1 /****************************************************************************** 2 * Client-facing interface for the Xenbus driver. In other words, the 3 * interface between the Xenbus and the device-specific code, be it the 4 * frontend or the backend of that driver. 5 * 6 * Copyright (C) 2005 XenSource Ltd 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 2 10 * as published by the Free Software Foundation; or, when distributed 11 * separately from the Linux kernel or incorporated into other 12 * software packages, subject to the following license: 13 * 14 * Permission is hereby granted, free of charge, to any person obtaining a copy 15 * of this source file (the "Software"), to deal in the Software without 16 * restriction, including without limitation the rights to use, copy, modify, 17 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 18 * and to permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be included in 22 * all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 30 * IN THE SOFTWARE. 31 */ 32 33 #include <linux/mm.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/spinlock.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <asm/xen/hypervisor.h> 40 #include <xen/page.h> 41 #include <xen/interface/xen.h> 42 #include <xen/interface/event_channel.h> 43 #include <xen/balloon.h> 44 #include <xen/events.h> 45 #include <xen/grant_table.h> 46 #include <xen/xenbus.h> 47 #include <xen/xen.h> 48 #include <xen/features.h> 49 50 #include "xenbus.h" 51 52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE)) 53 54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS)) 55 56 struct xenbus_map_node { 57 struct list_head next; 58 union { 59 struct { 60 struct vm_struct *area; 61 } pv; 62 struct { 63 struct page *pages[XENBUS_MAX_RING_PAGES]; 64 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 65 void *addr; 66 } hvm; 67 }; 68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS]; 69 unsigned int nr_handles; 70 }; 71 72 struct map_ring_valloc { 73 struct xenbus_map_node *node; 74 75 /* Why do we need two arrays? See comment of __xenbus_map_ring */ 76 union { 77 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 78 pte_t *ptes[XENBUS_MAX_RING_GRANTS]; 79 }; 80 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS]; 81 82 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS]; 83 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 84 85 unsigned int idx; /* HVM only. */ 86 }; 87 88 static DEFINE_SPINLOCK(xenbus_valloc_lock); 89 static LIST_HEAD(xenbus_valloc_pages); 90 91 struct xenbus_ring_ops { 92 int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info, 93 grant_ref_t *gnt_refs, unsigned int nr_grefs, 94 void **vaddr); 95 int (*unmap)(struct xenbus_device *dev, void *vaddr); 96 }; 97 98 static const struct xenbus_ring_ops *ring_ops __read_mostly; 99 100 const char *xenbus_strstate(enum xenbus_state state) 101 { 102 static const char *const name[] = { 103 [ XenbusStateUnknown ] = "Unknown", 104 [ XenbusStateInitialising ] = "Initialising", 105 [ XenbusStateInitWait ] = "InitWait", 106 [ XenbusStateInitialised ] = "Initialised", 107 [ XenbusStateConnected ] = "Connected", 108 [ XenbusStateClosing ] = "Closing", 109 [ XenbusStateClosed ] = "Closed", 110 [XenbusStateReconfiguring] = "Reconfiguring", 111 [XenbusStateReconfigured] = "Reconfigured", 112 }; 113 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID"; 114 } 115 EXPORT_SYMBOL_GPL(xenbus_strstate); 116 117 /** 118 * xenbus_watch_path - register a watch 119 * @dev: xenbus device 120 * @path: path to watch 121 * @watch: watch to register 122 * @callback: callback to register 123 * 124 * Register a @watch on the given path, using the given xenbus_watch structure 125 * for storage, and the given @callback function as the callback. Return 0 on 126 * success, or -errno on error. On success, the given @path will be saved as 127 * @watch->node, and remains the caller's to free. On error, @watch->node will 128 * be NULL, the device will switch to %XenbusStateClosing, and the error will 129 * be saved in the store. 130 */ 131 int xenbus_watch_path(struct xenbus_device *dev, const char *path, 132 struct xenbus_watch *watch, 133 void (*callback)(struct xenbus_watch *, 134 const char *, const char *)) 135 { 136 int err; 137 138 watch->node = path; 139 watch->callback = callback; 140 141 err = register_xenbus_watch(watch); 142 143 if (err) { 144 watch->node = NULL; 145 watch->callback = NULL; 146 xenbus_dev_fatal(dev, err, "adding watch on %s", path); 147 } 148 149 return err; 150 } 151 EXPORT_SYMBOL_GPL(xenbus_watch_path); 152 153 154 /** 155 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path 156 * @dev: xenbus device 157 * @watch: watch to register 158 * @callback: callback to register 159 * @pathfmt: format of path to watch 160 * 161 * Register a watch on the given @path, using the given xenbus_watch 162 * structure for storage, and the given @callback function as the callback. 163 * Return 0 on success, or -errno on error. On success, the watched path 164 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to 165 * kfree(). On error, watch->node will be NULL, so the caller has nothing to 166 * free, the device will switch to %XenbusStateClosing, and the error will be 167 * saved in the store. 168 */ 169 int xenbus_watch_pathfmt(struct xenbus_device *dev, 170 struct xenbus_watch *watch, 171 void (*callback)(struct xenbus_watch *, 172 const char *, const char *), 173 const char *pathfmt, ...) 174 { 175 int err; 176 va_list ap; 177 char *path; 178 179 va_start(ap, pathfmt); 180 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap); 181 va_end(ap); 182 183 if (!path) { 184 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch"); 185 return -ENOMEM; 186 } 187 err = xenbus_watch_path(dev, path, watch, callback); 188 189 if (err) 190 kfree(path); 191 return err; 192 } 193 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt); 194 195 static void xenbus_switch_fatal(struct xenbus_device *, int, int, 196 const char *, ...); 197 198 static int 199 __xenbus_switch_state(struct xenbus_device *dev, 200 enum xenbus_state state, int depth) 201 { 202 /* We check whether the state is currently set to the given value, and 203 if not, then the state is set. We don't want to unconditionally 204 write the given state, because we don't want to fire watches 205 unnecessarily. Furthermore, if the node has gone, we don't write 206 to it, as the device will be tearing down, and we don't want to 207 resurrect that directory. 208 209 Note that, because of this cached value of our state, this 210 function will not take a caller's Xenstore transaction 211 (something it was trying to in the past) because dev->state 212 would not get reset if the transaction was aborted. 213 */ 214 215 struct xenbus_transaction xbt; 216 int current_state; 217 int err, abort; 218 219 if (state == dev->state) 220 return 0; 221 222 again: 223 abort = 1; 224 225 err = xenbus_transaction_start(&xbt); 226 if (err) { 227 xenbus_switch_fatal(dev, depth, err, "starting transaction"); 228 return 0; 229 } 230 231 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state); 232 if (err != 1) 233 goto abort; 234 235 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state); 236 if (err) { 237 xenbus_switch_fatal(dev, depth, err, "writing new state"); 238 goto abort; 239 } 240 241 abort = 0; 242 abort: 243 err = xenbus_transaction_end(xbt, abort); 244 if (err) { 245 if (err == -EAGAIN && !abort) 246 goto again; 247 xenbus_switch_fatal(dev, depth, err, "ending transaction"); 248 } else 249 dev->state = state; 250 251 return 0; 252 } 253 254 /** 255 * xenbus_switch_state 256 * @dev: xenbus device 257 * @state: new state 258 * 259 * Advertise in the store a change of the given driver to the given new_state. 260 * Return 0 on success, or -errno on error. On error, the device will switch 261 * to XenbusStateClosing, and the error will be saved in the store. 262 */ 263 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state) 264 { 265 return __xenbus_switch_state(dev, state, 0); 266 } 267 268 EXPORT_SYMBOL_GPL(xenbus_switch_state); 269 270 int xenbus_frontend_closed(struct xenbus_device *dev) 271 { 272 xenbus_switch_state(dev, XenbusStateClosed); 273 complete(&dev->down); 274 return 0; 275 } 276 EXPORT_SYMBOL_GPL(xenbus_frontend_closed); 277 278 static void xenbus_va_dev_error(struct xenbus_device *dev, int err, 279 const char *fmt, va_list ap) 280 { 281 unsigned int len; 282 char *printf_buffer; 283 char *path_buffer; 284 285 #define PRINTF_BUFFER_SIZE 4096 286 287 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL); 288 if (!printf_buffer) 289 return; 290 291 len = sprintf(printf_buffer, "%i ", -err); 292 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap); 293 294 dev_err(&dev->dev, "%s\n", printf_buffer); 295 296 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename); 297 if (path_buffer) 298 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer); 299 300 kfree(printf_buffer); 301 kfree(path_buffer); 302 } 303 304 /** 305 * xenbus_dev_error 306 * @dev: xenbus device 307 * @err: error to report 308 * @fmt: error message format 309 * 310 * Report the given negative errno into the store, along with the given 311 * formatted message. 312 */ 313 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...) 314 { 315 va_list ap; 316 317 va_start(ap, fmt); 318 xenbus_va_dev_error(dev, err, fmt, ap); 319 va_end(ap); 320 } 321 EXPORT_SYMBOL_GPL(xenbus_dev_error); 322 323 /** 324 * xenbus_dev_fatal 325 * @dev: xenbus device 326 * @err: error to report 327 * @fmt: error message format 328 * 329 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by 330 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly 331 * closedown of this driver and its peer. 332 */ 333 334 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...) 335 { 336 va_list ap; 337 338 va_start(ap, fmt); 339 xenbus_va_dev_error(dev, err, fmt, ap); 340 va_end(ap); 341 342 xenbus_switch_state(dev, XenbusStateClosing); 343 } 344 EXPORT_SYMBOL_GPL(xenbus_dev_fatal); 345 346 /** 347 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps 348 * avoiding recursion within xenbus_switch_state. 349 */ 350 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err, 351 const char *fmt, ...) 352 { 353 va_list ap; 354 355 va_start(ap, fmt); 356 xenbus_va_dev_error(dev, err, fmt, ap); 357 va_end(ap); 358 359 if (!depth) 360 __xenbus_switch_state(dev, XenbusStateClosing, 1); 361 } 362 363 /** 364 * xenbus_grant_ring 365 * @dev: xenbus device 366 * @vaddr: starting virtual address of the ring 367 * @nr_pages: number of pages to be granted 368 * @grefs: grant reference array to be filled in 369 * 370 * Grant access to the given @vaddr to the peer of the given device. 371 * Then fill in @grefs with grant references. Return 0 on success, or 372 * -errno on error. On error, the device will switch to 373 * XenbusStateClosing, and the error will be saved in the store. 374 */ 375 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr, 376 unsigned int nr_pages, grant_ref_t *grefs) 377 { 378 int err; 379 int i, j; 380 381 for (i = 0; i < nr_pages; i++) { 382 unsigned long gfn; 383 384 if (is_vmalloc_addr(vaddr)) 385 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr)); 386 else 387 gfn = virt_to_gfn(vaddr); 388 389 err = gnttab_grant_foreign_access(dev->otherend_id, gfn, 0); 390 if (err < 0) { 391 xenbus_dev_fatal(dev, err, 392 "granting access to ring page"); 393 goto fail; 394 } 395 grefs[i] = err; 396 397 vaddr = vaddr + XEN_PAGE_SIZE; 398 } 399 400 return 0; 401 402 fail: 403 for (j = 0; j < i; j++) 404 gnttab_end_foreign_access_ref(grefs[j], 0); 405 return err; 406 } 407 EXPORT_SYMBOL_GPL(xenbus_grant_ring); 408 409 410 /** 411 * Allocate an event channel for the given xenbus_device, assigning the newly 412 * created local port to *port. Return 0 on success, or -errno on error. On 413 * error, the device will switch to XenbusStateClosing, and the error will be 414 * saved in the store. 415 */ 416 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port) 417 { 418 struct evtchn_alloc_unbound alloc_unbound; 419 int err; 420 421 alloc_unbound.dom = DOMID_SELF; 422 alloc_unbound.remote_dom = dev->otherend_id; 423 424 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, 425 &alloc_unbound); 426 if (err) 427 xenbus_dev_fatal(dev, err, "allocating event channel"); 428 else 429 *port = alloc_unbound.port; 430 431 return err; 432 } 433 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn); 434 435 436 /** 437 * Free an existing event channel. Returns 0 on success or -errno on error. 438 */ 439 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port) 440 { 441 struct evtchn_close close; 442 int err; 443 444 close.port = port; 445 446 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close); 447 if (err) 448 xenbus_dev_error(dev, err, "freeing event channel %u", port); 449 450 return err; 451 } 452 EXPORT_SYMBOL_GPL(xenbus_free_evtchn); 453 454 455 /** 456 * xenbus_map_ring_valloc 457 * @dev: xenbus device 458 * @gnt_refs: grant reference array 459 * @nr_grefs: number of grant references 460 * @vaddr: pointer to address to be filled out by mapping 461 * 462 * Map @nr_grefs pages of memory into this domain from another 463 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs 464 * pages of virtual address space, maps the pages to that address, and 465 * sets *vaddr to that address. Returns 0 on success, and -errno on 466 * error. If an error is returned, device will switch to 467 * XenbusStateClosing and the error message will be saved in XenStore. 468 */ 469 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs, 470 unsigned int nr_grefs, void **vaddr) 471 { 472 int err; 473 struct map_ring_valloc *info; 474 475 *vaddr = NULL; 476 477 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 478 return -EINVAL; 479 480 info = kzalloc(sizeof(*info), GFP_KERNEL); 481 if (!info) 482 return -ENOMEM; 483 484 info->node = kzalloc(sizeof(*info->node), GFP_KERNEL); 485 if (!info->node) 486 err = -ENOMEM; 487 else 488 err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr); 489 490 kfree(info->node); 491 kfree(info); 492 return err; 493 } 494 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc); 495 496 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned 497 * long), e.g. 32-on-64. Caller is responsible for preparing the 498 * right array to feed into this function */ 499 static int __xenbus_map_ring(struct xenbus_device *dev, 500 grant_ref_t *gnt_refs, 501 unsigned int nr_grefs, 502 grant_handle_t *handles, 503 struct map_ring_valloc *info, 504 unsigned int flags, 505 bool *leaked) 506 { 507 int i, j; 508 509 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 510 return -EINVAL; 511 512 for (i = 0; i < nr_grefs; i++) { 513 gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags, 514 gnt_refs[i], dev->otherend_id); 515 handles[i] = INVALID_GRANT_HANDLE; 516 } 517 518 gnttab_batch_map(info->map, i); 519 520 for (i = 0; i < nr_grefs; i++) { 521 if (info->map[i].status != GNTST_okay) { 522 xenbus_dev_fatal(dev, info->map[i].status, 523 "mapping in shared page %d from domain %d", 524 gnt_refs[i], dev->otherend_id); 525 goto fail; 526 } else 527 handles[i] = info->map[i].handle; 528 } 529 530 return 0; 531 532 fail: 533 for (i = j = 0; i < nr_grefs; i++) { 534 if (handles[i] != INVALID_GRANT_HANDLE) { 535 gnttab_set_unmap_op(&info->unmap[j], 536 info->phys_addrs[i], 537 GNTMAP_host_map, handles[i]); 538 j++; 539 } 540 } 541 542 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j)) 543 BUG(); 544 545 *leaked = false; 546 for (i = 0; i < j; i++) { 547 if (info->unmap[i].status != GNTST_okay) { 548 *leaked = true; 549 break; 550 } 551 } 552 553 return -ENOENT; 554 } 555 556 /** 557 * xenbus_unmap_ring 558 * @dev: xenbus device 559 * @handles: grant handle array 560 * @nr_handles: number of handles in the array 561 * @vaddrs: addresses to unmap 562 * 563 * Unmap memory in this domain that was imported from another domain. 564 * Returns 0 on success and returns GNTST_* on error 565 * (see xen/include/interface/grant_table.h). 566 */ 567 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles, 568 unsigned int nr_handles, unsigned long *vaddrs) 569 { 570 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 571 int i; 572 int err; 573 574 if (nr_handles > XENBUS_MAX_RING_GRANTS) 575 return -EINVAL; 576 577 for (i = 0; i < nr_handles; i++) 578 gnttab_set_unmap_op(&unmap[i], vaddrs[i], 579 GNTMAP_host_map, handles[i]); 580 581 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i)) 582 BUG(); 583 584 err = GNTST_okay; 585 for (i = 0; i < nr_handles; i++) { 586 if (unmap[i].status != GNTST_okay) { 587 xenbus_dev_error(dev, unmap[i].status, 588 "unmapping page at handle %d error %d", 589 handles[i], unmap[i].status); 590 err = unmap[i].status; 591 break; 592 } 593 } 594 595 return err; 596 } 597 598 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn, 599 unsigned int goffset, 600 unsigned int len, 601 void *data) 602 { 603 struct map_ring_valloc *info = data; 604 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn); 605 606 info->phys_addrs[info->idx] = vaddr; 607 info->addrs[info->idx] = vaddr; 608 609 info->idx++; 610 } 611 612 static int xenbus_map_ring_hvm(struct xenbus_device *dev, 613 struct map_ring_valloc *info, 614 grant_ref_t *gnt_ref, 615 unsigned int nr_grefs, 616 void **vaddr) 617 { 618 struct xenbus_map_node *node = info->node; 619 int err; 620 void *addr; 621 bool leaked = false; 622 unsigned int nr_pages = XENBUS_PAGES(nr_grefs); 623 624 err = alloc_xenballooned_pages(nr_pages, node->hvm.pages); 625 if (err) 626 goto out_err; 627 628 gnttab_foreach_grant(node->hvm.pages, nr_grefs, 629 xenbus_map_ring_setup_grant_hvm, 630 info); 631 632 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles, 633 info, GNTMAP_host_map, &leaked); 634 node->nr_handles = nr_grefs; 635 636 if (err) 637 goto out_free_ballooned_pages; 638 639 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP, 640 PAGE_KERNEL); 641 if (!addr) { 642 err = -ENOMEM; 643 goto out_xenbus_unmap_ring; 644 } 645 646 node->hvm.addr = addr; 647 648 spin_lock(&xenbus_valloc_lock); 649 list_add(&node->next, &xenbus_valloc_pages); 650 spin_unlock(&xenbus_valloc_lock); 651 652 *vaddr = addr; 653 info->node = NULL; 654 655 return 0; 656 657 out_xenbus_unmap_ring: 658 if (!leaked) 659 xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs); 660 else 661 pr_alert("leaking %p size %u page(s)", 662 addr, nr_pages); 663 out_free_ballooned_pages: 664 if (!leaked) 665 free_xenballooned_pages(nr_pages, node->hvm.pages); 666 out_err: 667 return err; 668 } 669 670 /** 671 * xenbus_unmap_ring_vfree 672 * @dev: xenbus device 673 * @vaddr: addr to unmap 674 * 675 * Based on Rusty Russell's skeleton driver's unmap_page. 676 * Unmap a page of memory in this domain that was imported from another domain. 677 * Use xenbus_unmap_ring_vfree if you mapped in your memory with 678 * xenbus_map_ring_valloc (it will free the virtual address space). 679 * Returns 0 on success and returns GNTST_* on error 680 * (see xen/include/interface/grant_table.h). 681 */ 682 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr) 683 { 684 return ring_ops->unmap(dev, vaddr); 685 } 686 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree); 687 688 #ifdef CONFIG_XEN_PV 689 static int xenbus_map_ring_pv(struct xenbus_device *dev, 690 struct map_ring_valloc *info, 691 grant_ref_t *gnt_refs, 692 unsigned int nr_grefs, 693 void **vaddr) 694 { 695 struct xenbus_map_node *node = info->node; 696 struct vm_struct *area; 697 int err = GNTST_okay; 698 int i; 699 bool leaked; 700 701 area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, info->ptes); 702 if (!area) 703 return -ENOMEM; 704 705 for (i = 0; i < nr_grefs; i++) 706 info->phys_addrs[i] = 707 arbitrary_virt_to_machine(info->ptes[i]).maddr; 708 709 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles, 710 info, GNTMAP_host_map | GNTMAP_contains_pte, 711 &leaked); 712 if (err) 713 goto failed; 714 715 node->nr_handles = nr_grefs; 716 node->pv.area = area; 717 718 spin_lock(&xenbus_valloc_lock); 719 list_add(&node->next, &xenbus_valloc_pages); 720 spin_unlock(&xenbus_valloc_lock); 721 722 *vaddr = area->addr; 723 info->node = NULL; 724 725 return 0; 726 727 failed: 728 if (!leaked) 729 free_vm_area(area); 730 else 731 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs); 732 733 return err; 734 } 735 736 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr) 737 { 738 struct xenbus_map_node *node; 739 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 740 unsigned int level; 741 int i; 742 bool leaked = false; 743 int err; 744 745 spin_lock(&xenbus_valloc_lock); 746 list_for_each_entry(node, &xenbus_valloc_pages, next) { 747 if (node->pv.area->addr == vaddr) { 748 list_del(&node->next); 749 goto found; 750 } 751 } 752 node = NULL; 753 found: 754 spin_unlock(&xenbus_valloc_lock); 755 756 if (!node) { 757 xenbus_dev_error(dev, -ENOENT, 758 "can't find mapped virtual address %p", vaddr); 759 return GNTST_bad_virt_addr; 760 } 761 762 for (i = 0; i < node->nr_handles; i++) { 763 unsigned long addr; 764 765 memset(&unmap[i], 0, sizeof(unmap[i])); 766 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i); 767 unmap[i].host_addr = arbitrary_virt_to_machine( 768 lookup_address(addr, &level)).maddr; 769 unmap[i].dev_bus_addr = 0; 770 unmap[i].handle = node->handles[i]; 771 } 772 773 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i)) 774 BUG(); 775 776 err = GNTST_okay; 777 leaked = false; 778 for (i = 0; i < node->nr_handles; i++) { 779 if (unmap[i].status != GNTST_okay) { 780 leaked = true; 781 xenbus_dev_error(dev, unmap[i].status, 782 "unmapping page at handle %d error %d", 783 node->handles[i], unmap[i].status); 784 err = unmap[i].status; 785 break; 786 } 787 } 788 789 if (!leaked) 790 free_vm_area(node->pv.area); 791 else 792 pr_alert("leaking VM area %p size %u page(s)", 793 node->pv.area, node->nr_handles); 794 795 kfree(node); 796 return err; 797 } 798 799 static const struct xenbus_ring_ops ring_ops_pv = { 800 .map = xenbus_map_ring_pv, 801 .unmap = xenbus_unmap_ring_pv, 802 }; 803 #endif 804 805 struct unmap_ring_hvm 806 { 807 unsigned int idx; 808 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 809 }; 810 811 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn, 812 unsigned int goffset, 813 unsigned int len, 814 void *data) 815 { 816 struct unmap_ring_hvm *info = data; 817 818 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn); 819 820 info->idx++; 821 } 822 823 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr) 824 { 825 int rv; 826 struct xenbus_map_node *node; 827 void *addr; 828 struct unmap_ring_hvm info = { 829 .idx = 0, 830 }; 831 unsigned int nr_pages; 832 833 spin_lock(&xenbus_valloc_lock); 834 list_for_each_entry(node, &xenbus_valloc_pages, next) { 835 addr = node->hvm.addr; 836 if (addr == vaddr) { 837 list_del(&node->next); 838 goto found; 839 } 840 } 841 node = addr = NULL; 842 found: 843 spin_unlock(&xenbus_valloc_lock); 844 845 if (!node) { 846 xenbus_dev_error(dev, -ENOENT, 847 "can't find mapped virtual address %p", vaddr); 848 return GNTST_bad_virt_addr; 849 } 850 851 nr_pages = XENBUS_PAGES(node->nr_handles); 852 853 gnttab_foreach_grant(node->hvm.pages, node->nr_handles, 854 xenbus_unmap_ring_setup_grant_hvm, 855 &info); 856 857 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles, 858 info.addrs); 859 if (!rv) { 860 vunmap(vaddr); 861 free_xenballooned_pages(nr_pages, node->hvm.pages); 862 } 863 else 864 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages); 865 866 kfree(node); 867 return rv; 868 } 869 870 /** 871 * xenbus_read_driver_state 872 * @path: path for driver 873 * 874 * Return the state of the driver rooted at the given store path, or 875 * XenbusStateUnknown if no state can be read. 876 */ 877 enum xenbus_state xenbus_read_driver_state(const char *path) 878 { 879 enum xenbus_state result; 880 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL); 881 if (err) 882 result = XenbusStateUnknown; 883 884 return result; 885 } 886 EXPORT_SYMBOL_GPL(xenbus_read_driver_state); 887 888 static const struct xenbus_ring_ops ring_ops_hvm = { 889 .map = xenbus_map_ring_hvm, 890 .unmap = xenbus_unmap_ring_hvm, 891 }; 892 893 void __init xenbus_ring_ops_init(void) 894 { 895 #ifdef CONFIG_XEN_PV 896 if (!xen_feature(XENFEAT_auto_translated_physmap)) 897 ring_ops = &ring_ops_pv; 898 else 899 #endif 900 ring_ops = &ring_ops_hvm; 901 } 902