;
121 
122 	latter = i_size - off;
123 	if (latter >= PAGE_SIZE)
124 		qty = PAGE_SIZE;
125 	else
126 		qty = latter;
127 	qty /= sizeof(union afs_xdr_dir_block);
128 
129 	/* check them */
130 	dbuf = kmap(page);
131 	for (tmp = 0; tmp < qty; tmp++) {
132 		if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
133 			printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
134 			       __func__, dvnode->vfs_inode.i_ino, tmp, qty,
135 			       ntohs(dbuf->blocks[tmp].hdr.magic));
136 			trace_afs_dir_check_failed(dvnode, off, i_size);
137 			kunmap(page);
138 			trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
139 			goto error;
140 		}
141 
142 		/* Make sure each block is NUL terminated so we can reasonably
143 		 * use string functions on it.  The filenames in the page
144 		 * *should* be NUL-terminated anyway.
145 		 */
146 		((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
147 	}
148 
149 	kunmap(page);
150 
151 checked:
152 	afs_stat_v(dvnode, n_read_dir);
153 	return true;
154 
155 error:
156 	return false;
157 }
158 
159 /*
160  * Check the contents of a directory that we've just read.
161  */
162 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
163 {
164 	struct afs_xdr_dir_page *dbuf;
165 	unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
166 
167 	for (i = 0; i < req->nr_pages; i++)
168 		if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
169 			goto bad;
170 	return true;
171 
172 bad:
173 	pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
174 		dvnode->fid.vid, dvnode->fid.vnode,
175 		req->file_size, req->len, req->actual_len, req->remain);
176 	pr_warn("DIR %llx %x %x %x\n",
177 		req->pos, req->index, req->nr_pages, req->offset);
178 
179 	for (i = 0; i < req->nr_pages; i++) {
180 		dbuf = kmap(req->pages[i]);
181 		for (j = 0; j < qty; j++) {
182 			union afs_xdr_dir_block *block = &dbuf->blocks[j];
183 
184 			pr_warn("[%02x] %32phN\n", i * qty + j, block);
185 		}
186 		kunmap(req->pages[i]);
187 	}
188 	return false;
189 }
190 
191 /*
192  * open an AFS directory file
193  */
194 static int afs_dir_open(struct inode *inode, struct file *file)
195 {
196 	_enter("{%lu}", inode->i_ino);
197 
198 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
199 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
200 
201 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
202 		return -ENOENT;
203 
204 	return afs_open(inode, file);
205 }
206 
207 /*
208  * Read the directory into the pagecache in one go, scrubbing the previous
209  * contents.  The list of pages is returned, pinning them so that they don't
210  * get reclaimed during the iteration.
211  */
212 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
213 	__acquires(&dvnode->validate_lock)
214 {
215 	struct afs_read *req;
216 	loff_t i_size;
217 	int nr_pages, nr_inline, i, n;
218 	int ret = -ENOMEM;
219 
220 retry:
221 	i_size = i_size_read(&dvnode->vfs_inode);
222 	if (i_size < 2048)
223 		return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
224 	if (i_size > 2048 * 1024) {
225 		trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
226 		return ERR_PTR(-EFBIG);
227 	}
228 
229 	_enter("%llu", i_size);
230 
231 	/* Get a request record to hold the page list.  We want to hold it
232 	 * inline if we can, but we don't want to make an order 1 allocation.
233 	 */
234 	nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
235 	nr_inline = nr_pages;
236 	if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
237 		nr_inline = 0;
238 
239 	req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
240 	if (!req)
241 		return ERR_PTR(-ENOMEM);
242 
243 	refcount_set(&req->usage, 1);
244 	req->nr_pages = nr_pages;
245 	req->actual_len = i_size; /* May change */
246 	req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
247 	req->data_version = dvnode->status.data_version; /* May change */
248 	if (nr_inline > 0) {
249 		req->pages = req->array;
250 	} else {
251 		req->pages = kcalloc(nr_pages, sizeof(struct page *),
252 				     GFP_KERNEL);
253 		if (!req->pages)
254 			goto error;
255 	}
256 
257 	/* Get a list of all the pages that hold or will hold the directory
258 	 * content.  We need to fill in any gaps that we might find where the
259 	 * memory reclaimer has been at work.  If there are any gaps, we will
260 	 * need to reread the entire directory contents.
261 	 */
262 	i = 0;
263 	do {
264 		n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
265 					  req->nr_pages - i,
266 					  req->pages + i);
267 		_debug("find %u at %u/%u", n, i, req->nr_pages);
268 		if (n == 0) {
269 			gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
270 
271 			if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
272 				afs_stat_v(dvnode, n_inval);
273 
274 			ret = -ENOMEM;
275 			req->pages[i] = __page_cache_alloc(gfp);
276 			if (!req->pages[i])
277 				goto error;
278 			ret = add_to_page_cache_lru(req->pages[i],
279 						    dvnode->vfs_inode.i_mapping,
280 						    i, gfp);
281 			if (ret < 0)
282 				goto error;
283 
284 			set_page_private(req->pages[i], 1);
285 			SetPagePrivate(req->pages[i]);
286 			unlock_page(req->pages[i]);
287 			i++;
288 		} else {
289 			i += n;
290 		}
291 	} while (i < req->nr_pages);
292 
293 	/* If we're going to reload, we need to lock all the pages to prevent
294 	 * races.
295 	 */
296 	ret = -ERESTARTSYS;
297 	if (down_read_killable(&dvnode->validate_lock) < 0)
298 		goto error;
299 
300 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
301 		goto success;
302 
303 	up_read(&dvnode->validate_lock);
304 	if (down_write_killable(&dvnode->validate_lock) < 0)
305 		goto error;
306 
307 	if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
308 		trace_afs_reload_dir(dvnode);
309 		ret = afs_fetch_data(dvnode, key, req);
310 		if (ret < 0)
311 			goto error_unlock;
312 
313 		task_io_account_read(PAGE_SIZE * req->nr_pages);
314 
315 		if (req->len < req->file_size)
316 			goto content_has_grown;
317 
318 		/* Validate the data we just read. */
319 		ret = -EIO;
320 		if (!afs_dir_check_pages(dvnode, req))
321 			goto error_unlock;
322 
323 		// TODO: Trim excess pages
324 
325 		set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
326 	}
327 
328 	downgrade_write(&dvnode->validate_lock);
329 success:
330 	return req;
331 
332 error_unlock:
333 	up_write(&dvnode->validate_lock);
334 error:
335 	afs_put_read(req);
336 	_leave(" = %d", ret);
337 	return ERR_PTR(ret);
338 
339 content_has_grown:
340 	up_write(&dvnode->validate_lock);
341 	afs_put_read(req);
342 	goto retry;
343 }
344 
345 /*
346  * deal with one block in an AFS directory
347  */
348 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
349 				 struct dir_context *ctx,
350 				 union afs_xdr_dir_block *block,
351 				 unsigned blkoff)
352 {
353 	union afs_xdr_dirent *dire;
354 	unsigned offset, next, curr;
355 	size_t nlen;
356 	int tmp;
357 
358 	_enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
359 
360 	curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
361 
362 	/* walk through the block, an entry at a time */
363 	for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
364 	     offset < AFS_DIR_SLOTS_PER_BLOCK;
365 	     offset = next
366 	     ) {
367 		next = offset + 1;
368 
369 		/* skip entries marked unused in the bitmap */
370 		if (!(block->hdr.bitmap[offset / 8] &
371 		      (1 << (offset % 8)))) {
372 			_debug("ENT[%zu.%u]: unused",
373 			       blkoff / sizeof(union afs_xdr_dir_block), offset);
374 			if (offset >= curr)
375 				ctx->pos = blkoff +
376 					next * sizeof(union afs_xdr_dirent);
377 			continue;
378 		}
379 
380 		/* got a valid entry */
381 		dire = &block->dirents[offset];
382 		nlen = strnlen(dire->u.name,
383 			       sizeof(*block) -
384 			       offset * sizeof(union afs_xdr_dirent));
385 
386 		_debug("ENT[%zu.%u]: %s %zu \"%s\"",
387 		       blkoff / sizeof(union afs_xdr_dir_block), offset,
388 		       (offset < curr ? "skip" : "fill"),
389 		       nlen, dire->u.name);
390 
391 		/* work out where the next possible entry is */
392 		for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) {
393 			if (next >= AFS_DIR_SLOTS_PER_BLOCK) {
394 				_debug("ENT[%zu.%u]:"
395 				       " %u travelled beyond end dir block"
396 				       " (len %u/%zu)",
397 				       blkoff / sizeof(union afs_xdr_dir_block),
398 				       offset, next, tmp, nlen);
399 				return afs_bad(dvnode, afs_file_error_dir_over_end);
400 			}
401 			if (!(block->hdr.bitmap[next / 8] &
402 			      (1 << (next % 8)))) {
403 				_debug("ENT[%zu.%u]:"
404 				       " %u unmarked extension (len %u/%zu)",
405 				       blkoff / sizeof(union afs_xdr_dir_block),
406 				       offset, next, tmp, nlen);
407 				return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
408 			}
409 
410 			_debug("ENT[%zu.%u]: ext %u/%zu",
411 			       blkoff / sizeof(union afs_xdr_dir_block),
412 			       next, tmp, nlen);
413 			next++;
414 		}
415 
416 		/* skip if starts before the current position */
417 		if (offset < curr)
418 			continue;
419 
420 		/* found the next entry */
421 		if (!dir_emit(ctx, dire->u.name, nlen,
422 			      ntohl(dire->u.vnode),
423 			      (ctx->actor == afs_lookup_filldir ||
424 			       ctx->actor == afs_lookup_one_filldir)?
425 			      ntohl(dire->u.unique) : DT_UNKNOWN)) {
426 			_leave(" = 0 [full]");
427 			return 0;
428 		}
429 
430 		ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
431 	}
432 
433 	_leave(" = 1 [more]");
434 	return 1;
435 }
436 
437 /*
438  * iterate through the data blob that lists the contents of an AFS directory
439  */
440 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
441 			   struct key *key, afs_dataversion_t *_dir_version)
442 {
443 	struct afs_vnode *dvnode = AFS_FS_I(dir);
444 	struct afs_xdr_dir_page *dbuf;
445 	union afs_xdr_dir_block *dblock;
446 	struct afs_read *req;
447 	struct page *page;
448 	unsigned blkoff, limit;
449 	int ret;
450 
451 	_enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
452 
453 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
454 		_leave(" = -ESTALE");
455 		return -ESTALE;
456 	}
457 
458 	req = afs_read_dir(dvnode, key);
459 	if (IS_ERR(req))
460 		return PTR_ERR(req);
461 	*_dir_version = req->data_version;
462 
463 	/* round the file position up to the next entry boundary */
464 	ctx->pos += sizeof(union afs_xdr_dirent) - 1;
465 	ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
466 
467 	/* walk through the blocks in sequence */
468 	ret = 0;
469 	while (ctx->pos < req->actual_len) {
470 		blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
471 
472 		/* Fetch the appropriate page from the directory and re-add it
473 		 * to the LRU.
474 		 */
475 		page = req->pages[blkoff / PAGE_SIZE];
476 		if (!page) {
477 			ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
478 			break;
479 		}
480 		mark_page_accessed(page);
481 
482 		limit = blkoff & ~(PAGE_SIZE - 1);
483 
484 		dbuf = kmap(page);
485 
486 		/* deal with the individual blocks stashed on this page */
487 		do {
488 			dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
489 					       sizeof(union afs_xdr_dir_block)];
490 			ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
491 			if (ret != 1) {
492 				kunmap(page);
493 				goto out;
494 			}
495 
496 			blkoff += sizeof(union afs_xdr_dir_block);
497 
498 		} while (ctx->pos < dir->i_size && blkoff < limit);
499 
500 		kunmap(page);
501 		ret = 0;
502 	}
503 
504 out:
505 	up_read(&dvnode->validate_lock);
506 	afs_put_read(req);
507 	_leave(" = %d", ret);
508 	return ret;
509 }
510 
511 /*
512  * read an AFS directory
513  */
514 static int afs_readdir(struct file *file, struct dir_context *ctx)
515 {
516 	afs_dataversion_t dir_version;
517 
518 	return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
519 			       &dir_version);
520 }
521 
522 /*
523  * Search the directory for a single name
524  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
525  *   uniquifier through dtype
526  */
527 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
528 				  int nlen, loff_t fpos, u64 ino, unsigned dtype)
529 {
530 	struct afs_lookup_one_cookie *cookie =
531 		container_of(ctx, struct afs_lookup_one_cookie, ctx);
532 
533 	_enter("{%s,%u},%s,%u,,%llu,%u",
534 	       cookie->name.name, cookie->name.len, name, nlen,
535 	       (unsigned long long) ino, dtype);
536 
537 	/* insanity checks first */
538 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
539 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
540 
541 	if (cookie->name.len != nlen ||
542 	    memcmp(cookie->name.name, name, nlen) != 0) {
543 		_leave(" = 0 [no]");
544 		return 0;
545 	}
546 
547 	cookie->fid.vnode = ino;
548 	cookie->fid.unique = dtype;
549 	cookie->found = 1;
550 
551 	_leave(" = -1 [found]");
552 	return -1;
553 }
554 
555 /*
556  * Do a lookup of a single name in a directory
557  * - just returns the FID the dentry name maps to if found
558  */
559 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
560 			     struct afs_fid *fid, struct key *key,
561 			     afs_dataversion_t *_dir_version)
562 {
563 	struct afs_super_info *as = dir->i_sb->s_fs_info;
564 	struct afs_lookup_one_cookie cookie = {
565 		.ctx.actor = afs_lookup_one_filldir,
566 		.name = dentry->d_name,
567 		.fid.vid = as->volume->vid
568 	};
569 	int ret;
570 
571 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
572 
573 	/* search the directory */
574 	ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
575 	if (ret < 0) {
576 		_leave(" = %d [iter]", ret);
577 		return ret;
578 	}
579 
580 	ret = -ENOENT;
581 	if (!cookie.found) {
582 		_leave(" = -ENOENT [not found]");
583 		return -ENOENT;
584 	}
585 
586 	*fid = cookie.fid;
587 	_leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
588 	return 0;
589 }
590 
591 /*
592  * search the directory for a name
593  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
594  *   uniquifier through dtype
595  */
596 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
597 			      int nlen, loff_t fpos, u64 ino, unsigned dtype)
598 {
599 	struct afs_lookup_cookie *cookie =
600 		container_of(ctx, struct afs_lookup_cookie, ctx);
601 	int ret;
602 
603 	_enter("{%s,%u},%s,%u,,%llu,%u",
604 	       cookie->name.name, cookie->name.len, name, nlen,
605 	       (unsigned long long) ino, dtype);
606 
607 	/* insanity checks first */
608 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
609 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
610 
611 	if (cookie->found) {
612 		if (cookie->nr_fids < 50) {
613 			cookie->fids[cookie->nr_fids].vnode	= ino;
614 			cookie->fids[cookie->nr_fids].unique	= dtype;
615 			cookie->nr_fids++;
616 		}
617 	} else if (cookie->name.len == nlen &&
618 		   memcmp(cookie->name.name, name, nlen) == 0) {
619 		cookie->fids[1].vnode	= ino;
620 		cookie->fids[1].unique	= dtype;
621 		cookie->found = 1;
622 		if (cookie->one_only)
623 			return -1;
624 	}
625 
626 	ret = cookie->nr_fids >= 50 ? -1 : 0;
627 	_leave(" = %d", ret);
628 	return ret;
629 }
630 
631 /*
632  * Deal with the result of a successful lookup operation.  Turn all the files
633  * into inodes and save the first one - which is the one we actually want.
634  */
635 static void afs_do_lookup_success(struct afs_operation *op)
636 {
637 	struct afs_vnode_param *vp;
638 	struct afs_vnode *vnode;
639 	struct inode *inode;
640 	u32 abort_code;
641 	int i;
642 
643 	_enter("");
644 
645 	for (i = 0; i < op->nr_files; i++) {
646 		switch (i) {
647 		case 0:
648 			vp = &op->file[0];
649 			abort_code = vp->scb.status.abort_code;
650 			if (abort_code != 0) {
651 				op->ac.abort_code = abort_code;
652 				op->error = afs_abort_to_error(abort_code);
653 			}
654 			break;
655 
656 		case 1:
657 			vp = &op->file[1];
658 			break;
659 
660 		default:
661 			vp = &op->more_files[i - 2];
662 			break;
663 		}
664 
665 		if (!vp->scb.have_status && !vp->scb.have_error)
666 			continue;
667 
668 		_debug("do [%u]", i);
669 		if (vp->vnode) {
670 			if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags))
671 				afs_vnode_commit_status(op, vp);
672 		} else if (vp->scb.status.abort_code == 0) {
673 			inode = afs_iget(op, vp);
674 			if (!IS_ERR(inode)) {
675 				vnode = AFS_FS_I(inode);
676 				afs_cache_permit(vnode, op->key,
677 						 0 /* Assume vnode->cb_break is 0 */ +
678 						 op->cb_v_break,
679 						 &vp->scb);
680 				vp->vnode = vnode;
681 				vp->put_vnode = true;
682 			}
683 		} else {
684 			_debug("- abort %d %llx:%llx.%x",
685 			       vp->scb.status.abort_code,
686 			       vp->fid.vid, vp->fid.vnode, vp->fid.unique);
687 		}
688 	}
689 
690 	_leave("");
691 }
692 
693 static const struct afs_operation_ops afs_inline_bulk_status_operation = {
694 	.issue_afs_rpc	= afs_fs_inline_bulk_status,
695 	.issue_yfs_rpc	= yfs_fs_inline_bulk_status,
696 	.success	= afs_do_lookup_success,
697 };
698 
699 static const struct afs_operation_ops afs_fetch_status_operation = {
700 	.issue_afs_rpc	= afs_fs_fetch_status,
701 	.issue_yfs_rpc	= yfs_fs_fetch_status,
702 	.success	= afs_do_lookup_success,
703 };
704 
705 /*
706  * See if we know that the server we expect to use doesn't support
707  * FS.InlineBulkStatus.
708  */
709 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode)
710 {
711 	struct afs_server_list *slist;
712 	struct afs_volume *volume = dvnode->volume;
713 	struct afs_server *server;
714 	bool ret = true;
715 	int i;
716 
717 	if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags))
718 		return true;
719 
720 	rcu_read_lock();
721 	slist = rcu_dereference(volume->servers);
722 
723 	for (i = 0; i < slist->nr_servers; i++) {
724 		server = slist->servers[i].server;
725 		if (server == dvnode->cb_server) {
726 			if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
727 				ret = false;
728 			break;
729 		}
730 	}
731 
732 	rcu_read_unlock();
733 	return ret;
734 }
735 
736 /*
737  * Do a lookup in a directory.  We make use of bulk lookup to query a slew of
738  * files in one go and create inodes for them.  The inode of the file we were
739  * asked for is returned.
740  */
741 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
742 				   struct key *key)
743 {
744 	struct afs_lookup_cookie *cookie;
745 	struct afs_vnode_param *vp;
746 	struct afs_operation *op;
747 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
748 	struct inode *inode = NULL, *ti;
749 	afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
750 	long ret;
751 	int i;
752 
753 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
754 
755 	cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
756 	if (!cookie)
757 		return ERR_PTR(-ENOMEM);
758 
759 	for (i = 0; i < ARRAY_SIZE(cookie->fids); i++)
760 		cookie->fids[i].vid = dvnode->fid.vid;
761 	cookie->ctx.actor = afs_lookup_filldir;
762 	cookie->name = dentry->d_name;
763 	cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want
764 			      * and slot 1 for the directory */
765 
766 	if (!afs_server_supports_ibulk(dvnode))
767 		cookie->one_only = true;
768 
769 	/* search the directory */
770 	ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
771 	if (ret < 0)
772 		goto out;
773 
774 	dentry->d_fsdata = (void *)(unsigned long)data_version;
775 
776 	ret = -ENOENT;
777 	if (!cookie->found)
778 		goto out;
779 
780 	/* Check to see if we already have an inode for the primary fid. */
781 	inode = ilookup5(dir->i_sb, cookie->fids[1].vnode,
782 			 afs_ilookup5_test_by_fid, &cookie->fids[1]);
783 	if (inode)
784 		goto out; /* We do */
785 
786 	/* Okay, we didn't find it.  We need to query the server - and whilst
787 	 * we're doing that, we're going to attempt to look up a bunch of other
788 	 * vnodes also.
789 	 */
790 	op = afs_alloc_operation(NULL, dvnode->volume);
791 	if (IS_ERR(op)) {
792 		ret = PTR_ERR(op);
793 		goto out;
794 	}
795 
796 	afs_op_set_vnode(op, 0, dvnode);
797 	afs_op_set_fid(op, 1, &cookie->fids[1]);
798 
799 	op->nr_files = cookie->nr_fids;
800 	_debug("nr_files %u", op->nr_files);
801 
802 	/* Need space for examining all the selected files */
803 	op->error = -ENOMEM;
804 	if (op->nr_files > 2) {
805 		op->more_files = kvcalloc(op->nr_files - 2,
806 					  sizeof(struct afs_vnode_param),
807 					  GFP_KERNEL);
808 		if (!op->more_files)
809 			goto out_op;
810 
811 		for (i = 2; i < op->nr_files; i++) {
812 			vp = &op->more_files[i - 2];
813 			vp->fid = cookie->fids[i];
814 
815 			/* Find any inodes that already exist and get their
816 			 * callback counters.
817 			 */
818 			ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode,
819 					     afs_ilookup5_test_by_fid, &vp->fid);
820 			if (!IS_ERR_OR_NULL(ti)) {
821 				vnode = AFS_FS_I(ti);
822 				vp->dv_before = vnode->status.data_version;
823 				vp->cb_break_before = afs_calc_vnode_cb_break(vnode);
824 				vp->vnode = vnode;
825 				vp->put_vnode = true;
826 			}
827 		}
828 	}
829 
830 	/* Try FS.InlineBulkStatus first.  Abort codes for the individual
831 	 * lookups contained therein are stored in the reply without aborting
832 	 * the whole operation.
833 	 */
834 	op->error = -ENOTSUPP;
835 	if (!cookie->one_only) {
836 		op->ops = &afs_inline_bulk_status_operation;
837 		afs_begin_vnode_operation(op);
838 		afs_wait_for_operation(op);
839 	}
840 
841 	if (op->error == -ENOTSUPP) {
842 		/* We could try FS.BulkStatus next, but this aborts the entire
843 		 * op if any of the lookups fails - so, for the moment, revert
844 		 * to FS.FetchStatus for op->file[1].
845 		 */
846 		op->fetch_status.which = 1;
847 		op->ops = &afs_fetch_status_operation;
848 		afs_begin_vnode_operation(op);
849 		afs_wait_for_operation(op);
850 	}
851 	inode = ERR_PTR(op->error);
852 
853 out_op:
854 	if (op->error == 0) {
855 		inode = &op->file[1].vnode->vfs_inode;
856 		op->file[1].vnode = NULL;
857 	}
858 
859 	if (op->file[0].scb.have_status)
860 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version;
861 	else
862 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before;
863 	ret = afs_put_operation(op);
864 out:
865 	kfree(cookie);
866 	_leave("");
867 	return inode ?: ERR_PTR(ret);
868 }
869 
870 /*
871  * Look up an entry in a directory with @sys substitution.
872  */
873 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
874 				       struct key *key)
875 {
876 	struct afs_sysnames *subs;
877 	struct afs_net *net = afs_i2net(dir);
878 	struct dentry *ret;
879 	char *buf, *p, *name;
880 	int len, i;
881 
882 	_enter("");
883 
884 	ret = ERR_PTR(-ENOMEM);
885 	p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
886 	if (!buf)
887 		goto out_p;
888 	if (dentry->d_name.len > 4) {
889 		memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
890 		p += dentry->d_name.len - 4;
891 	}
892 
893 	/* There is an ordered list of substitutes that we have to try. */
894 	read_lock(&net->sysnames_lock);
895 	subs = net->sysnames;
896 	refcount_inc(&subs->usage);
897 	read_unlock(&net->sysnames_lock);
898 
899 	for (i = 0; i < subs->nr; i++) {
900 		name = subs->subs[i];
901 		len = dentry->d_name.len - 4 + strlen(name);
902 		if (len >= AFSNAMEMAX) {
903 			ret = ERR_PTR(-ENAMETOOLONG);
904 			goto out_s;
905 		}
906 
907 		strcpy(p, name);
908 		ret = lookup_one_len(buf, dentry->d_parent, len);
909 		if (IS_ERR(ret) || d_is_positive(ret))
910 			goto out_s;
911 		dput(ret);
912 	}
913 
914 	/* We don't want to d_add() the @sys dentry here as we don't want to
915 	 * the cached dentry to hide changes to the sysnames list.
916 	 */
917 	ret = NULL;
918 out_s:
919 	afs_put_sysnames(subs);
920 	kfree(buf);
921 out_p:
922 	key_put(key);
923 	return ret;
924 }
925 
926 /*
927  * look up an entry in a directory
928  */
929 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
930 				 unsigned int flags)
931 {
932 	struct afs_vnode *dvnode = AFS_FS_I(dir);
933 	struct afs_fid fid = {};
934 	struct inode *inode;
935 	struct dentry *d;
936 	struct key *key;
937 	int ret;
938 
939 	_enter("{%llx:%llu},%p{%pd},",
940 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
941 
942 	ASSERTCMP(d_inode(dentry), ==, NULL);
943 
944 	if (dentry->d_name.len >= AFSNAMEMAX) {
945 		_leave(" = -ENAMETOOLONG");
946 		return ERR_PTR(-ENAMETOOLONG);
947 	}
948 
949 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
950 		_leave(" = -ESTALE");
951 		return ERR_PTR(-ESTALE);
952 	}
953 
954 	key = afs_request_key(dvnode->volume->cell);
955 	if (IS_ERR(key)) {
956 		_leave(" = %ld [key]", PTR_ERR(key));
957 		return ERR_CAST(key);
958 	}
959 
960 	ret = afs_validate(dvnode, key);
961 	if (ret < 0) {
962 		key_put(key);
963 		_leave(" = %d [val]", ret);
964 		return ERR_PTR(ret);
965 	}
966 
967 	if (dentry->d_name.len >= 4 &&
968 	    dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
969 	    dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
970 	    dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
971 	    dentry->d_name.name[dentry->d_name.len - 1] == 's')
972 		return afs_lookup_atsys(dir, dentry, key);
973 
974 	afs_stat_v(dvnode, n_lookup);
975 	inode = afs_do_lookup(dir, dentry, key);
976 	key_put(key);
977 	if (inode == ERR_PTR(-ENOENT))
978 		inode = afs_try_auto_mntpt(dentry, dir);
979 
980 	if (!IS_ERR_OR_NULL(inode))
981 		fid = AFS_FS_I(inode)->fid;
982 
983 	_debug("splice %p", dentry->d_inode);
984 	d = d_splice_alias(inode, dentry);
985 	if (!IS_ERR_OR_NULL(d)) {
986 		d->d_fsdata = dentry->d_fsdata;
987 		trace_afs_lookup(dvnode, &d->d_name, &fid);
988 	} else {
989 		trace_afs_lookup(dvnode, &dentry->d_name, &fid);
990 	}
991 	_leave("");
992 	return d;
993 }
994 
995 /*
996  * Check the validity of a dentry under RCU conditions.
997  */
998 static int afs_d_revalidate_rcu(struct dentry *dentry)
999 {
1000 	struct afs_vnode *dvnode, *vnode;
1001 	struct dentry *parent;
1002 	struct inode *dir, *inode;
1003 	long dir_version, de_version;
1004 
1005 	_enter("%p", dentry);
1006 
1007 	/* Check the parent directory is still valid first. */
1008 	parent = READ_ONCE(dentry->d_parent);
1009 	dir = d_inode_rcu(parent);
1010 	if (!dir)
1011 		return -ECHILD;
1012 	dvnode = AFS_FS_I(dir);
1013 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
1014 		return -ECHILD;
1015 
1016 	if (!afs_check_validity(dvnode))
1017 		return -ECHILD;
1018 
1019 	/* We only need to invalidate a dentry if the server's copy changed
1020 	 * behind our back.  If we made the change, it's no problem.  Note that
1021 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1022 	 * version.
1023 	 */
1024 	dir_version = (long)READ_ONCE(dvnode->status.data_version);
1025 	de_version = (long)READ_ONCE(dentry->d_fsdata);
1026 	if (de_version != dir_version) {
1027 		dir_version = (long)READ_ONCE(dvnode->invalid_before);
1028 		if (de_version - dir_version < 0)
1029 			return -ECHILD;
1030 	}
1031 
1032 	/* Check to see if the vnode referred to by the dentry still
1033 	 * has a callback.
1034 	 */
1035 	if (d_really_is_positive(dentry)) {
1036 		inode = d_inode_rcu(dentry);
1037 		if (inode) {
1038 			vnode = AFS_FS_I(inode);
1039 			if (!afs_check_validity(vnode))
1040 				return -ECHILD;
1041 		}
1042 	}
1043 
1044 	return 1; /* Still valid */
1045 }
1046 
1047 /*
1048  * check that a dentry lookup hit has found a valid entry
1049  * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1050  *   inode
1051  */
1052 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1053 {
1054 	struct afs_vnode *vnode, *dir;
1055 	struct afs_fid uninitialized_var(fid);
1056 	struct dentry *parent;
1057 	struct inode *inode;
1058 	struct key *key;
1059 	afs_dataversion_t dir_version, invalid_before;
1060 	long de_version;
1061 	int ret;
1062 
1063 	if (flags & LOOKUP_RCU)
1064 		return afs_d_revalidate_rcu(dentry);
1065 
1066 	if (d_really_is_positive(dentry)) {
1067 		vnode = AFS_FS_I(d_inode(dentry));
1068 		_enter("{v={%llx:%llu} n=%pd fl=%lx},",
1069 		       vnode->fid.vid, vnode->fid.vnode, dentry,
1070 		       vnode->flags);
1071 	} else {
1072 		_enter("{neg n=%pd}", dentry);
1073 	}
1074 
1075 	key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1076 	if (IS_ERR(key))
1077 		key = NULL;
1078 
1079 	if (d_really_is_positive(dentry)) {
1080 		inode = d_inode(dentry);
1081 		if (inode) {
1082 			vnode = AFS_FS_I(inode);
1083 			afs_validate(vnode, key);
1084 			if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1085 				goto out_bad;
1086 		}
1087 	}
1088 
1089 	/* lock down the parent dentry so we can peer at it */
1090 	parent = dget_parent(dentry);
1091 	dir = AFS_FS_I(d_inode(parent));
1092 
1093 	/* validate the parent directory */
1094 	afs_validate(dir, key);
1095 
1096 	if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1097 		_debug("%pd: parent dir deleted", dentry);
1098 		goto out_bad_parent;
1099 	}
1100 
1101 	/* We only need to invalidate a dentry if the server's copy changed
1102 	 * behind our back.  If we made the change, it's no problem.  Note that
1103 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1104 	 * version.
1105 	 */
1106 	dir_version = dir->status.data_version;
1107 	de_version = (long)dentry->d_fsdata;
1108 	if (de_version == (long)dir_version)
1109 		goto out_valid_noupdate;
1110 
1111 	invalid_before = dir->invalid_before;
1112 	if (de_version - (long)invalid_before >= 0)
1113 		goto out_valid;
1114 
1115 	_debug("dir modified");
1116 	afs_stat_v(dir, n_reval);
1117 
1118 	/* search the directory for this vnode */
1119 	ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1120 	switch (ret) {
1121 	case 0:
1122 		/* the filename maps to something */
1123 		if (d_really_is_negative(dentry))
1124 			goto out_bad_parent;
1125 		inode = d_inode(dentry);
1126 		if (is_bad_inode(inode)) {
1127 			printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1128 			       dentry);
1129 			goto out_bad_parent;
1130 		}
1131 
1132 		vnode = AFS_FS_I(inode);
1133 
1134 		/* if the vnode ID has changed, then the dirent points to a
1135 		 * different file */
1136 		if (fid.vnode != vnode->fid.vnode) {
1137 			_debug("%pd: dirent changed [%llu != %llu]",
1138 			       dentry, fid.vnode,
1139 			       vnode->fid.vnode);
1140 			goto not_found;
1141 		}
1142 
1143 		/* if the vnode ID uniqifier has changed, then the file has
1144 		 * been deleted and replaced, and the original vnode ID has
1145 		 * been reused */
1146 		if (fid.unique != vnode->fid.unique) {
1147 			_debug("%pd: file deleted (uq %u -> %u I:%u)",
1148 			       dentry, fid.unique,
1149 			       vnode->fid.unique,
1150 			       vnode->vfs_inode.i_generation);
1151 			write_seqlock(&vnode->cb_lock);
1152 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1153 			write_sequnlock(&vnode->cb_lock);
1154 			goto not_found;
1155 		}
1156 		goto out_valid;
1157 
1158 	case -ENOENT:
1159 		/* the filename is unknown */
1160 		_debug("%pd: dirent not found", dentry);
1161 		if (d_really_is_positive(dentry))
1162 			goto not_found;
1163 		goto out_valid;
1164 
1165 	default:
1166 		_debug("failed to iterate dir %pd: %d",
1167 		       parent, ret);
1168 		goto out_bad_parent;
1169 	}
1170 
1171 out_valid:
1172 	dentry->d_fsdata = (void *)(unsigned long)dir_version;
1173 out_valid_noupdate:
1174 	dput(parent);
1175 	key_put(key);
1176 	_leave(" = 1 [valid]");
1177 	return 1;
1178 
1179 	/* the dirent, if it exists, now points to a different vnode */
1180 not_found:
1181 	spin_lock(&dentry->d_lock);
1182 	dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1183 	spin_unlock(&dentry->d_lock);
1184 
1185 out_bad_parent:
1186 	_debug("dropping dentry %pd2", dentry);
1187 	dput(parent);
1188 out_bad:
1189 	key_put(key);
1190 
1191 	_leave(" = 0 [bad]");
1192 	return 0;
1193 }
1194 
1195 /*
1196  * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1197  * sleep)
1198  * - called from dput() when d_count is going to 0.
1199  * - return 1 to request dentry be unhashed, 0 otherwise
1200  */
1201 static int afs_d_delete(const struct dentry *dentry)
1202 {
1203 	_enter("%pd", dentry);
1204 
1205 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1206 		goto zap;
1207 
1208 	if (d_really_is_positive(dentry) &&
1209 	    (test_bit(AFS_VNODE_DELETED,   &AFS_FS_I(d_inode(dentry))->flags) ||
1210 	     test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1211 		goto zap;
1212 
1213 	_leave(" = 0 [keep]");
1214 	return 0;
1215 
1216 zap:
1217 	_leave(" = 1 [zap]");
1218 	return 1;
1219 }
1220 
1221 /*
1222  * Clean up sillyrename files on dentry removal.
1223  */
1224 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1225 {
1226 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1227 		afs_silly_iput(dentry, inode);
1228 	iput(inode);
1229 }
1230 
1231 /*
1232  * handle dentry release
1233  */
1234 void afs_d_release(struct dentry *dentry)
1235 {
1236 	_enter("%pd", dentry);
1237 }
1238 
1239 /*
1240  * Create a new inode for create/mkdir/symlink
1241  */
1242 static void afs_vnode_new_inode(struct afs_operation *op)
1243 {
1244 	struct afs_vnode_param *vp = &op->file[1];
1245 	struct afs_vnode *vnode;
1246 	struct inode *inode;
1247 
1248 	_enter("");
1249 
1250 	ASSERTCMP(op->error, ==, 0);
1251 
1252 	inode = afs_iget(op, vp);
1253 	if (IS_ERR(inode)) {
1254 		/* ENOMEM or EINTR at a really inconvenient time - just abandon
1255 		 * the new directory on the server.
1256 		 */
1257 		op->error = PTR_ERR(inode);
1258 		return;
1259 	}
1260 
1261 	vnode = AFS_FS_I(inode);
1262 	set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1263 	if (!op->error)
1264 		afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb);
1265 	d_instantiate(op->dentry, inode);
1266 }
1267 
1268 static void afs_create_success(struct afs_operation *op)
1269 {
1270 	_enter("op=%08x", op->debug_id);
1271 	op->ctime = op->file[0].scb.status.mtime_client;
1272 	afs_check_for_remote_deletion(op, op->file[0].vnode);
1273 	afs_vnode_commit_status(op, &op->file[0]);
1274 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1275 	afs_vnode_new_inode(op);
1276 }
1277 
1278 static void afs_create_edit_dir(struct afs_operation *op)
1279 {
1280 	struct afs_vnode_param *dvp = &op->file[0];
1281 	struct afs_vnode_param *vp = &op->file[1];
1282 	struct afs_vnode *dvnode = dvp->vnode;
1283 
1284 	_enter("op=%08x", op->debug_id);
1285 
1286 	down_write(&dvnode->validate_lock);
1287 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1288 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1289 		afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid,
1290 				 op->create.reason);
1291 	up_write(&dvnode->validate_lock);
1292 }
1293 
1294 static void afs_create_put(struct afs_operation *op)
1295 {
1296 	_enter("op=%08x", op->debug_id);
1297 
1298 	if (op->error)
1299 		d_drop(op->dentry);
1300 }
1301 
1302 static const struct afs_operation_ops afs_mkdir_operation = {
1303 	.issue_afs_rpc	= afs_fs_make_dir,
1304 	.issue_yfs_rpc	= yfs_fs_make_dir,
1305 	.success	= afs_create_success,
1306 	.edit_dir	= afs_create_edit_dir,
1307 	.put		= afs_create_put,
1308 };
1309 
1310 /*
1311  * create a directory on an AFS filesystem
1312  */
1313 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1314 {
1315 	struct afs_operation *op;
1316 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1317 
1318 	_enter("{%llx:%llu},{%pd},%ho",
1319 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1320 
1321 	op = afs_alloc_operation(NULL, dvnode->volume);
1322 	if (IS_ERR(op)) {
1323 		d_drop(dentry);
1324 		return PTR_ERR(op);
1325 	}
1326 
1327 	afs_op_set_vnode(op, 0, dvnode);
1328 	op->file[0].dv_delta = 1;
1329 	op->file[0].update_ctime = true;
1330 	op->dentry	= dentry;
1331 	op->create.mode	= S_IFDIR | mode;
1332 	op->create.reason = afs_edit_dir_for_mkdir;
1333 	op->ops		= &afs_mkdir_operation;
1334 	return afs_do_sync_operation(op);
1335 }
1336 
1337 /*
1338  * Remove a subdir from a directory.
1339  */
1340 static void afs_dir_remove_subdir(struct dentry *dentry)
1341 {
1342 	if (d_really_is_positive(dentry)) {
1343 		struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1344 
1345 		clear_nlink(&vnode->vfs_inode);
1346 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1347 		clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1348 		clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1349 	}
1350 }
1351 
1352 static void afs_rmdir_success(struct afs_operation *op)
1353 {
1354 	_enter("op=%08x", op->debug_id);
1355 	op->ctime = op->file[0].scb.status.mtime_client;
1356 	afs_check_for_remote_deletion(op, op->file[0].vnode);
1357 	afs_vnode_commit_status(op, &op->file[0]);
1358 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1359 }
1360 
1361 static void afs_rmdir_edit_dir(struct afs_operation *op)
1362 {
1363 	struct afs_vnode_param *dvp = &op->file[0];
1364 	struct afs_vnode *dvnode = dvp->vnode;
1365 
1366 	_enter("op=%08x", op->debug_id);
1367 	afs_dir_remove_subdir(op->dentry);
1368 
1369 	down_write(&dvnode->validate_lock);
1370 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1371 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1372 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1373 				    afs_edit_dir_for_rmdir);
1374 	up_write(&dvnode->validate_lock);
1375 }
1376 
1377 static void afs_rmdir_put(struct afs_operation *op)
1378 {
1379 	_enter("op=%08x", op->debug_id);
1380 	if (op->file[1].vnode)
1381 		up_write(&op->file[1].vnode->rmdir_lock);
1382 }
1383 
1384 static const struct afs_operation_ops afs_rmdir_operation = {
1385 	.issue_afs_rpc	= afs_fs_remove_dir,
1386 	.issue_yfs_rpc	= yfs_fs_remove_dir,
1387 	.success	= afs_rmdir_success,
1388 	.edit_dir	= afs_rmdir_edit_dir,
1389 	.put		= afs_rmdir_put,
1390 };
1391 
1392 /*
1393  * remove a directory from an AFS filesystem
1394  */
1395 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1396 {
1397 	struct afs_operation *op;
1398 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1399 	int ret;
1400 
1401 	_enter("{%llx:%llu},{%pd}",
1402 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1403 
1404 	op = afs_alloc_operation(NULL, dvnode->volume);
1405 	if (IS_ERR(op))
1406 		return PTR_ERR(op);
1407 
1408 	afs_op_set_vnode(op, 0, dvnode);
1409 	op->file[0].dv_delta = 1;
1410 	op->file[0].update_ctime = true;
1411 
1412 	op->dentry	= dentry;
1413 	op->ops		= &afs_rmdir_operation;
1414 
1415 	/* Try to make sure we have a callback promise on the victim. */
1416 	if (d_really_is_positive(dentry)) {
1417 		vnode = AFS_FS_I(d_inode(dentry));
1418 		ret = afs_validate(vnode, op->key);
1419 		if (ret < 0)
1420 			goto error;
1421 	}
1422 
1423 	if (vnode) {
1424 		ret = down_write_killable(&vnode->rmdir_lock);
1425 		if (ret < 0)
1426 			goto error;
1427 		op->file[1].vnode = vnode;
1428 	}
1429 
1430 	return afs_do_sync_operation(op);
1431 
1432 error:
1433 	return afs_put_operation(op);
1434 }
1435 
1436 /*
1437  * Remove a link to a file or symlink from a directory.
1438  *
1439  * If the file was not deleted due to excess hard links, the fileserver will
1440  * break the callback promise on the file - if it had one - before it returns
1441  * to us, and if it was deleted, it won't
1442  *
1443  * However, if we didn't have a callback promise outstanding, or it was
1444  * outstanding on a different server, then it won't break it either...
1445  */
1446 static void afs_dir_remove_link(struct afs_operation *op)
1447 {
1448 	struct afs_vnode *dvnode = op->file[0].vnode;
1449 	struct afs_vnode *vnode = op->file[1].vnode;
1450 	struct dentry *dentry = op->dentry;
1451 	int ret;
1452 
1453 	if (op->error != 0 ||
1454 	    (op->file[1].scb.have_status && op->file[1].scb.have_error))
1455 		return;
1456 	if (d_really_is_positive(dentry))
1457 		return;
1458 
1459 	if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1460 		/* Already done */
1461 	} else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1462 		write_seqlock(&vnode->cb_lock);
1463 		drop_nlink(&vnode->vfs_inode);
1464 		if (vnode->vfs_inode.i_nlink == 0) {
1465 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1466 			__afs_break_callback(vnode, afs_cb_break_for_unlink);
1467 		}
1468 		write_sequnlock(&vnode->cb_lock);
1469 	} else {
1470 		afs_break_callback(vnode, afs_cb_break_for_unlink);
1471 
1472 		if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1473 			_debug("AFS_VNODE_DELETED");
1474 
1475 		ret = afs_validate(vnode, op->key);
1476 		if (ret != -ESTALE)
1477 			op->error = ret;
1478 	}
1479 
1480 	_debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error);
1481 }
1482 
1483 static void afs_unlink_success(struct afs_operation *op)
1484 {
1485 	_enter("op=%08x", op->debug_id);
1486 	op->ctime = op->file[0].scb.status.mtime_client;
1487 	afs_check_for_remote_deletion(op, op->file[0].vnode);
1488 	afs_vnode_commit_status(op, &op->file[0]);
1489 	afs_vnode_commit_status(op, &op->file[1]);
1490 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1491 	afs_dir_remove_link(op);
1492 }
1493 
1494 static void afs_unlink_edit_dir(struct afs_operation *op)
1495 {
1496 	struct afs_vnode_param *dvp = &op->file[0];
1497 	struct afs_vnode *dvnode = dvp->vnode;
1498 
1499 	_enter("op=%08x", op->debug_id);
1500 	down_write(&dvnode->validate_lock);
1501 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1502 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1503 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1504 				    afs_edit_dir_for_unlink);
1505 	up_write(&dvnode->validate_lock);
1506 }
1507 
1508 static void afs_unlink_put(struct afs_operation *op)
1509 {
1510 	_enter("op=%08x", op->debug_id);
1511 	if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT)
1512 		d_rehash(op->dentry);
1513 }
1514 
1515 static const struct afs_operation_ops afs_unlink_operation = {
1516 	.issue_afs_rpc	= afs_fs_remove_file,
1517 	.issue_yfs_rpc	= yfs_fs_remove_file,
1518 	.success	= afs_unlink_success,
1519 	.edit_dir	= afs_unlink_edit_dir,
1520 	.put		= afs_unlink_put,
1521 };
1522 
1523 /*
1524  * Remove a file or symlink from an AFS filesystem.
1525  */
1526 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1527 {
1528 	struct afs_operation *op;
1529 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1530 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1531 	int ret;
1532 
1533 	_enter("{%llx:%llu},{%pd}",
1534 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1535 
1536 	if (dentry->d_name.len >= AFSNAMEMAX)
1537 		return -ENAMETOOLONG;
1538 
1539 	op = afs_alloc_operation(NULL, dvnode->volume);
1540 	if (IS_ERR(op))
1541 		return PTR_ERR(op);
1542 
1543 	afs_op_set_vnode(op, 0, dvnode);
1544 	op->file[0].dv_delta = 1;
1545 	op->file[0].update_ctime = true;
1546 
1547 	/* Try to make sure we have a callback promise on the victim. */
1548 	ret = afs_validate(vnode, op->key);
1549 	if (ret < 0) {
1550 		op->error = ret;
1551 		goto error;
1552 	}
1553 
1554 	spin_lock(&dentry->d_lock);
1555 	if (d_count(dentry) > 1) {
1556 		spin_unlock(&dentry->d_lock);
1557 		/* Start asynchronous writeout of the inode */
1558 		write_inode_now(d_inode(dentry), 0);
1559 		op->error = afs_sillyrename(dvnode, vnode, dentry, op->key);
1560 		goto error;
1561 	}
1562 	if (!d_unhashed(dentry)) {
1563 		/* Prevent a race with RCU lookup. */
1564 		__d_drop(dentry);
1565 		op->unlink.need_rehash = true;
1566 	}
1567 	spin_unlock(&dentry->d_lock);
1568 
1569 	op->file[1].vnode = vnode;
1570 	op->file[1].update_ctime = true;
1571 	op->dentry	= dentry;
1572 	op->ops		= &afs_unlink_operation;
1573 	return afs_do_sync_operation(op);
1574 
1575 error:
1576 	return afs_put_operation(op);
1577 }
1578 
1579 static const struct afs_operation_ops afs_create_operation = {
1580 	.issue_afs_rpc	= afs_fs_create_file,
1581 	.issue_yfs_rpc	= yfs_fs_create_file,
1582 	.success	= afs_create_success,
1583 	.edit_dir	= afs_create_edit_dir,
1584 	.put		= afs_create_put,
1585 };
1586 
1587 /*
1588  * create a regular file on an AFS filesystem
1589  */
1590 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1591 		      bool excl)
1592 {
1593 	struct afs_operation *op;
1594 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1595 	int ret = -ENAMETOOLONG;
1596 
1597 	_enter("{%llx:%llu},{%pd},%ho",
1598 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1599 
1600 	if (dentry->d_name.len >= AFSNAMEMAX)
1601 		goto error;
1602 
1603 	op = afs_alloc_operation(NULL, dvnode->volume);
1604 	if (IS_ERR(op)) {
1605 		ret = PTR_ERR(op);
1606 		goto error;
1607 	}
1608 
1609 	afs_op_set_vnode(op, 0, dvnode);
1610 	op->file[0].dv_delta = 1;
1611 	op->file[0].update_ctime = true;
1612 
1613 	op->dentry	= dentry;
1614 	op->create.mode	= S_IFREG | mode;
1615 	op->create.reason = afs_edit_dir_for_create;
1616 	op->ops		= &afs_create_operation;
1617 	return afs_do_sync_operation(op);
1618 
1619 error:
1620 	d_drop(dentry);
1621 	_leave(" = %d", ret);
1622 	return ret;
1623 }
1624 
1625 static void afs_link_success(struct afs_operation *op)
1626 {
1627 	struct afs_vnode_param *dvp = &op->file[0];
1628 	struct afs_vnode_param *vp = &op->file[1];
1629 
1630 	_enter("op=%08x", op->debug_id);
1631 	op->ctime = dvp->scb.status.mtime_client;
1632 	afs_vnode_commit_status(op, dvp);
1633 	afs_vnode_commit_status(op, vp);
1634 	afs_update_dentry_version(op, dvp, op->dentry);
1635 	if (op->dentry_2->d_parent == op->dentry->d_parent)
1636 		afs_update_dentry_version(op, dvp, op->dentry_2);
1637 	ihold(&vp->vnode->vfs_inode);
1638 	d_instantiate(op->dentry, &vp->vnode->vfs_inode);
1639 }
1640 
1641 static void afs_link_put(struct afs_operation *op)
1642 {
1643 	_enter("op=%08x", op->debug_id);
1644 	if (op->error)
1645 		d_drop(op->dentry);
1646 }
1647 
1648 static const struct afs_operation_ops afs_link_operation = {
1649 	.issue_afs_rpc	= afs_fs_link,
1650 	.issue_yfs_rpc	= yfs_fs_link,
1651 	.success	= afs_link_success,
1652 	.edit_dir	= afs_create_edit_dir,
1653 	.put		= afs_link_put,
1654 };
1655 
1656 /*
1657  * create a hard link between files in an AFS filesystem
1658  */
1659 static int afs_link(struct dentry *from, struct inode *dir,
1660 		    struct dentry *dentry)
1661 {
1662 	struct afs_operation *op;
1663 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1664 	struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1665 	int ret = -ENAMETOOLONG;
1666 
1667 	_enter("{%llx:%llu},{%llx:%llu},{%pd}",
1668 	       vnode->fid.vid, vnode->fid.vnode,
1669 	       dvnode->fid.vid, dvnode->fid.vnode,
1670 	       dentry);
1671 
1672 	if (dentry->d_name.len >= AFSNAMEMAX)
1673 		goto error;
1674 
1675 	op = afs_alloc_operation(NULL, dvnode->volume);
1676 	if (IS_ERR(op)) {
1677 		ret = PTR_ERR(op);
1678 		goto error;
1679 	}
1680 
1681 	afs_op_set_vnode(op, 0, dvnode);
1682 	afs_op_set_vnode(op, 1, vnode);
1683 	op->file[0].dv_delta = 1;
1684 	op->file[0].update_ctime = true;
1685 	op->file[1].update_ctime = true;
1686 
1687 	op->dentry		= dentry;
1688 	op->dentry_2		= from;
1689 	op->ops			= &afs_link_operation;
1690 	op->create.reason	= afs_edit_dir_for_link;
1691 	return afs_do_sync_operation(op);
1692 
1693 error:
1694 	d_drop(dentry);
1695 	_leave(" = %d", ret);
1696 	return ret;
1697 }
1698 
1699 static const struct afs_operation_ops afs_symlink_operation = {
1700 	.issue_afs_rpc	= afs_fs_symlink,
1701 	.issue_yfs_rpc	= yfs_fs_symlink,
1702 	.success	= afs_create_success,
1703 	.edit_dir	= afs_create_edit_dir,
1704 	.put		= afs_create_put,
1705 };
1706 
1707 /*
1708  * create a symlink in an AFS filesystem
1709  */
1710 static int afs_symlink(struct inode *dir, struct dentry *dentry,
1711 		       const char *content)
1712 {
1713 	struct afs_operation *op;
1714 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1715 	int ret;
1716 
1717 	_enter("{%llx:%llu},{%pd},%s",
1718 	       dvnode->fid.vid, dvnode->fid.vnode, dentry,
1719 	       content);
1720 
1721 	ret = -ENAMETOOLONG;
1722 	if (dentry->d_name.len >= AFSNAMEMAX)
1723 		goto error;
1724 
1725 	ret = -EINVAL;
1726 	if (strlen(content) >= AFSPATHMAX)
1727 		goto error;
1728 
1729 	op = afs_alloc_operation(NULL, dvnode->volume);
1730 	if (IS_ERR(op)) {
1731 		ret = PTR_ERR(op);
1732 		goto error;
1733 	}
1734 
1735 	afs_op_set_vnode(op, 0, dvnode);
1736 	op->file[0].dv_delta = 1;
1737 
1738 	op->dentry		= dentry;
1739 	op->ops			= &afs_symlink_operation;
1740 	op->create.reason	= afs_edit_dir_for_symlink;
1741 	op->create.symlink	= content;
1742 	return afs_do_sync_operation(op);
1743 
1744 error:
1745 	d_drop(dentry);
1746 	_leave(" = %d", ret);
1747 	return ret;
1748 }
1749 
1750 static void afs_rename_success(struct afs_operation *op)
1751 {
1752 	_enter("op=%08x", op->debug_id);
1753 
1754 	op->ctime = op->file[0].scb.status.mtime_client;
1755 	afs_vnode_commit_status(op, &op->file[0]);
1756 	if (op->file[1].vnode != op->file[0].vnode) {
1757 		op->ctime = op->file[1].scb.status.mtime_client;
1758 		afs_vnode_commit_status(op, &op->file[1]);
1759 	}
1760 }
1761 
1762 static void afs_rename_edit_dir(struct afs_operation *op)
1763 {
1764 	struct afs_vnode_param *orig_dvp = &op->file[0];
1765 	struct afs_vnode_param *new_dvp = &op->file[1];
1766 	struct afs_vnode *orig_dvnode = orig_dvp->vnode;
1767 	struct afs_vnode *new_dvnode = new_dvp->vnode;
1768 	struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry));
1769 	struct dentry *old_dentry = op->dentry;
1770 	struct dentry *new_dentry = op->dentry_2;
1771 	struct inode *new_inode;
1772 
1773 	_enter("op=%08x", op->debug_id);
1774 
1775 	if (op->rename.rehash) {
1776 		d_rehash(op->rename.rehash);
1777 		op->rename.rehash = NULL;
1778 	}
1779 
1780 	down_write(&orig_dvnode->validate_lock);
1781 	if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) &&
1782 	    orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta)
1783 		afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1784 				    afs_edit_dir_for_rename_0);
1785 
1786 	if (new_dvnode != orig_dvnode) {
1787 		up_write(&orig_dvnode->validate_lock);
1788 		down_write(&new_dvnode->validate_lock);
1789 	}
1790 
1791 	if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) &&
1792 	    new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) {
1793 		if (!op->rename.new_negative)
1794 			afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1795 					    afs_edit_dir_for_rename_1);
1796 
1797 		afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1798 				 &vnode->fid, afs_edit_dir_for_rename_2);
1799 	}
1800 
1801 	new_inode = d_inode(new_dentry);
1802 	if (new_inode) {
1803 		spin_lock(&new_inode->i_lock);
1804 		if (new_inode->i_nlink > 0)
1805 			drop_nlink(new_inode);
1806 		spin_unlock(&new_inode->i_lock);
1807 	}
1808 
1809 	/* Now we can update d_fsdata on the dentries to reflect their
1810 	 * new parent's data_version.
1811 	 *
1812 	 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1813 	 * to update both dentries with opposing dir versions.
1814 	 */
1815 	afs_update_dentry_version(op, new_dvp, op->dentry);
1816 	afs_update_dentry_version(op, new_dvp, op->dentry_2);
1817 
1818 	d_move(old_dentry, new_dentry);
1819 
1820 	up_write(&new_dvnode->validate_lock);
1821 }
1822 
1823 static void afs_rename_put(struct afs_operation *op)
1824 {
1825 	_enter("op=%08x", op->debug_id);
1826 	if (op->rename.rehash)
1827 		d_rehash(op->rename.rehash);
1828 	dput(op->rename.tmp);
1829 	if (op->error)
1830 		d_rehash(op->dentry);
1831 }
1832 
1833 static const struct afs_operation_ops afs_rename_operation = {
1834 	.issue_afs_rpc	= afs_fs_rename,
1835 	.issue_yfs_rpc	= yfs_fs_rename,
1836 	.success	= afs_rename_success,
1837 	.edit_dir	= afs_rename_edit_dir,
1838 	.put		= afs_rename_put,
1839 };
1840 
1841 /*
1842  * rename a file in an AFS filesystem and/or move it between directories
1843  */
1844 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
1845 		      struct inode *new_dir, struct dentry *new_dentry,
1846 		      unsigned int flags)
1847 {
1848 	struct afs_operation *op;
1849 	struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1850 	int ret;
1851 
1852 	if (flags)
1853 		return -EINVAL;
1854 
1855 	/* Don't allow silly-rename files be moved around. */
1856 	if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1857 		return -EINVAL;
1858 
1859 	vnode = AFS_FS_I(d_inode(old_dentry));
1860 	orig_dvnode = AFS_FS_I(old_dir);
1861 	new_dvnode = AFS_FS_I(new_dir);
1862 
1863 	_enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1864 	       orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1865 	       vnode->fid.vid, vnode->fid.vnode,
1866 	       new_dvnode->fid.vid, new_dvnode->fid.vnode,
1867 	       new_dentry);
1868 
1869 	op = afs_alloc_operation(NULL, orig_dvnode->volume);
1870 	if (IS_ERR(op))
1871 		return PTR_ERR(op);
1872 
1873 	afs_op_set_vnode(op, 0, orig_dvnode);
1874 	afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */
1875 	op->file[0].dv_delta = 1;
1876 	op->file[1].dv_delta = 1;
1877 	op->file[0].update_ctime = true;
1878 	op->file[1].update_ctime = true;
1879 
1880 	op->dentry		= old_dentry;
1881 	op->dentry_2		= new_dentry;
1882 	op->rename.new_negative	= d_is_negative(new_dentry);
1883 	op->ops			= &afs_rename_operation;
1884 
1885 	/* For non-directories, check whether the target is busy and if so,
1886 	 * make a copy of the dentry and then do a silly-rename.  If the
1887 	 * silly-rename succeeds, the copied dentry is hashed and becomes the
1888 	 * new target.
1889 	 */
1890 	if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1891 		/* To prevent any new references to the target during the
1892 		 * rename, we unhash the dentry in advance.
1893 		 */
1894 		if (!d_unhashed(new_dentry)) {
1895 			d_drop(new_dentry);
1896 			op->rename.rehash = new_dentry;
1897 		}
1898 
1899 		if (d_count(new_dentry) > 2) {
1900 			/* copy the target dentry's name */
1901 			ret = -ENOMEM;
1902 			op->rename.tmp = d_alloc(new_dentry->d_parent,
1903 						 &new_dentry->d_name);
1904 			if (!op->rename.tmp)
1905 				goto error;
1906 
1907 			ret = afs_sillyrename(new_dvnode,
1908 					      AFS_FS_I(d_inode(new_dentry)),
1909 					      new_dentry, op->key);
1910 			if (ret)
1911 				goto error;
1912 
1913 			op->dentry_2 = op->rename.tmp;
1914 			op->rename.rehash = NULL;
1915 			op->rename.new_negative = true;
1916 		}
1917 	}
1918 
1919 	/* This bit is potentially nasty as there's a potential race with
1920 	 * afs_d_revalidate{,_rcu}().  We have to change d_fsdata on the dentry
1921 	 * to reflect it's new parent's new data_version after the op, but
1922 	 * d_revalidate may see old_dentry between the op having taken place
1923 	 * and the version being updated.
1924 	 *
1925 	 * So drop the old_dentry for now to make other threads go through
1926 	 * lookup instead - which we hold a lock against.
1927 	 */
1928 	d_drop(old_dentry);
1929 
1930 	return afs_do_sync_operation(op);
1931 
1932 error:
1933 	return afs_put_operation(op);
1934 }
1935 
1936 /*
1937  * Release a directory page and clean up its private state if it's not busy
1938  * - return true if the page can now be released, false if not
1939  */
1940 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1941 {
1942 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1943 
1944 	_enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1945 
1946 	set_page_private(page, 0);
1947 	ClearPagePrivate(page);
1948 
1949 	/* The directory will need reloading. */
1950 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1951 		afs_stat_v(dvnode, n_relpg);
1952 	return 1;
1953 }
1954 
1955 /*
1956  * invalidate part or all of a page
1957  * - release a page and clean up its private data if offset is 0 (indicating
1958  *   the entire page)
1959  */
1960 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
1961 				   unsigned int length)
1962 {
1963 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1964 
1965 	_enter("{%lu},%u,%u", page->index, offset, length);
1966 
1967 	BUG_ON(!PageLocked(page));
1968 
1969 	/* The directory will need reloading. */
1970 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1971 		afs_stat_v(dvnode, n_inval);
1972 
1973 	/* we clean up only if the entire page is being invalidated */
1974 	if (offset == 0 && length == PAGE_SIZE) {
1975 		set_page_private(page, 0);
1976 		ClearPagePrivate(page);
1977 	}
1978 }
1979