xref: /openbmc/linux/drivers/xen/xenbus/xenbus_client.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /******************************************************************************
2  * Client-facing interface for the Xenbus driver.  In other words, the
3  * interface between the Xenbus and the device-specific code, be it the
4  * frontend or the backend of that driver.
5  *
6  * Copyright (C) 2005 XenSource Ltd
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version 2
10  * as published by the Free Software Foundation; or, when distributed
11  * separately from the Linux kernel or incorporated into other
12  * software packages, subject to the following license:
13  *
14  * Permission is hereby granted, free of charge, to any person obtaining a copy
15  * of this source file (the "Software"), to deal in the Software without
16  * restriction, including without limitation the rights to use, copy, modify,
17  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18  * and to permit persons to whom the Software is furnished to do so, subject to
19  * the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be included in
22  * all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30  * IN THE SOFTWARE.
31  */
32 
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49 
50 #include "xenbus.h"
51 
52 #define XENBUS_PAGES(_grants)	(DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53 
54 #define XENBUS_MAX_RING_PAGES	(XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55 
56 struct xenbus_map_node {
57 	struct list_head next;
58 	union {
59 		struct {
60 			struct vm_struct *area;
61 		} pv;
62 		struct {
63 			struct page *pages[XENBUS_MAX_RING_PAGES];
64 			unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 			void *addr;
66 		} hvm;
67 	};
68 	grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 	unsigned int   nr_handles;
70 };
71 
72 static DEFINE_SPINLOCK(xenbus_valloc_lock);
73 static LIST_HEAD(xenbus_valloc_pages);
74 
75 struct xenbus_ring_ops {
76 	int (*map)(struct xenbus_device *dev,
77 		   grant_ref_t *gnt_refs, unsigned int nr_grefs,
78 		   void **vaddr);
79 	int (*unmap)(struct xenbus_device *dev, void *vaddr);
80 };
81 
82 static const struct xenbus_ring_ops *ring_ops __read_mostly;
83 
84 const char *xenbus_strstate(enum xenbus_state state)
85 {
86 	static const char *const name[] = {
87 		[ XenbusStateUnknown      ] = "Unknown",
88 		[ XenbusStateInitialising ] = "Initialising",
89 		[ XenbusStateInitWait     ] = "InitWait",
90 		[ XenbusStateInitialised  ] = "Initialised",
91 		[ XenbusStateConnected    ] = "Connected",
92 		[ XenbusStateClosing      ] = "Closing",
93 		[ XenbusStateClosed	  ] = "Closed",
94 		[XenbusStateReconfiguring] = "Reconfiguring",
95 		[XenbusStateReconfigured] = "Reconfigured",
96 	};
97 	return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
98 }
99 EXPORT_SYMBOL_GPL(xenbus_strstate);
100 
101 /**
102  * xenbus_watch_path - register a watch
103  * @dev: xenbus device
104  * @path: path to watch
105  * @watch: watch to register
106  * @callback: callback to register
107  *
108  * Register a @watch on the given path, using the given xenbus_watch structure
109  * for storage, and the given @callback function as the callback.  Return 0 on
110  * success, or -errno on error.  On success, the given @path will be saved as
111  * @watch->node, and remains the caller's to free.  On error, @watch->node will
112  * be NULL, the device will switch to %XenbusStateClosing, and the error will
113  * be saved in the store.
114  */
115 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
116 		      struct xenbus_watch *watch,
117 		      void (*callback)(struct xenbus_watch *,
118 				       const char *, const char *))
119 {
120 	int err;
121 
122 	watch->node = path;
123 	watch->callback = callback;
124 
125 	err = register_xenbus_watch(watch);
126 
127 	if (err) {
128 		watch->node = NULL;
129 		watch->callback = NULL;
130 		xenbus_dev_fatal(dev, err, "adding watch on %s", path);
131 	}
132 
133 	return err;
134 }
135 EXPORT_SYMBOL_GPL(xenbus_watch_path);
136 
137 
138 /**
139  * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
140  * @dev: xenbus device
141  * @watch: watch to register
142  * @callback: callback to register
143  * @pathfmt: format of path to watch
144  *
145  * Register a watch on the given @path, using the given xenbus_watch
146  * structure for storage, and the given @callback function as the callback.
147  * Return 0 on success, or -errno on error.  On success, the watched path
148  * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
149  * kfree().  On error, watch->node will be NULL, so the caller has nothing to
150  * free, the device will switch to %XenbusStateClosing, and the error will be
151  * saved in the store.
152  */
153 int xenbus_watch_pathfmt(struct xenbus_device *dev,
154 			 struct xenbus_watch *watch,
155 			 void (*callback)(struct xenbus_watch *,
156 					  const char *, const char *),
157 			 const char *pathfmt, ...)
158 {
159 	int err;
160 	va_list ap;
161 	char *path;
162 
163 	va_start(ap, pathfmt);
164 	path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
165 	va_end(ap);
166 
167 	if (!path) {
168 		xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
169 		return -ENOMEM;
170 	}
171 	err = xenbus_watch_path(dev, path, watch, callback);
172 
173 	if (err)
174 		kfree(path);
175 	return err;
176 }
177 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
178 
179 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
180 				const char *, ...);
181 
182 static int
183 __xenbus_switch_state(struct xenbus_device *dev,
184 		      enum xenbus_state state, int depth)
185 {
186 	/* We check whether the state is currently set to the given value, and
187 	   if not, then the state is set.  We don't want to unconditionally
188 	   write the given state, because we don't want to fire watches
189 	   unnecessarily.  Furthermore, if the node has gone, we don't write
190 	   to it, as the device will be tearing down, and we don't want to
191 	   resurrect that directory.
192 
193 	   Note that, because of this cached value of our state, this
194 	   function will not take a caller's Xenstore transaction
195 	   (something it was trying to in the past) because dev->state
196 	   would not get reset if the transaction was aborted.
197 	 */
198 
199 	struct xenbus_transaction xbt;
200 	int current_state;
201 	int err, abort;
202 
203 	if (state == dev->state)
204 		return 0;
205 
206 again:
207 	abort = 1;
208 
209 	err = xenbus_transaction_start(&xbt);
210 	if (err) {
211 		xenbus_switch_fatal(dev, depth, err, "starting transaction");
212 		return 0;
213 	}
214 
215 	err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
216 	if (err != 1)
217 		goto abort;
218 
219 	err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
220 	if (err) {
221 		xenbus_switch_fatal(dev, depth, err, "writing new state");
222 		goto abort;
223 	}
224 
225 	abort = 0;
226 abort:
227 	err = xenbus_transaction_end(xbt, abort);
228 	if (err) {
229 		if (err == -EAGAIN && !abort)
230 			goto again;
231 		xenbus_switch_fatal(dev, depth, err, "ending transaction");
232 	} else
233 		dev->state = state;
234 
235 	return 0;
236 }
237 
238 /**
239  * xenbus_switch_state
240  * @dev: xenbus device
241  * @state: new state
242  *
243  * Advertise in the store a change of the given driver to the given new_state.
244  * Return 0 on success, or -errno on error.  On error, the device will switch
245  * to XenbusStateClosing, and the error will be saved in the store.
246  */
247 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
248 {
249 	return __xenbus_switch_state(dev, state, 0);
250 }
251 
252 EXPORT_SYMBOL_GPL(xenbus_switch_state);
253 
254 int xenbus_frontend_closed(struct xenbus_device *dev)
255 {
256 	xenbus_switch_state(dev, XenbusStateClosed);
257 	complete(&dev->down);
258 	return 0;
259 }
260 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
261 
262 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
263 				const char *fmt, va_list ap)
264 {
265 	unsigned int len;
266 	char *printf_buffer;
267 	char *path_buffer;
268 
269 #define PRINTF_BUFFER_SIZE 4096
270 
271 	printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
272 	if (!printf_buffer)
273 		return;
274 
275 	len = sprintf(printf_buffer, "%i ", -err);
276 	vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
277 
278 	dev_err(&dev->dev, "%s\n", printf_buffer);
279 
280 	path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
281 	if (!path_buffer ||
282 	    xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer))
283 		dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
284 			dev->nodename, printf_buffer);
285 
286 	kfree(printf_buffer);
287 	kfree(path_buffer);
288 }
289 
290 /**
291  * xenbus_dev_error
292  * @dev: xenbus device
293  * @err: error to report
294  * @fmt: error message format
295  *
296  * Report the given negative errno into the store, along with the given
297  * formatted message.
298  */
299 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
300 {
301 	va_list ap;
302 
303 	va_start(ap, fmt);
304 	xenbus_va_dev_error(dev, err, fmt, ap);
305 	va_end(ap);
306 }
307 EXPORT_SYMBOL_GPL(xenbus_dev_error);
308 
309 /**
310  * xenbus_dev_fatal
311  * @dev: xenbus device
312  * @err: error to report
313  * @fmt: error message format
314  *
315  * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
316  * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
317  * closedown of this driver and its peer.
318  */
319 
320 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
321 {
322 	va_list ap;
323 
324 	va_start(ap, fmt);
325 	xenbus_va_dev_error(dev, err, fmt, ap);
326 	va_end(ap);
327 
328 	xenbus_switch_state(dev, XenbusStateClosing);
329 }
330 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
331 
332 /**
333  * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
334  * avoiding recursion within xenbus_switch_state.
335  */
336 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
337 				const char *fmt, ...)
338 {
339 	va_list ap;
340 
341 	va_start(ap, fmt);
342 	xenbus_va_dev_error(dev, err, fmt, ap);
343 	va_end(ap);
344 
345 	if (!depth)
346 		__xenbus_switch_state(dev, XenbusStateClosing, 1);
347 }
348 
349 /**
350  * xenbus_grant_ring
351  * @dev: xenbus device
352  * @vaddr: starting virtual address of the ring
353  * @nr_pages: number of pages to be granted
354  * @grefs: grant reference array to be filled in
355  *
356  * Grant access to the given @vaddr to the peer of the given device.
357  * Then fill in @grefs with grant references.  Return 0 on success, or
358  * -errno on error.  On error, the device will switch to
359  * XenbusStateClosing, and the error will be saved in the store.
360  */
361 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
362 		      unsigned int nr_pages, grant_ref_t *grefs)
363 {
364 	int err;
365 	int i, j;
366 
367 	for (i = 0; i < nr_pages; i++) {
368 		err = gnttab_grant_foreign_access(dev->otherend_id,
369 						  virt_to_gfn(vaddr), 0);
370 		if (err < 0) {
371 			xenbus_dev_fatal(dev, err,
372 					 "granting access to ring page");
373 			goto fail;
374 		}
375 		grefs[i] = err;
376 
377 		vaddr = vaddr + XEN_PAGE_SIZE;
378 	}
379 
380 	return 0;
381 
382 fail:
383 	for (j = 0; j < i; j++)
384 		gnttab_end_foreign_access_ref(grefs[j], 0);
385 	return err;
386 }
387 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
388 
389 
390 /**
391  * Allocate an event channel for the given xenbus_device, assigning the newly
392  * created local port to *port.  Return 0 on success, or -errno on error.  On
393  * error, the device will switch to XenbusStateClosing, and the error will be
394  * saved in the store.
395  */
396 int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port)
397 {
398 	struct evtchn_alloc_unbound alloc_unbound;
399 	int err;
400 
401 	alloc_unbound.dom = DOMID_SELF;
402 	alloc_unbound.remote_dom = dev->otherend_id;
403 
404 	err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
405 					  &alloc_unbound);
406 	if (err)
407 		xenbus_dev_fatal(dev, err, "allocating event channel");
408 	else
409 		*port = alloc_unbound.port;
410 
411 	return err;
412 }
413 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
414 
415 
416 /**
417  * Free an existing event channel. Returns 0 on success or -errno on error.
418  */
419 int xenbus_free_evtchn(struct xenbus_device *dev, int port)
420 {
421 	struct evtchn_close close;
422 	int err;
423 
424 	close.port = port;
425 
426 	err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
427 	if (err)
428 		xenbus_dev_error(dev, err, "freeing event channel %d", port);
429 
430 	return err;
431 }
432 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
433 
434 
435 /**
436  * xenbus_map_ring_valloc
437  * @dev: xenbus device
438  * @gnt_refs: grant reference array
439  * @nr_grefs: number of grant references
440  * @vaddr: pointer to address to be filled out by mapping
441  *
442  * Map @nr_grefs pages of memory into this domain from another
443  * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
444  * pages of virtual address space, maps the pages to that address, and
445  * sets *vaddr to that address.  Returns 0 on success, and GNTST_*
446  * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
447  * error. If an error is returned, device will switch to
448  * XenbusStateClosing and the error message will be saved in XenStore.
449  */
450 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
451 			   unsigned int nr_grefs, void **vaddr)
452 {
453 	return ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
454 }
455 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
456 
457 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
458  * long), e.g. 32-on-64.  Caller is responsible for preparing the
459  * right array to feed into this function */
460 static int __xenbus_map_ring(struct xenbus_device *dev,
461 			     grant_ref_t *gnt_refs,
462 			     unsigned int nr_grefs,
463 			     grant_handle_t *handles,
464 			     phys_addr_t *addrs,
465 			     unsigned int flags,
466 			     bool *leaked)
467 {
468 	struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
469 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
470 	int i, j;
471 	int err = GNTST_okay;
472 
473 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
474 		return -EINVAL;
475 
476 	for (i = 0; i < nr_grefs; i++) {
477 		memset(&map[i], 0, sizeof(map[i]));
478 		gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
479 				  dev->otherend_id);
480 		handles[i] = INVALID_GRANT_HANDLE;
481 	}
482 
483 	gnttab_batch_map(map, i);
484 
485 	for (i = 0; i < nr_grefs; i++) {
486 		if (map[i].status != GNTST_okay) {
487 			err = map[i].status;
488 			xenbus_dev_fatal(dev, map[i].status,
489 					 "mapping in shared page %d from domain %d",
490 					 gnt_refs[i], dev->otherend_id);
491 			goto fail;
492 		} else
493 			handles[i] = map[i].handle;
494 	}
495 
496 	return GNTST_okay;
497 
498  fail:
499 	for (i = j = 0; i < nr_grefs; i++) {
500 		if (handles[i] != INVALID_GRANT_HANDLE) {
501 			memset(&unmap[j], 0, sizeof(unmap[j]));
502 			gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
503 					    GNTMAP_host_map, handles[i]);
504 			j++;
505 		}
506 	}
507 
508 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
509 		BUG();
510 
511 	*leaked = false;
512 	for (i = 0; i < j; i++) {
513 		if (unmap[i].status != GNTST_okay) {
514 			*leaked = true;
515 			break;
516 		}
517 	}
518 
519 	return err;
520 }
521 
522 struct map_ring_valloc_hvm
523 {
524 	unsigned int idx;
525 
526 	/* Why do we need two arrays? See comment of __xenbus_map_ring */
527 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
528 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
529 };
530 
531 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
532 					    unsigned int goffset,
533 					    unsigned int len,
534 					    void *data)
535 {
536 	struct map_ring_valloc_hvm *info = data;
537 	unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
538 
539 	info->phys_addrs[info->idx] = vaddr;
540 	info->addrs[info->idx] = vaddr;
541 
542 	info->idx++;
543 }
544 
545 static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
546 				      grant_ref_t *gnt_ref,
547 				      unsigned int nr_grefs,
548 				      void **vaddr)
549 {
550 	struct xenbus_map_node *node;
551 	int err;
552 	void *addr;
553 	bool leaked = false;
554 	struct map_ring_valloc_hvm info = {
555 		.idx = 0,
556 	};
557 	unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
558 
559 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
560 		return -EINVAL;
561 
562 	*vaddr = NULL;
563 
564 	node = kzalloc(sizeof(*node), GFP_KERNEL);
565 	if (!node)
566 		return -ENOMEM;
567 
568 	err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
569 	if (err)
570 		goto out_err;
571 
572 	gnttab_foreach_grant(node->hvm.pages, nr_grefs,
573 			     xenbus_map_ring_setup_grant_hvm,
574 			     &info);
575 
576 	err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
577 				info.phys_addrs, GNTMAP_host_map, &leaked);
578 	node->nr_handles = nr_grefs;
579 
580 	if (err)
581 		goto out_free_ballooned_pages;
582 
583 	addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
584 		    PAGE_KERNEL);
585 	if (!addr) {
586 		err = -ENOMEM;
587 		goto out_xenbus_unmap_ring;
588 	}
589 
590 	node->hvm.addr = addr;
591 
592 	spin_lock(&xenbus_valloc_lock);
593 	list_add(&node->next, &xenbus_valloc_pages);
594 	spin_unlock(&xenbus_valloc_lock);
595 
596 	*vaddr = addr;
597 	return 0;
598 
599  out_xenbus_unmap_ring:
600 	if (!leaked)
601 		xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
602 	else
603 		pr_alert("leaking %p size %u page(s)",
604 			 addr, nr_pages);
605  out_free_ballooned_pages:
606 	if (!leaked)
607 		free_xenballooned_pages(nr_pages, node->hvm.pages);
608  out_err:
609 	kfree(node);
610 	return err;
611 }
612 
613 
614 /**
615  * xenbus_map_ring
616  * @dev: xenbus device
617  * @gnt_refs: grant reference array
618  * @nr_grefs: number of grant reference
619  * @handles: pointer to grant handle to be filled
620  * @vaddrs: addresses to be mapped to
621  * @leaked: fail to clean up a failed map, caller should not free vaddr
622  *
623  * Map pages of memory into this domain from another domain's grant table.
624  * xenbus_map_ring does not allocate the virtual address space (you must do
625  * this yourself!). It only maps in the pages to the specified address.
626  * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h)
627  * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to
628  * XenbusStateClosing and the first error message will be saved in XenStore.
629  * Further more if we fail to map the ring, caller should check @leaked.
630  * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller
631  * should not free the address space of @vaddr.
632  */
633 int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs,
634 		    unsigned int nr_grefs, grant_handle_t *handles,
635 		    unsigned long *vaddrs, bool *leaked)
636 {
637 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
638 	int i;
639 
640 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
641 		return -EINVAL;
642 
643 	for (i = 0; i < nr_grefs; i++)
644 		phys_addrs[i] = (unsigned long)vaddrs[i];
645 
646 	return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles,
647 				 phys_addrs, GNTMAP_host_map, leaked);
648 }
649 EXPORT_SYMBOL_GPL(xenbus_map_ring);
650 
651 
652 /**
653  * xenbus_unmap_ring_vfree
654  * @dev: xenbus device
655  * @vaddr: addr to unmap
656  *
657  * Based on Rusty Russell's skeleton driver's unmap_page.
658  * Unmap a page of memory in this domain that was imported from another domain.
659  * Use xenbus_unmap_ring_vfree if you mapped in your memory with
660  * xenbus_map_ring_valloc (it will free the virtual address space).
661  * Returns 0 on success and returns GNTST_* on error
662  * (see xen/include/interface/grant_table.h).
663  */
664 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
665 {
666 	return ring_ops->unmap(dev, vaddr);
667 }
668 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
669 
670 #ifdef CONFIG_XEN_PV
671 static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
672 				     grant_ref_t *gnt_refs,
673 				     unsigned int nr_grefs,
674 				     void **vaddr)
675 {
676 	struct xenbus_map_node *node;
677 	struct vm_struct *area;
678 	pte_t *ptes[XENBUS_MAX_RING_GRANTS];
679 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
680 	int err = GNTST_okay;
681 	int i;
682 	bool leaked;
683 
684 	*vaddr = NULL;
685 
686 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
687 		return -EINVAL;
688 
689 	node = kzalloc(sizeof(*node), GFP_KERNEL);
690 	if (!node)
691 		return -ENOMEM;
692 
693 	area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
694 	if (!area) {
695 		kfree(node);
696 		return -ENOMEM;
697 	}
698 
699 	for (i = 0; i < nr_grefs; i++)
700 		phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
701 
702 	err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
703 				phys_addrs,
704 				GNTMAP_host_map | GNTMAP_contains_pte,
705 				&leaked);
706 	if (err)
707 		goto failed;
708 
709 	node->nr_handles = nr_grefs;
710 	node->pv.area = area;
711 
712 	spin_lock(&xenbus_valloc_lock);
713 	list_add(&node->next, &xenbus_valloc_pages);
714 	spin_unlock(&xenbus_valloc_lock);
715 
716 	*vaddr = area->addr;
717 	return 0;
718 
719 failed:
720 	if (!leaked)
721 		free_vm_area(area);
722 	else
723 		pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
724 
725 	kfree(node);
726 	return err;
727 }
728 
729 static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
730 {
731 	struct xenbus_map_node *node;
732 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
733 	unsigned int level;
734 	int i;
735 	bool leaked = false;
736 	int err;
737 
738 	spin_lock(&xenbus_valloc_lock);
739 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
740 		if (node->pv.area->addr == vaddr) {
741 			list_del(&node->next);
742 			goto found;
743 		}
744 	}
745 	node = NULL;
746  found:
747 	spin_unlock(&xenbus_valloc_lock);
748 
749 	if (!node) {
750 		xenbus_dev_error(dev, -ENOENT,
751 				 "can't find mapped virtual address %p", vaddr);
752 		return GNTST_bad_virt_addr;
753 	}
754 
755 	for (i = 0; i < node->nr_handles; i++) {
756 		unsigned long addr;
757 
758 		memset(&unmap[i], 0, sizeof(unmap[i]));
759 		addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
760 		unmap[i].host_addr = arbitrary_virt_to_machine(
761 			lookup_address(addr, &level)).maddr;
762 		unmap[i].dev_bus_addr = 0;
763 		unmap[i].handle = node->handles[i];
764 	}
765 
766 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
767 		BUG();
768 
769 	err = GNTST_okay;
770 	leaked = false;
771 	for (i = 0; i < node->nr_handles; i++) {
772 		if (unmap[i].status != GNTST_okay) {
773 			leaked = true;
774 			xenbus_dev_error(dev, unmap[i].status,
775 					 "unmapping page at handle %d error %d",
776 					 node->handles[i], unmap[i].status);
777 			err = unmap[i].status;
778 			break;
779 		}
780 	}
781 
782 	if (!leaked)
783 		free_vm_area(node->pv.area);
784 	else
785 		pr_alert("leaking VM area %p size %u page(s)",
786 			 node->pv.area, node->nr_handles);
787 
788 	kfree(node);
789 	return err;
790 }
791 
792 static const struct xenbus_ring_ops ring_ops_pv = {
793 	.map = xenbus_map_ring_valloc_pv,
794 	.unmap = xenbus_unmap_ring_vfree_pv,
795 };
796 #endif
797 
798 struct unmap_ring_vfree_hvm
799 {
800 	unsigned int idx;
801 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
802 };
803 
804 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
805 					      unsigned int goffset,
806 					      unsigned int len,
807 					      void *data)
808 {
809 	struct unmap_ring_vfree_hvm *info = data;
810 
811 	info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
812 
813 	info->idx++;
814 }
815 
816 static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
817 {
818 	int rv;
819 	struct xenbus_map_node *node;
820 	void *addr;
821 	struct unmap_ring_vfree_hvm info = {
822 		.idx = 0,
823 	};
824 	unsigned int nr_pages;
825 
826 	spin_lock(&xenbus_valloc_lock);
827 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
828 		addr = node->hvm.addr;
829 		if (addr == vaddr) {
830 			list_del(&node->next);
831 			goto found;
832 		}
833 	}
834 	node = addr = NULL;
835  found:
836 	spin_unlock(&xenbus_valloc_lock);
837 
838 	if (!node) {
839 		xenbus_dev_error(dev, -ENOENT,
840 				 "can't find mapped virtual address %p", vaddr);
841 		return GNTST_bad_virt_addr;
842 	}
843 
844 	nr_pages = XENBUS_PAGES(node->nr_handles);
845 
846 	gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
847 			     xenbus_unmap_ring_setup_grant_hvm,
848 			     &info);
849 
850 	rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
851 			       info.addrs);
852 	if (!rv) {
853 		vunmap(vaddr);
854 		free_xenballooned_pages(nr_pages, node->hvm.pages);
855 	}
856 	else
857 		WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
858 
859 	kfree(node);
860 	return rv;
861 }
862 
863 /**
864  * xenbus_unmap_ring
865  * @dev: xenbus device
866  * @handles: grant handle array
867  * @nr_handles: number of handles in the array
868  * @vaddrs: addresses to unmap
869  *
870  * Unmap memory in this domain that was imported from another domain.
871  * Returns 0 on success and returns GNTST_* on error
872  * (see xen/include/interface/grant_table.h).
873  */
874 int xenbus_unmap_ring(struct xenbus_device *dev,
875 		      grant_handle_t *handles, unsigned int nr_handles,
876 		      unsigned long *vaddrs)
877 {
878 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
879 	int i;
880 	int err;
881 
882 	if (nr_handles > XENBUS_MAX_RING_GRANTS)
883 		return -EINVAL;
884 
885 	for (i = 0; i < nr_handles; i++)
886 		gnttab_set_unmap_op(&unmap[i], vaddrs[i],
887 				    GNTMAP_host_map, handles[i]);
888 
889 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
890 		BUG();
891 
892 	err = GNTST_okay;
893 	for (i = 0; i < nr_handles; i++) {
894 		if (unmap[i].status != GNTST_okay) {
895 			xenbus_dev_error(dev, unmap[i].status,
896 					 "unmapping page at handle %d error %d",
897 					 handles[i], unmap[i].status);
898 			err = unmap[i].status;
899 			break;
900 		}
901 	}
902 
903 	return err;
904 }
905 EXPORT_SYMBOL_GPL(xenbus_unmap_ring);
906 
907 
908 /**
909  * xenbus_read_driver_state
910  * @path: path for driver
911  *
912  * Return the state of the driver rooted at the given store path, or
913  * XenbusStateUnknown if no state can be read.
914  */
915 enum xenbus_state xenbus_read_driver_state(const char *path)
916 {
917 	enum xenbus_state result;
918 	int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
919 	if (err)
920 		result = XenbusStateUnknown;
921 
922 	return result;
923 }
924 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
925 
926 static const struct xenbus_ring_ops ring_ops_hvm = {
927 	.map = xenbus_map_ring_valloc_hvm,
928 	.unmap = xenbus_unmap_ring_vfree_hvm,
929 };
930 
931 void __init xenbus_ring_ops_init(void)
932 {
933 #ifdef CONFIG_XEN_PV
934 	if (!xen_feature(XENFEAT_auto_translated_physmap))
935 		ring_ops = &ring_ops_pv;
936 	else
937 #endif
938 		ring_ops = &ring_ops_hvm;
939 }
940