xref: /openbmc/linux/drivers/xen/xenbus/xenbus_client.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 /******************************************************************************
2  * Client-facing interface for the Xenbus driver.  In other words, the
3  * interface between the Xenbus and the device-specific code, be it the
4  * frontend or the backend of that driver.
5  *
6  * Copyright (C) 2005 XenSource Ltd
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version 2
10  * as published by the Free Software Foundation; or, when distributed
11  * separately from the Linux kernel or incorporated into other
12  * software packages, subject to the following license:
13  *
14  * Permission is hereby granted, free of charge, to any person obtaining a copy
15  * of this source file (the "Software"), to deal in the Software without
16  * restriction, including without limitation the rights to use, copy, modify,
17  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18  * and to permit persons to whom the Software is furnished to do so, subject to
19  * the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be included in
22  * all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30  * IN THE SOFTWARE.
31  */
32 
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49 
50 #include "xenbus.h"
51 
52 #define XENBUS_PAGES(_grants)	(DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53 
54 #define XENBUS_MAX_RING_PAGES	(XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55 
56 struct xenbus_map_node {
57 	struct list_head next;
58 	union {
59 		struct {
60 			struct vm_struct *area;
61 		} pv;
62 		struct {
63 			struct page *pages[XENBUS_MAX_RING_PAGES];
64 			unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 			void *addr;
66 		} hvm;
67 	};
68 	grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 	unsigned int   nr_handles;
70 };
71 
72 struct map_ring_valloc {
73 	struct xenbus_map_node *node;
74 
75 	/* Why do we need two arrays? See comment of __xenbus_map_ring */
76 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
77 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
78 
79 	struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
80 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
81 
82 	unsigned int idx;
83 };
84 
85 static DEFINE_SPINLOCK(xenbus_valloc_lock);
86 static LIST_HEAD(xenbus_valloc_pages);
87 
88 struct xenbus_ring_ops {
89 	int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
90 		   grant_ref_t *gnt_refs, unsigned int nr_grefs,
91 		   void **vaddr);
92 	int (*unmap)(struct xenbus_device *dev, void *vaddr);
93 };
94 
95 static const struct xenbus_ring_ops *ring_ops __read_mostly;
96 
97 const char *xenbus_strstate(enum xenbus_state state)
98 {
99 	static const char *const name[] = {
100 		[ XenbusStateUnknown      ] = "Unknown",
101 		[ XenbusStateInitialising ] = "Initialising",
102 		[ XenbusStateInitWait     ] = "InitWait",
103 		[ XenbusStateInitialised  ] = "Initialised",
104 		[ XenbusStateConnected    ] = "Connected",
105 		[ XenbusStateClosing      ] = "Closing",
106 		[ XenbusStateClosed	  ] = "Closed",
107 		[XenbusStateReconfiguring] = "Reconfiguring",
108 		[XenbusStateReconfigured] = "Reconfigured",
109 	};
110 	return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
111 }
112 EXPORT_SYMBOL_GPL(xenbus_strstate);
113 
114 /**
115  * xenbus_watch_path - register a watch
116  * @dev: xenbus device
117  * @path: path to watch
118  * @watch: watch to register
119  * @callback: callback to register
120  *
121  * Register a @watch on the given path, using the given xenbus_watch structure
122  * for storage, and the given @callback function as the callback.  Return 0 on
123  * success, or -errno on error.  On success, the given @path will be saved as
124  * @watch->node, and remains the caller's to free.  On error, @watch->node will
125  * be NULL, the device will switch to %XenbusStateClosing, and the error will
126  * be saved in the store.
127  */
128 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
129 		      struct xenbus_watch *watch,
130 		      bool (*will_handle)(struct xenbus_watch *,
131 					  const char *, const char *),
132 		      void (*callback)(struct xenbus_watch *,
133 				       const char *, const char *))
134 {
135 	int err;
136 
137 	watch->node = path;
138 	watch->will_handle = will_handle;
139 	watch->callback = callback;
140 
141 	err = register_xenbus_watch(watch);
142 
143 	if (err) {
144 		watch->node = NULL;
145 		watch->will_handle = NULL;
146 		watch->callback = NULL;
147 		xenbus_dev_fatal(dev, err, "adding watch on %s", path);
148 	}
149 
150 	return err;
151 }
152 EXPORT_SYMBOL_GPL(xenbus_watch_path);
153 
154 
155 /**
156  * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
157  * @dev: xenbus device
158  * @watch: watch to register
159  * @callback: callback to register
160  * @pathfmt: format of path to watch
161  *
162  * Register a watch on the given @path, using the given xenbus_watch
163  * structure for storage, and the given @callback function as the callback.
164  * Return 0 on success, or -errno on error.  On success, the watched path
165  * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
166  * kfree().  On error, watch->node will be NULL, so the caller has nothing to
167  * free, the device will switch to %XenbusStateClosing, and the error will be
168  * saved in the store.
169  */
170 int xenbus_watch_pathfmt(struct xenbus_device *dev,
171 			 struct xenbus_watch *watch,
172 			 bool (*will_handle)(struct xenbus_watch *,
173 					const char *, const char *),
174 			 void (*callback)(struct xenbus_watch *,
175 					  const char *, const char *),
176 			 const char *pathfmt, ...)
177 {
178 	int err;
179 	va_list ap;
180 	char *path;
181 
182 	va_start(ap, pathfmt);
183 	path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
184 	va_end(ap);
185 
186 	if (!path) {
187 		xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
188 		return -ENOMEM;
189 	}
190 	err = xenbus_watch_path(dev, path, watch, will_handle, callback);
191 
192 	if (err)
193 		kfree(path);
194 	return err;
195 }
196 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
197 
198 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
199 				const char *, ...);
200 
201 static int
202 __xenbus_switch_state(struct xenbus_device *dev,
203 		      enum xenbus_state state, int depth)
204 {
205 	/* We check whether the state is currently set to the given value, and
206 	   if not, then the state is set.  We don't want to unconditionally
207 	   write the given state, because we don't want to fire watches
208 	   unnecessarily.  Furthermore, if the node has gone, we don't write
209 	   to it, as the device will be tearing down, and we don't want to
210 	   resurrect that directory.
211 
212 	   Note that, because of this cached value of our state, this
213 	   function will not take a caller's Xenstore transaction
214 	   (something it was trying to in the past) because dev->state
215 	   would not get reset if the transaction was aborted.
216 	 */
217 
218 	struct xenbus_transaction xbt;
219 	int current_state;
220 	int err, abort;
221 
222 	if (state == dev->state)
223 		return 0;
224 
225 again:
226 	abort = 1;
227 
228 	err = xenbus_transaction_start(&xbt);
229 	if (err) {
230 		xenbus_switch_fatal(dev, depth, err, "starting transaction");
231 		return 0;
232 	}
233 
234 	err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
235 	if (err != 1)
236 		goto abort;
237 
238 	err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
239 	if (err) {
240 		xenbus_switch_fatal(dev, depth, err, "writing new state");
241 		goto abort;
242 	}
243 
244 	abort = 0;
245 abort:
246 	err = xenbus_transaction_end(xbt, abort);
247 	if (err) {
248 		if (err == -EAGAIN && !abort)
249 			goto again;
250 		xenbus_switch_fatal(dev, depth, err, "ending transaction");
251 	} else
252 		dev->state = state;
253 
254 	return 0;
255 }
256 
257 /**
258  * xenbus_switch_state
259  * @dev: xenbus device
260  * @state: new state
261  *
262  * Advertise in the store a change of the given driver to the given new_state.
263  * Return 0 on success, or -errno on error.  On error, the device will switch
264  * to XenbusStateClosing, and the error will be saved in the store.
265  */
266 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
267 {
268 	return __xenbus_switch_state(dev, state, 0);
269 }
270 
271 EXPORT_SYMBOL_GPL(xenbus_switch_state);
272 
273 int xenbus_frontend_closed(struct xenbus_device *dev)
274 {
275 	xenbus_switch_state(dev, XenbusStateClosed);
276 	complete(&dev->down);
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
280 
281 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
282 				const char *fmt, va_list ap)
283 {
284 	unsigned int len;
285 	char *printf_buffer;
286 	char *path_buffer;
287 
288 #define PRINTF_BUFFER_SIZE 4096
289 
290 	printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
291 	if (!printf_buffer)
292 		return;
293 
294 	len = sprintf(printf_buffer, "%i ", -err);
295 	vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
296 
297 	dev_err(&dev->dev, "%s\n", printf_buffer);
298 
299 	path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
300 	if (path_buffer)
301 		xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
302 
303 	kfree(printf_buffer);
304 	kfree(path_buffer);
305 }
306 
307 /**
308  * xenbus_dev_error
309  * @dev: xenbus device
310  * @err: error to report
311  * @fmt: error message format
312  *
313  * Report the given negative errno into the store, along with the given
314  * formatted message.
315  */
316 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
317 {
318 	va_list ap;
319 
320 	va_start(ap, fmt);
321 	xenbus_va_dev_error(dev, err, fmt, ap);
322 	va_end(ap);
323 }
324 EXPORT_SYMBOL_GPL(xenbus_dev_error);
325 
326 /**
327  * xenbus_dev_fatal
328  * @dev: xenbus device
329  * @err: error to report
330  * @fmt: error message format
331  *
332  * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
333  * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
334  * closedown of this driver and its peer.
335  */
336 
337 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
338 {
339 	va_list ap;
340 
341 	va_start(ap, fmt);
342 	xenbus_va_dev_error(dev, err, fmt, ap);
343 	va_end(ap);
344 
345 	xenbus_switch_state(dev, XenbusStateClosing);
346 }
347 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
348 
349 /**
350  * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
351  * avoiding recursion within xenbus_switch_state.
352  */
353 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
354 				const char *fmt, ...)
355 {
356 	va_list ap;
357 
358 	va_start(ap, fmt);
359 	xenbus_va_dev_error(dev, err, fmt, ap);
360 	va_end(ap);
361 
362 	if (!depth)
363 		__xenbus_switch_state(dev, XenbusStateClosing, 1);
364 }
365 
366 /**
367  * xenbus_grant_ring
368  * @dev: xenbus device
369  * @vaddr: starting virtual address of the ring
370  * @nr_pages: number of pages to be granted
371  * @grefs: grant reference array to be filled in
372  *
373  * Grant access to the given @vaddr to the peer of the given device.
374  * Then fill in @grefs with grant references.  Return 0 on success, or
375  * -errno on error.  On error, the device will switch to
376  * XenbusStateClosing, and the error will be saved in the store.
377  */
378 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
379 		      unsigned int nr_pages, grant_ref_t *grefs)
380 {
381 	int err;
382 	int i, j;
383 
384 	for (i = 0; i < nr_pages; i++) {
385 		unsigned long gfn;
386 
387 		if (is_vmalloc_addr(vaddr))
388 			gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
389 		else
390 			gfn = virt_to_gfn(vaddr);
391 
392 		err = gnttab_grant_foreign_access(dev->otherend_id, gfn, 0);
393 		if (err < 0) {
394 			xenbus_dev_fatal(dev, err,
395 					 "granting access to ring page");
396 			goto fail;
397 		}
398 		grefs[i] = err;
399 
400 		vaddr = vaddr + XEN_PAGE_SIZE;
401 	}
402 
403 	return 0;
404 
405 fail:
406 	for (j = 0; j < i; j++)
407 		gnttab_end_foreign_access_ref(grefs[j], 0);
408 	return err;
409 }
410 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
411 
412 
413 /**
414  * Allocate an event channel for the given xenbus_device, assigning the newly
415  * created local port to *port.  Return 0 on success, or -errno on error.  On
416  * error, the device will switch to XenbusStateClosing, and the error will be
417  * saved in the store.
418  */
419 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
420 {
421 	struct evtchn_alloc_unbound alloc_unbound;
422 	int err;
423 
424 	alloc_unbound.dom = DOMID_SELF;
425 	alloc_unbound.remote_dom = dev->otherend_id;
426 
427 	err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
428 					  &alloc_unbound);
429 	if (err)
430 		xenbus_dev_fatal(dev, err, "allocating event channel");
431 	else
432 		*port = alloc_unbound.port;
433 
434 	return err;
435 }
436 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
437 
438 
439 /**
440  * Free an existing event channel. Returns 0 on success or -errno on error.
441  */
442 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
443 {
444 	struct evtchn_close close;
445 	int err;
446 
447 	close.port = port;
448 
449 	err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
450 	if (err)
451 		xenbus_dev_error(dev, err, "freeing event channel %u", port);
452 
453 	return err;
454 }
455 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
456 
457 
458 /**
459  * xenbus_map_ring_valloc
460  * @dev: xenbus device
461  * @gnt_refs: grant reference array
462  * @nr_grefs: number of grant references
463  * @vaddr: pointer to address to be filled out by mapping
464  *
465  * Map @nr_grefs pages of memory into this domain from another
466  * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
467  * pages of virtual address space, maps the pages to that address, and
468  * sets *vaddr to that address.  Returns 0 on success, and -errno on
469  * error. If an error is returned, device will switch to
470  * XenbusStateClosing and the error message will be saved in XenStore.
471  */
472 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
473 			   unsigned int nr_grefs, void **vaddr)
474 {
475 	int err;
476 	struct map_ring_valloc *info;
477 
478 	*vaddr = NULL;
479 
480 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
481 		return -EINVAL;
482 
483 	info = kzalloc(sizeof(*info), GFP_KERNEL);
484 	if (!info)
485 		return -ENOMEM;
486 
487 	info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
488 	if (!info->node)
489 		err = -ENOMEM;
490 	else
491 		err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
492 
493 	kfree(info->node);
494 	kfree(info);
495 	return err;
496 }
497 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
498 
499 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
500  * long), e.g. 32-on-64.  Caller is responsible for preparing the
501  * right array to feed into this function */
502 static int __xenbus_map_ring(struct xenbus_device *dev,
503 			     grant_ref_t *gnt_refs,
504 			     unsigned int nr_grefs,
505 			     grant_handle_t *handles,
506 			     struct map_ring_valloc *info,
507 			     unsigned int flags,
508 			     bool *leaked)
509 {
510 	int i, j;
511 
512 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
513 		return -EINVAL;
514 
515 	for (i = 0; i < nr_grefs; i++) {
516 		gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
517 				  gnt_refs[i], dev->otherend_id);
518 		handles[i] = INVALID_GRANT_HANDLE;
519 	}
520 
521 	gnttab_batch_map(info->map, i);
522 
523 	for (i = 0; i < nr_grefs; i++) {
524 		if (info->map[i].status != GNTST_okay) {
525 			xenbus_dev_fatal(dev, info->map[i].status,
526 					 "mapping in shared page %d from domain %d",
527 					 gnt_refs[i], dev->otherend_id);
528 			goto fail;
529 		} else
530 			handles[i] = info->map[i].handle;
531 	}
532 
533 	return 0;
534 
535  fail:
536 	for (i = j = 0; i < nr_grefs; i++) {
537 		if (handles[i] != INVALID_GRANT_HANDLE) {
538 			gnttab_set_unmap_op(&info->unmap[j],
539 					    info->phys_addrs[i],
540 					    GNTMAP_host_map, handles[i]);
541 			j++;
542 		}
543 	}
544 
545 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j))
546 		BUG();
547 
548 	*leaked = false;
549 	for (i = 0; i < j; i++) {
550 		if (info->unmap[i].status != GNTST_okay) {
551 			*leaked = true;
552 			break;
553 		}
554 	}
555 
556 	return -ENOENT;
557 }
558 
559 /**
560  * xenbus_unmap_ring
561  * @dev: xenbus device
562  * @handles: grant handle array
563  * @nr_handles: number of handles in the array
564  * @vaddrs: addresses to unmap
565  *
566  * Unmap memory in this domain that was imported from another domain.
567  * Returns 0 on success and returns GNTST_* on error
568  * (see xen/include/interface/grant_table.h).
569  */
570 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
571 			     unsigned int nr_handles, unsigned long *vaddrs)
572 {
573 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
574 	int i;
575 	int err;
576 
577 	if (nr_handles > XENBUS_MAX_RING_GRANTS)
578 		return -EINVAL;
579 
580 	for (i = 0; i < nr_handles; i++)
581 		gnttab_set_unmap_op(&unmap[i], vaddrs[i],
582 				    GNTMAP_host_map, handles[i]);
583 
584 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
585 		BUG();
586 
587 	err = GNTST_okay;
588 	for (i = 0; i < nr_handles; i++) {
589 		if (unmap[i].status != GNTST_okay) {
590 			xenbus_dev_error(dev, unmap[i].status,
591 					 "unmapping page at handle %d error %d",
592 					 handles[i], unmap[i].status);
593 			err = unmap[i].status;
594 			break;
595 		}
596 	}
597 
598 	return err;
599 }
600 
601 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
602 					    unsigned int goffset,
603 					    unsigned int len,
604 					    void *data)
605 {
606 	struct map_ring_valloc *info = data;
607 	unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
608 
609 	info->phys_addrs[info->idx] = vaddr;
610 	info->addrs[info->idx] = vaddr;
611 
612 	info->idx++;
613 }
614 
615 static int xenbus_map_ring_hvm(struct xenbus_device *dev,
616 			       struct map_ring_valloc *info,
617 			       grant_ref_t *gnt_ref,
618 			       unsigned int nr_grefs,
619 			       void **vaddr)
620 {
621 	struct xenbus_map_node *node = info->node;
622 	int err;
623 	void *addr;
624 	bool leaked = false;
625 	unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
626 
627 	err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
628 	if (err)
629 		goto out_err;
630 
631 	gnttab_foreach_grant(node->hvm.pages, nr_grefs,
632 			     xenbus_map_ring_setup_grant_hvm,
633 			     info);
634 
635 	err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
636 				info, GNTMAP_host_map, &leaked);
637 	node->nr_handles = nr_grefs;
638 
639 	if (err)
640 		goto out_free_ballooned_pages;
641 
642 	addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
643 		    PAGE_KERNEL);
644 	if (!addr) {
645 		err = -ENOMEM;
646 		goto out_xenbus_unmap_ring;
647 	}
648 
649 	node->hvm.addr = addr;
650 
651 	spin_lock(&xenbus_valloc_lock);
652 	list_add(&node->next, &xenbus_valloc_pages);
653 	spin_unlock(&xenbus_valloc_lock);
654 
655 	*vaddr = addr;
656 	info->node = NULL;
657 
658 	return 0;
659 
660  out_xenbus_unmap_ring:
661 	if (!leaked)
662 		xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
663 	else
664 		pr_alert("leaking %p size %u page(s)",
665 			 addr, nr_pages);
666  out_free_ballooned_pages:
667 	if (!leaked)
668 		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
669  out_err:
670 	return err;
671 }
672 
673 /**
674  * xenbus_unmap_ring_vfree
675  * @dev: xenbus device
676  * @vaddr: addr to unmap
677  *
678  * Based on Rusty Russell's skeleton driver's unmap_page.
679  * Unmap a page of memory in this domain that was imported from another domain.
680  * Use xenbus_unmap_ring_vfree if you mapped in your memory with
681  * xenbus_map_ring_valloc (it will free the virtual address space).
682  * Returns 0 on success and returns GNTST_* on error
683  * (see xen/include/interface/grant_table.h).
684  */
685 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
686 {
687 	return ring_ops->unmap(dev, vaddr);
688 }
689 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
690 
691 #ifdef CONFIG_XEN_PV
692 static int map_ring_apply(pte_t *pte, unsigned long addr, void *data)
693 {
694 	struct map_ring_valloc *info = data;
695 
696 	info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr;
697 	return 0;
698 }
699 
700 static int xenbus_map_ring_pv(struct xenbus_device *dev,
701 			      struct map_ring_valloc *info,
702 			      grant_ref_t *gnt_refs,
703 			      unsigned int nr_grefs,
704 			      void **vaddr)
705 {
706 	struct xenbus_map_node *node = info->node;
707 	struct vm_struct *area;
708 	bool leaked = false;
709 	int err = -ENOMEM;
710 
711 	area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP);
712 	if (!area)
713 		return -ENOMEM;
714 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
715 				XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info))
716 		goto failed;
717 	err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
718 				info, GNTMAP_host_map | GNTMAP_contains_pte,
719 				&leaked);
720 	if (err)
721 		goto failed;
722 
723 	node->nr_handles = nr_grefs;
724 	node->pv.area = area;
725 
726 	spin_lock(&xenbus_valloc_lock);
727 	list_add(&node->next, &xenbus_valloc_pages);
728 	spin_unlock(&xenbus_valloc_lock);
729 
730 	*vaddr = area->addr;
731 	info->node = NULL;
732 
733 	return 0;
734 
735 failed:
736 	if (!leaked)
737 		free_vm_area(area);
738 	else
739 		pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
740 
741 	return err;
742 }
743 
744 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
745 {
746 	struct xenbus_map_node *node;
747 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
748 	unsigned int level;
749 	int i;
750 	bool leaked = false;
751 	int err;
752 
753 	spin_lock(&xenbus_valloc_lock);
754 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
755 		if (node->pv.area->addr == vaddr) {
756 			list_del(&node->next);
757 			goto found;
758 		}
759 	}
760 	node = NULL;
761  found:
762 	spin_unlock(&xenbus_valloc_lock);
763 
764 	if (!node) {
765 		xenbus_dev_error(dev, -ENOENT,
766 				 "can't find mapped virtual address %p", vaddr);
767 		return GNTST_bad_virt_addr;
768 	}
769 
770 	for (i = 0; i < node->nr_handles; i++) {
771 		unsigned long addr;
772 
773 		memset(&unmap[i], 0, sizeof(unmap[i]));
774 		addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
775 		unmap[i].host_addr = arbitrary_virt_to_machine(
776 			lookup_address(addr, &level)).maddr;
777 		unmap[i].dev_bus_addr = 0;
778 		unmap[i].handle = node->handles[i];
779 	}
780 
781 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
782 		BUG();
783 
784 	err = GNTST_okay;
785 	leaked = false;
786 	for (i = 0; i < node->nr_handles; i++) {
787 		if (unmap[i].status != GNTST_okay) {
788 			leaked = true;
789 			xenbus_dev_error(dev, unmap[i].status,
790 					 "unmapping page at handle %d error %d",
791 					 node->handles[i], unmap[i].status);
792 			err = unmap[i].status;
793 			break;
794 		}
795 	}
796 
797 	if (!leaked)
798 		free_vm_area(node->pv.area);
799 	else
800 		pr_alert("leaking VM area %p size %u page(s)",
801 			 node->pv.area, node->nr_handles);
802 
803 	kfree(node);
804 	return err;
805 }
806 
807 static const struct xenbus_ring_ops ring_ops_pv = {
808 	.map = xenbus_map_ring_pv,
809 	.unmap = xenbus_unmap_ring_pv,
810 };
811 #endif
812 
813 struct unmap_ring_hvm
814 {
815 	unsigned int idx;
816 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
817 };
818 
819 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
820 					      unsigned int goffset,
821 					      unsigned int len,
822 					      void *data)
823 {
824 	struct unmap_ring_hvm *info = data;
825 
826 	info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
827 
828 	info->idx++;
829 }
830 
831 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
832 {
833 	int rv;
834 	struct xenbus_map_node *node;
835 	void *addr;
836 	struct unmap_ring_hvm info = {
837 		.idx = 0,
838 	};
839 	unsigned int nr_pages;
840 
841 	spin_lock(&xenbus_valloc_lock);
842 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
843 		addr = node->hvm.addr;
844 		if (addr == vaddr) {
845 			list_del(&node->next);
846 			goto found;
847 		}
848 	}
849 	node = addr = NULL;
850  found:
851 	spin_unlock(&xenbus_valloc_lock);
852 
853 	if (!node) {
854 		xenbus_dev_error(dev, -ENOENT,
855 				 "can't find mapped virtual address %p", vaddr);
856 		return GNTST_bad_virt_addr;
857 	}
858 
859 	nr_pages = XENBUS_PAGES(node->nr_handles);
860 
861 	gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
862 			     xenbus_unmap_ring_setup_grant_hvm,
863 			     &info);
864 
865 	rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
866 			       info.addrs);
867 	if (!rv) {
868 		vunmap(vaddr);
869 		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
870 	}
871 	else
872 		WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
873 
874 	kfree(node);
875 	return rv;
876 }
877 
878 /**
879  * xenbus_read_driver_state
880  * @path: path for driver
881  *
882  * Return the state of the driver rooted at the given store path, or
883  * XenbusStateUnknown if no state can be read.
884  */
885 enum xenbus_state xenbus_read_driver_state(const char *path)
886 {
887 	enum xenbus_state result;
888 	int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
889 	if (err)
890 		result = XenbusStateUnknown;
891 
892 	return result;
893 }
894 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
895 
896 static const struct xenbus_ring_ops ring_ops_hvm = {
897 	.map = xenbus_map_ring_hvm,
898 	.unmap = xenbus_unmap_ring_hvm,
899 };
900 
901 void __init xenbus_ring_ops_init(void)
902 {
903 #ifdef CONFIG_XEN_PV
904 	if (!xen_feature(XENFEAT_auto_translated_physmap))
905 		ring_ops = &ring_ops_pv;
906 	else
907 #endif
908 		ring_ops = &ring_ops_hvm;
909 }
910