1 /****************************************************************************** 2 * Client-facing interface for the Xenbus driver. In other words, the 3 * interface between the Xenbus and the device-specific code, be it the 4 * frontend or the backend of that driver. 5 * 6 * Copyright (C) 2005 XenSource Ltd 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 2 10 * as published by the Free Software Foundation; or, when distributed 11 * separately from the Linux kernel or incorporated into other 12 * software packages, subject to the following license: 13 * 14 * Permission is hereby granted, free of charge, to any person obtaining a copy 15 * of this source file (the "Software"), to deal in the Software without 16 * restriction, including without limitation the rights to use, copy, modify, 17 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 18 * and to permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be included in 22 * all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 30 * IN THE SOFTWARE. 31 */ 32 33 #include <linux/mm.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/spinlock.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <asm/xen/hypervisor.h> 40 #include <xen/page.h> 41 #include <xen/interface/xen.h> 42 #include <xen/interface/event_channel.h> 43 #include <xen/balloon.h> 44 #include <xen/events.h> 45 #include <xen/grant_table.h> 46 #include <xen/xenbus.h> 47 #include <xen/xen.h> 48 #include <xen/features.h> 49 50 #include "xenbus.h" 51 52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE)) 53 54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS)) 55 56 struct xenbus_map_node { 57 struct list_head next; 58 union { 59 struct { 60 struct vm_struct *area; 61 } pv; 62 struct { 63 struct page *pages[XENBUS_MAX_RING_PAGES]; 64 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 65 void *addr; 66 } hvm; 67 }; 68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS]; 69 unsigned int nr_handles; 70 }; 71 72 struct map_ring_valloc { 73 struct xenbus_map_node *node; 74 75 /* Why do we need two arrays? See comment of __xenbus_map_ring */ 76 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 77 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS]; 78 79 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS]; 80 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 81 82 unsigned int idx; 83 }; 84 85 static DEFINE_SPINLOCK(xenbus_valloc_lock); 86 static LIST_HEAD(xenbus_valloc_pages); 87 88 struct xenbus_ring_ops { 89 int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info, 90 grant_ref_t *gnt_refs, unsigned int nr_grefs, 91 void **vaddr); 92 int (*unmap)(struct xenbus_device *dev, void *vaddr); 93 }; 94 95 static const struct xenbus_ring_ops *ring_ops __read_mostly; 96 97 const char *xenbus_strstate(enum xenbus_state state) 98 { 99 static const char *const name[] = { 100 [ XenbusStateUnknown ] = "Unknown", 101 [ XenbusStateInitialising ] = "Initialising", 102 [ XenbusStateInitWait ] = "InitWait", 103 [ XenbusStateInitialised ] = "Initialised", 104 [ XenbusStateConnected ] = "Connected", 105 [ XenbusStateClosing ] = "Closing", 106 [ XenbusStateClosed ] = "Closed", 107 [XenbusStateReconfiguring] = "Reconfiguring", 108 [XenbusStateReconfigured] = "Reconfigured", 109 }; 110 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID"; 111 } 112 EXPORT_SYMBOL_GPL(xenbus_strstate); 113 114 /** 115 * xenbus_watch_path - register a watch 116 * @dev: xenbus device 117 * @path: path to watch 118 * @watch: watch to register 119 * @callback: callback to register 120 * 121 * Register a @watch on the given path, using the given xenbus_watch structure 122 * for storage, and the given @callback function as the callback. Return 0 on 123 * success, or -errno on error. On success, the given @path will be saved as 124 * @watch->node, and remains the caller's to free. On error, @watch->node will 125 * be NULL, the device will switch to %XenbusStateClosing, and the error will 126 * be saved in the store. 127 */ 128 int xenbus_watch_path(struct xenbus_device *dev, const char *path, 129 struct xenbus_watch *watch, 130 bool (*will_handle)(struct xenbus_watch *, 131 const char *, const char *), 132 void (*callback)(struct xenbus_watch *, 133 const char *, const char *)) 134 { 135 int err; 136 137 watch->node = path; 138 watch->will_handle = will_handle; 139 watch->callback = callback; 140 141 err = register_xenbus_watch(watch); 142 143 if (err) { 144 watch->node = NULL; 145 watch->will_handle = NULL; 146 watch->callback = NULL; 147 xenbus_dev_fatal(dev, err, "adding watch on %s", path); 148 } 149 150 return err; 151 } 152 EXPORT_SYMBOL_GPL(xenbus_watch_path); 153 154 155 /** 156 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path 157 * @dev: xenbus device 158 * @watch: watch to register 159 * @callback: callback to register 160 * @pathfmt: format of path to watch 161 * 162 * Register a watch on the given @path, using the given xenbus_watch 163 * structure for storage, and the given @callback function as the callback. 164 * Return 0 on success, or -errno on error. On success, the watched path 165 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to 166 * kfree(). On error, watch->node will be NULL, so the caller has nothing to 167 * free, the device will switch to %XenbusStateClosing, and the error will be 168 * saved in the store. 169 */ 170 int xenbus_watch_pathfmt(struct xenbus_device *dev, 171 struct xenbus_watch *watch, 172 bool (*will_handle)(struct xenbus_watch *, 173 const char *, const char *), 174 void (*callback)(struct xenbus_watch *, 175 const char *, const char *), 176 const char *pathfmt, ...) 177 { 178 int err; 179 va_list ap; 180 char *path; 181 182 va_start(ap, pathfmt); 183 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap); 184 va_end(ap); 185 186 if (!path) { 187 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch"); 188 return -ENOMEM; 189 } 190 err = xenbus_watch_path(dev, path, watch, will_handle, callback); 191 192 if (err) 193 kfree(path); 194 return err; 195 } 196 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt); 197 198 static void xenbus_switch_fatal(struct xenbus_device *, int, int, 199 const char *, ...); 200 201 static int 202 __xenbus_switch_state(struct xenbus_device *dev, 203 enum xenbus_state state, int depth) 204 { 205 /* We check whether the state is currently set to the given value, and 206 if not, then the state is set. We don't want to unconditionally 207 write the given state, because we don't want to fire watches 208 unnecessarily. Furthermore, if the node has gone, we don't write 209 to it, as the device will be tearing down, and we don't want to 210 resurrect that directory. 211 212 Note that, because of this cached value of our state, this 213 function will not take a caller's Xenstore transaction 214 (something it was trying to in the past) because dev->state 215 would not get reset if the transaction was aborted. 216 */ 217 218 struct xenbus_transaction xbt; 219 int current_state; 220 int err, abort; 221 222 if (state == dev->state) 223 return 0; 224 225 again: 226 abort = 1; 227 228 err = xenbus_transaction_start(&xbt); 229 if (err) { 230 xenbus_switch_fatal(dev, depth, err, "starting transaction"); 231 return 0; 232 } 233 234 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state); 235 if (err != 1) 236 goto abort; 237 238 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state); 239 if (err) { 240 xenbus_switch_fatal(dev, depth, err, "writing new state"); 241 goto abort; 242 } 243 244 abort = 0; 245 abort: 246 err = xenbus_transaction_end(xbt, abort); 247 if (err) { 248 if (err == -EAGAIN && !abort) 249 goto again; 250 xenbus_switch_fatal(dev, depth, err, "ending transaction"); 251 } else 252 dev->state = state; 253 254 return 0; 255 } 256 257 /** 258 * xenbus_switch_state 259 * @dev: xenbus device 260 * @state: new state 261 * 262 * Advertise in the store a change of the given driver to the given new_state. 263 * Return 0 on success, or -errno on error. On error, the device will switch 264 * to XenbusStateClosing, and the error will be saved in the store. 265 */ 266 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state) 267 { 268 return __xenbus_switch_state(dev, state, 0); 269 } 270 271 EXPORT_SYMBOL_GPL(xenbus_switch_state); 272 273 int xenbus_frontend_closed(struct xenbus_device *dev) 274 { 275 xenbus_switch_state(dev, XenbusStateClosed); 276 complete(&dev->down); 277 return 0; 278 } 279 EXPORT_SYMBOL_GPL(xenbus_frontend_closed); 280 281 static void xenbus_va_dev_error(struct xenbus_device *dev, int err, 282 const char *fmt, va_list ap) 283 { 284 unsigned int len; 285 char *printf_buffer; 286 char *path_buffer; 287 288 #define PRINTF_BUFFER_SIZE 4096 289 290 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL); 291 if (!printf_buffer) 292 return; 293 294 len = sprintf(printf_buffer, "%i ", -err); 295 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap); 296 297 dev_err(&dev->dev, "%s\n", printf_buffer); 298 299 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename); 300 if (path_buffer) 301 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer); 302 303 kfree(printf_buffer); 304 kfree(path_buffer); 305 } 306 307 /** 308 * xenbus_dev_error 309 * @dev: xenbus device 310 * @err: error to report 311 * @fmt: error message format 312 * 313 * Report the given negative errno into the store, along with the given 314 * formatted message. 315 */ 316 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...) 317 { 318 va_list ap; 319 320 va_start(ap, fmt); 321 xenbus_va_dev_error(dev, err, fmt, ap); 322 va_end(ap); 323 } 324 EXPORT_SYMBOL_GPL(xenbus_dev_error); 325 326 /** 327 * xenbus_dev_fatal 328 * @dev: xenbus device 329 * @err: error to report 330 * @fmt: error message format 331 * 332 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by 333 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly 334 * closedown of this driver and its peer. 335 */ 336 337 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...) 338 { 339 va_list ap; 340 341 va_start(ap, fmt); 342 xenbus_va_dev_error(dev, err, fmt, ap); 343 va_end(ap); 344 345 xenbus_switch_state(dev, XenbusStateClosing); 346 } 347 EXPORT_SYMBOL_GPL(xenbus_dev_fatal); 348 349 /** 350 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps 351 * avoiding recursion within xenbus_switch_state. 352 */ 353 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err, 354 const char *fmt, ...) 355 { 356 va_list ap; 357 358 va_start(ap, fmt); 359 xenbus_va_dev_error(dev, err, fmt, ap); 360 va_end(ap); 361 362 if (!depth) 363 __xenbus_switch_state(dev, XenbusStateClosing, 1); 364 } 365 366 /** 367 * xenbus_grant_ring 368 * @dev: xenbus device 369 * @vaddr: starting virtual address of the ring 370 * @nr_pages: number of pages to be granted 371 * @grefs: grant reference array to be filled in 372 * 373 * Grant access to the given @vaddr to the peer of the given device. 374 * Then fill in @grefs with grant references. Return 0 on success, or 375 * -errno on error. On error, the device will switch to 376 * XenbusStateClosing, and the error will be saved in the store. 377 */ 378 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr, 379 unsigned int nr_pages, grant_ref_t *grefs) 380 { 381 int err; 382 int i, j; 383 384 for (i = 0; i < nr_pages; i++) { 385 unsigned long gfn; 386 387 if (is_vmalloc_addr(vaddr)) 388 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr)); 389 else 390 gfn = virt_to_gfn(vaddr); 391 392 err = gnttab_grant_foreign_access(dev->otherend_id, gfn, 0); 393 if (err < 0) { 394 xenbus_dev_fatal(dev, err, 395 "granting access to ring page"); 396 goto fail; 397 } 398 grefs[i] = err; 399 400 vaddr = vaddr + XEN_PAGE_SIZE; 401 } 402 403 return 0; 404 405 fail: 406 for (j = 0; j < i; j++) 407 gnttab_end_foreign_access_ref(grefs[j], 0); 408 return err; 409 } 410 EXPORT_SYMBOL_GPL(xenbus_grant_ring); 411 412 413 /** 414 * Allocate an event channel for the given xenbus_device, assigning the newly 415 * created local port to *port. Return 0 on success, or -errno on error. On 416 * error, the device will switch to XenbusStateClosing, and the error will be 417 * saved in the store. 418 */ 419 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port) 420 { 421 struct evtchn_alloc_unbound alloc_unbound; 422 int err; 423 424 alloc_unbound.dom = DOMID_SELF; 425 alloc_unbound.remote_dom = dev->otherend_id; 426 427 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, 428 &alloc_unbound); 429 if (err) 430 xenbus_dev_fatal(dev, err, "allocating event channel"); 431 else 432 *port = alloc_unbound.port; 433 434 return err; 435 } 436 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn); 437 438 439 /** 440 * Free an existing event channel. Returns 0 on success or -errno on error. 441 */ 442 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port) 443 { 444 struct evtchn_close close; 445 int err; 446 447 close.port = port; 448 449 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close); 450 if (err) 451 xenbus_dev_error(dev, err, "freeing event channel %u", port); 452 453 return err; 454 } 455 EXPORT_SYMBOL_GPL(xenbus_free_evtchn); 456 457 458 /** 459 * xenbus_map_ring_valloc 460 * @dev: xenbus device 461 * @gnt_refs: grant reference array 462 * @nr_grefs: number of grant references 463 * @vaddr: pointer to address to be filled out by mapping 464 * 465 * Map @nr_grefs pages of memory into this domain from another 466 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs 467 * pages of virtual address space, maps the pages to that address, and 468 * sets *vaddr to that address. Returns 0 on success, and -errno on 469 * error. If an error is returned, device will switch to 470 * XenbusStateClosing and the error message will be saved in XenStore. 471 */ 472 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs, 473 unsigned int nr_grefs, void **vaddr) 474 { 475 int err; 476 struct map_ring_valloc *info; 477 478 *vaddr = NULL; 479 480 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 481 return -EINVAL; 482 483 info = kzalloc(sizeof(*info), GFP_KERNEL); 484 if (!info) 485 return -ENOMEM; 486 487 info->node = kzalloc(sizeof(*info->node), GFP_KERNEL); 488 if (!info->node) 489 err = -ENOMEM; 490 else 491 err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr); 492 493 kfree(info->node); 494 kfree(info); 495 return err; 496 } 497 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc); 498 499 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned 500 * long), e.g. 32-on-64. Caller is responsible for preparing the 501 * right array to feed into this function */ 502 static int __xenbus_map_ring(struct xenbus_device *dev, 503 grant_ref_t *gnt_refs, 504 unsigned int nr_grefs, 505 grant_handle_t *handles, 506 struct map_ring_valloc *info, 507 unsigned int flags, 508 bool *leaked) 509 { 510 int i, j; 511 512 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 513 return -EINVAL; 514 515 for (i = 0; i < nr_grefs; i++) { 516 gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags, 517 gnt_refs[i], dev->otherend_id); 518 handles[i] = INVALID_GRANT_HANDLE; 519 } 520 521 gnttab_batch_map(info->map, i); 522 523 for (i = 0; i < nr_grefs; i++) { 524 if (info->map[i].status != GNTST_okay) { 525 xenbus_dev_fatal(dev, info->map[i].status, 526 "mapping in shared page %d from domain %d", 527 gnt_refs[i], dev->otherend_id); 528 goto fail; 529 } else 530 handles[i] = info->map[i].handle; 531 } 532 533 return 0; 534 535 fail: 536 for (i = j = 0; i < nr_grefs; i++) { 537 if (handles[i] != INVALID_GRANT_HANDLE) { 538 gnttab_set_unmap_op(&info->unmap[j], 539 info->phys_addrs[i], 540 GNTMAP_host_map, handles[i]); 541 j++; 542 } 543 } 544 545 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j)) 546 BUG(); 547 548 *leaked = false; 549 for (i = 0; i < j; i++) { 550 if (info->unmap[i].status != GNTST_okay) { 551 *leaked = true; 552 break; 553 } 554 } 555 556 return -ENOENT; 557 } 558 559 /** 560 * xenbus_unmap_ring 561 * @dev: xenbus device 562 * @handles: grant handle array 563 * @nr_handles: number of handles in the array 564 * @vaddrs: addresses to unmap 565 * 566 * Unmap memory in this domain that was imported from another domain. 567 * Returns 0 on success and returns GNTST_* on error 568 * (see xen/include/interface/grant_table.h). 569 */ 570 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles, 571 unsigned int nr_handles, unsigned long *vaddrs) 572 { 573 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 574 int i; 575 int err; 576 577 if (nr_handles > XENBUS_MAX_RING_GRANTS) 578 return -EINVAL; 579 580 for (i = 0; i < nr_handles; i++) 581 gnttab_set_unmap_op(&unmap[i], vaddrs[i], 582 GNTMAP_host_map, handles[i]); 583 584 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i)) 585 BUG(); 586 587 err = GNTST_okay; 588 for (i = 0; i < nr_handles; i++) { 589 if (unmap[i].status != GNTST_okay) { 590 xenbus_dev_error(dev, unmap[i].status, 591 "unmapping page at handle %d error %d", 592 handles[i], unmap[i].status); 593 err = unmap[i].status; 594 break; 595 } 596 } 597 598 return err; 599 } 600 601 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn, 602 unsigned int goffset, 603 unsigned int len, 604 void *data) 605 { 606 struct map_ring_valloc *info = data; 607 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn); 608 609 info->phys_addrs[info->idx] = vaddr; 610 info->addrs[info->idx] = vaddr; 611 612 info->idx++; 613 } 614 615 static int xenbus_map_ring_hvm(struct xenbus_device *dev, 616 struct map_ring_valloc *info, 617 grant_ref_t *gnt_ref, 618 unsigned int nr_grefs, 619 void **vaddr) 620 { 621 struct xenbus_map_node *node = info->node; 622 int err; 623 void *addr; 624 bool leaked = false; 625 unsigned int nr_pages = XENBUS_PAGES(nr_grefs); 626 627 err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages); 628 if (err) 629 goto out_err; 630 631 gnttab_foreach_grant(node->hvm.pages, nr_grefs, 632 xenbus_map_ring_setup_grant_hvm, 633 info); 634 635 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles, 636 info, GNTMAP_host_map, &leaked); 637 node->nr_handles = nr_grefs; 638 639 if (err) 640 goto out_free_ballooned_pages; 641 642 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP, 643 PAGE_KERNEL); 644 if (!addr) { 645 err = -ENOMEM; 646 goto out_xenbus_unmap_ring; 647 } 648 649 node->hvm.addr = addr; 650 651 spin_lock(&xenbus_valloc_lock); 652 list_add(&node->next, &xenbus_valloc_pages); 653 spin_unlock(&xenbus_valloc_lock); 654 655 *vaddr = addr; 656 info->node = NULL; 657 658 return 0; 659 660 out_xenbus_unmap_ring: 661 if (!leaked) 662 xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs); 663 else 664 pr_alert("leaking %p size %u page(s)", 665 addr, nr_pages); 666 out_free_ballooned_pages: 667 if (!leaked) 668 xen_free_unpopulated_pages(nr_pages, node->hvm.pages); 669 out_err: 670 return err; 671 } 672 673 /** 674 * xenbus_unmap_ring_vfree 675 * @dev: xenbus device 676 * @vaddr: addr to unmap 677 * 678 * Based on Rusty Russell's skeleton driver's unmap_page. 679 * Unmap a page of memory in this domain that was imported from another domain. 680 * Use xenbus_unmap_ring_vfree if you mapped in your memory with 681 * xenbus_map_ring_valloc (it will free the virtual address space). 682 * Returns 0 on success and returns GNTST_* on error 683 * (see xen/include/interface/grant_table.h). 684 */ 685 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr) 686 { 687 return ring_ops->unmap(dev, vaddr); 688 } 689 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree); 690 691 #ifdef CONFIG_XEN_PV 692 static int map_ring_apply(pte_t *pte, unsigned long addr, void *data) 693 { 694 struct map_ring_valloc *info = data; 695 696 info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr; 697 return 0; 698 } 699 700 static int xenbus_map_ring_pv(struct xenbus_device *dev, 701 struct map_ring_valloc *info, 702 grant_ref_t *gnt_refs, 703 unsigned int nr_grefs, 704 void **vaddr) 705 { 706 struct xenbus_map_node *node = info->node; 707 struct vm_struct *area; 708 bool leaked = false; 709 int err = -ENOMEM; 710 711 area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP); 712 if (!area) 713 return -ENOMEM; 714 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 715 XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info)) 716 goto failed; 717 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles, 718 info, GNTMAP_host_map | GNTMAP_contains_pte, 719 &leaked); 720 if (err) 721 goto failed; 722 723 node->nr_handles = nr_grefs; 724 node->pv.area = area; 725 726 spin_lock(&xenbus_valloc_lock); 727 list_add(&node->next, &xenbus_valloc_pages); 728 spin_unlock(&xenbus_valloc_lock); 729 730 *vaddr = area->addr; 731 info->node = NULL; 732 733 return 0; 734 735 failed: 736 if (!leaked) 737 free_vm_area(area); 738 else 739 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs); 740 741 return err; 742 } 743 744 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr) 745 { 746 struct xenbus_map_node *node; 747 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 748 unsigned int level; 749 int i; 750 bool leaked = false; 751 int err; 752 753 spin_lock(&xenbus_valloc_lock); 754 list_for_each_entry(node, &xenbus_valloc_pages, next) { 755 if (node->pv.area->addr == vaddr) { 756 list_del(&node->next); 757 goto found; 758 } 759 } 760 node = NULL; 761 found: 762 spin_unlock(&xenbus_valloc_lock); 763 764 if (!node) { 765 xenbus_dev_error(dev, -ENOENT, 766 "can't find mapped virtual address %p", vaddr); 767 return GNTST_bad_virt_addr; 768 } 769 770 for (i = 0; i < node->nr_handles; i++) { 771 unsigned long addr; 772 773 memset(&unmap[i], 0, sizeof(unmap[i])); 774 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i); 775 unmap[i].host_addr = arbitrary_virt_to_machine( 776 lookup_address(addr, &level)).maddr; 777 unmap[i].dev_bus_addr = 0; 778 unmap[i].handle = node->handles[i]; 779 } 780 781 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i)) 782 BUG(); 783 784 err = GNTST_okay; 785 leaked = false; 786 for (i = 0; i < node->nr_handles; i++) { 787 if (unmap[i].status != GNTST_okay) { 788 leaked = true; 789 xenbus_dev_error(dev, unmap[i].status, 790 "unmapping page at handle %d error %d", 791 node->handles[i], unmap[i].status); 792 err = unmap[i].status; 793 break; 794 } 795 } 796 797 if (!leaked) 798 free_vm_area(node->pv.area); 799 else 800 pr_alert("leaking VM area %p size %u page(s)", 801 node->pv.area, node->nr_handles); 802 803 kfree(node); 804 return err; 805 } 806 807 static const struct xenbus_ring_ops ring_ops_pv = { 808 .map = xenbus_map_ring_pv, 809 .unmap = xenbus_unmap_ring_pv, 810 }; 811 #endif 812 813 struct unmap_ring_hvm 814 { 815 unsigned int idx; 816 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 817 }; 818 819 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn, 820 unsigned int goffset, 821 unsigned int len, 822 void *data) 823 { 824 struct unmap_ring_hvm *info = data; 825 826 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn); 827 828 info->idx++; 829 } 830 831 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr) 832 { 833 int rv; 834 struct xenbus_map_node *node; 835 void *addr; 836 struct unmap_ring_hvm info = { 837 .idx = 0, 838 }; 839 unsigned int nr_pages; 840 841 spin_lock(&xenbus_valloc_lock); 842 list_for_each_entry(node, &xenbus_valloc_pages, next) { 843 addr = node->hvm.addr; 844 if (addr == vaddr) { 845 list_del(&node->next); 846 goto found; 847 } 848 } 849 node = addr = NULL; 850 found: 851 spin_unlock(&xenbus_valloc_lock); 852 853 if (!node) { 854 xenbus_dev_error(dev, -ENOENT, 855 "can't find mapped virtual address %p", vaddr); 856 return GNTST_bad_virt_addr; 857 } 858 859 nr_pages = XENBUS_PAGES(node->nr_handles); 860 861 gnttab_foreach_grant(node->hvm.pages, node->nr_handles, 862 xenbus_unmap_ring_setup_grant_hvm, 863 &info); 864 865 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles, 866 info.addrs); 867 if (!rv) { 868 vunmap(vaddr); 869 xen_free_unpopulated_pages(nr_pages, node->hvm.pages); 870 } 871 else 872 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages); 873 874 kfree(node); 875 return rv; 876 } 877 878 /** 879 * xenbus_read_driver_state 880 * @path: path for driver 881 * 882 * Return the state of the driver rooted at the given store path, or 883 * XenbusStateUnknown if no state can be read. 884 */ 885 enum xenbus_state xenbus_read_driver_state(const char *path) 886 { 887 enum xenbus_state result; 888 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL); 889 if (err) 890 result = XenbusStateUnknown; 891 892 return result; 893 } 894 EXPORT_SYMBOL_GPL(xenbus_read_driver_state); 895 896 static const struct xenbus_ring_ops ring_ops_hvm = { 897 .map = xenbus_map_ring_hvm, 898 .unmap = xenbus_unmap_ring_hvm, 899 }; 900 901 void __init xenbus_ring_ops_init(void) 902 { 903 #ifdef CONFIG_XEN_PV 904 if (!xen_feature(XENFEAT_auto_translated_physmap)) 905 ring_ops = &ring_ops_pv; 906 else 907 #endif 908 ring_ops = &ring_ops_hvm; 909 } 910