1 /****************************************************************************** 2 * Client-facing interface for the Xenbus driver. In other words, the 3 * interface between the Xenbus and the device-specific code, be it the 4 * frontend or the backend of that driver. 5 * 6 * Copyright (C) 2005 XenSource Ltd 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 2 10 * as published by the Free Software Foundation; or, when distributed 11 * separately from the Linux kernel or incorporated into other 12 * software packages, subject to the following license: 13 * 14 * Permission is hereby granted, free of charge, to any person obtaining a copy 15 * of this source file (the "Software"), to deal in the Software without 16 * restriction, including without limitation the rights to use, copy, modify, 17 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 18 * and to permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be included in 22 * all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 30 * IN THE SOFTWARE. 31 */ 32 33 #include <linux/mm.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/spinlock.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <asm/xen/hypervisor.h> 40 #include <xen/page.h> 41 #include <xen/interface/xen.h> 42 #include <xen/interface/event_channel.h> 43 #include <xen/balloon.h> 44 #include <xen/events.h> 45 #include <xen/grant_table.h> 46 #include <xen/xenbus.h> 47 #include <xen/xen.h> 48 #include <xen/features.h> 49 50 #include "xenbus_probe.h" 51 52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE)) 53 54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS)) 55 56 struct xenbus_map_node { 57 struct list_head next; 58 union { 59 struct { 60 struct vm_struct *area; 61 } pv; 62 struct { 63 struct page *pages[XENBUS_MAX_RING_PAGES]; 64 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 65 void *addr; 66 } hvm; 67 }; 68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS]; 69 unsigned int nr_handles; 70 }; 71 72 static DEFINE_SPINLOCK(xenbus_valloc_lock); 73 static LIST_HEAD(xenbus_valloc_pages); 74 75 struct xenbus_ring_ops { 76 int (*map)(struct xenbus_device *dev, 77 grant_ref_t *gnt_refs, unsigned int nr_grefs, 78 void **vaddr); 79 int (*unmap)(struct xenbus_device *dev, void *vaddr); 80 }; 81 82 static const struct xenbus_ring_ops *ring_ops __read_mostly; 83 84 const char *xenbus_strstate(enum xenbus_state state) 85 { 86 static const char *const name[] = { 87 [ XenbusStateUnknown ] = "Unknown", 88 [ XenbusStateInitialising ] = "Initialising", 89 [ XenbusStateInitWait ] = "InitWait", 90 [ XenbusStateInitialised ] = "Initialised", 91 [ XenbusStateConnected ] = "Connected", 92 [ XenbusStateClosing ] = "Closing", 93 [ XenbusStateClosed ] = "Closed", 94 [XenbusStateReconfiguring] = "Reconfiguring", 95 [XenbusStateReconfigured] = "Reconfigured", 96 }; 97 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID"; 98 } 99 EXPORT_SYMBOL_GPL(xenbus_strstate); 100 101 /** 102 * xenbus_watch_path - register a watch 103 * @dev: xenbus device 104 * @path: path to watch 105 * @watch: watch to register 106 * @callback: callback to register 107 * 108 * Register a @watch on the given path, using the given xenbus_watch structure 109 * for storage, and the given @callback function as the callback. Return 0 on 110 * success, or -errno on error. On success, the given @path will be saved as 111 * @watch->node, and remains the caller's to free. On error, @watch->node will 112 * be NULL, the device will switch to %XenbusStateClosing, and the error will 113 * be saved in the store. 114 */ 115 int xenbus_watch_path(struct xenbus_device *dev, const char *path, 116 struct xenbus_watch *watch, 117 void (*callback)(struct xenbus_watch *, 118 const char **, unsigned int)) 119 { 120 int err; 121 122 watch->node = path; 123 watch->callback = callback; 124 125 err = register_xenbus_watch(watch); 126 127 if (err) { 128 watch->node = NULL; 129 watch->callback = NULL; 130 xenbus_dev_fatal(dev, err, "adding watch on %s", path); 131 } 132 133 return err; 134 } 135 EXPORT_SYMBOL_GPL(xenbus_watch_path); 136 137 138 /** 139 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path 140 * @dev: xenbus device 141 * @watch: watch to register 142 * @callback: callback to register 143 * @pathfmt: format of path to watch 144 * 145 * Register a watch on the given @path, using the given xenbus_watch 146 * structure for storage, and the given @callback function as the callback. 147 * Return 0 on success, or -errno on error. On success, the watched path 148 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to 149 * kfree(). On error, watch->node will be NULL, so the caller has nothing to 150 * free, the device will switch to %XenbusStateClosing, and the error will be 151 * saved in the store. 152 */ 153 int xenbus_watch_pathfmt(struct xenbus_device *dev, 154 struct xenbus_watch *watch, 155 void (*callback)(struct xenbus_watch *, 156 const char **, unsigned int), 157 const char *pathfmt, ...) 158 { 159 int err; 160 va_list ap; 161 char *path; 162 163 va_start(ap, pathfmt); 164 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap); 165 va_end(ap); 166 167 if (!path) { 168 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch"); 169 return -ENOMEM; 170 } 171 err = xenbus_watch_path(dev, path, watch, callback); 172 173 if (err) 174 kfree(path); 175 return err; 176 } 177 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt); 178 179 static void xenbus_switch_fatal(struct xenbus_device *, int, int, 180 const char *, ...); 181 182 static int 183 __xenbus_switch_state(struct xenbus_device *dev, 184 enum xenbus_state state, int depth) 185 { 186 /* We check whether the state is currently set to the given value, and 187 if not, then the state is set. We don't want to unconditionally 188 write the given state, because we don't want to fire watches 189 unnecessarily. Furthermore, if the node has gone, we don't write 190 to it, as the device will be tearing down, and we don't want to 191 resurrect that directory. 192 193 Note that, because of this cached value of our state, this 194 function will not take a caller's Xenstore transaction 195 (something it was trying to in the past) because dev->state 196 would not get reset if the transaction was aborted. 197 */ 198 199 struct xenbus_transaction xbt; 200 int current_state; 201 int err, abort; 202 203 if (state == dev->state) 204 return 0; 205 206 again: 207 abort = 1; 208 209 err = xenbus_transaction_start(&xbt); 210 if (err) { 211 xenbus_switch_fatal(dev, depth, err, "starting transaction"); 212 return 0; 213 } 214 215 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state); 216 if (err != 1) 217 goto abort; 218 219 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state); 220 if (err) { 221 xenbus_switch_fatal(dev, depth, err, "writing new state"); 222 goto abort; 223 } 224 225 abort = 0; 226 abort: 227 err = xenbus_transaction_end(xbt, abort); 228 if (err) { 229 if (err == -EAGAIN && !abort) 230 goto again; 231 xenbus_switch_fatal(dev, depth, err, "ending transaction"); 232 } else 233 dev->state = state; 234 235 return 0; 236 } 237 238 /** 239 * xenbus_switch_state 240 * @dev: xenbus device 241 * @state: new state 242 * 243 * Advertise in the store a change of the given driver to the given new_state. 244 * Return 0 on success, or -errno on error. On error, the device will switch 245 * to XenbusStateClosing, and the error will be saved in the store. 246 */ 247 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state) 248 { 249 return __xenbus_switch_state(dev, state, 0); 250 } 251 252 EXPORT_SYMBOL_GPL(xenbus_switch_state); 253 254 int xenbus_frontend_closed(struct xenbus_device *dev) 255 { 256 xenbus_switch_state(dev, XenbusStateClosed); 257 complete(&dev->down); 258 return 0; 259 } 260 EXPORT_SYMBOL_GPL(xenbus_frontend_closed); 261 262 /** 263 * Return the path to the error node for the given device, or NULL on failure. 264 * If the value returned is non-NULL, then it is the caller's to kfree. 265 */ 266 static char *error_path(struct xenbus_device *dev) 267 { 268 return kasprintf(GFP_KERNEL, "error/%s", dev->nodename); 269 } 270 271 272 static void xenbus_va_dev_error(struct xenbus_device *dev, int err, 273 const char *fmt, va_list ap) 274 { 275 unsigned int len; 276 char *printf_buffer = NULL; 277 char *path_buffer = NULL; 278 279 #define PRINTF_BUFFER_SIZE 4096 280 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL); 281 if (printf_buffer == NULL) 282 goto fail; 283 284 len = sprintf(printf_buffer, "%i ", -err); 285 vsnprintf(printf_buffer+len, PRINTF_BUFFER_SIZE-len, fmt, ap); 286 287 dev_err(&dev->dev, "%s\n", printf_buffer); 288 289 path_buffer = error_path(dev); 290 291 if (path_buffer == NULL) { 292 dev_err(&dev->dev, "failed to write error node for %s (%s)\n", 293 dev->nodename, printf_buffer); 294 goto fail; 295 } 296 297 if (xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer) != 0) { 298 dev_err(&dev->dev, "failed to write error node for %s (%s)\n", 299 dev->nodename, printf_buffer); 300 goto fail; 301 } 302 303 fail: 304 kfree(printf_buffer); 305 kfree(path_buffer); 306 } 307 308 309 /** 310 * xenbus_dev_error 311 * @dev: xenbus device 312 * @err: error to report 313 * @fmt: error message format 314 * 315 * Report the given negative errno into the store, along with the given 316 * formatted message. 317 */ 318 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...) 319 { 320 va_list ap; 321 322 va_start(ap, fmt); 323 xenbus_va_dev_error(dev, err, fmt, ap); 324 va_end(ap); 325 } 326 EXPORT_SYMBOL_GPL(xenbus_dev_error); 327 328 /** 329 * xenbus_dev_fatal 330 * @dev: xenbus device 331 * @err: error to report 332 * @fmt: error message format 333 * 334 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by 335 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly 336 * closedown of this driver and its peer. 337 */ 338 339 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...) 340 { 341 va_list ap; 342 343 va_start(ap, fmt); 344 xenbus_va_dev_error(dev, err, fmt, ap); 345 va_end(ap); 346 347 xenbus_switch_state(dev, XenbusStateClosing); 348 } 349 EXPORT_SYMBOL_GPL(xenbus_dev_fatal); 350 351 /** 352 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps 353 * avoiding recursion within xenbus_switch_state. 354 */ 355 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err, 356 const char *fmt, ...) 357 { 358 va_list ap; 359 360 va_start(ap, fmt); 361 xenbus_va_dev_error(dev, err, fmt, ap); 362 va_end(ap); 363 364 if (!depth) 365 __xenbus_switch_state(dev, XenbusStateClosing, 1); 366 } 367 368 /** 369 * xenbus_grant_ring 370 * @dev: xenbus device 371 * @vaddr: starting virtual address of the ring 372 * @nr_pages: number of pages to be granted 373 * @grefs: grant reference array to be filled in 374 * 375 * Grant access to the given @vaddr to the peer of the given device. 376 * Then fill in @grefs with grant references. Return 0 on success, or 377 * -errno on error. On error, the device will switch to 378 * XenbusStateClosing, and the error will be saved in the store. 379 */ 380 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr, 381 unsigned int nr_pages, grant_ref_t *grefs) 382 { 383 int err; 384 int i, j; 385 386 for (i = 0; i < nr_pages; i++) { 387 err = gnttab_grant_foreign_access(dev->otherend_id, 388 virt_to_gfn(vaddr), 0); 389 if (err < 0) { 390 xenbus_dev_fatal(dev, err, 391 "granting access to ring page"); 392 goto fail; 393 } 394 grefs[i] = err; 395 396 vaddr = vaddr + XEN_PAGE_SIZE; 397 } 398 399 return 0; 400 401 fail: 402 for (j = 0; j < i; j++) 403 gnttab_end_foreign_access_ref(grefs[j], 0); 404 return err; 405 } 406 EXPORT_SYMBOL_GPL(xenbus_grant_ring); 407 408 409 /** 410 * Allocate an event channel for the given xenbus_device, assigning the newly 411 * created local port to *port. Return 0 on success, or -errno on error. On 412 * error, the device will switch to XenbusStateClosing, and the error will be 413 * saved in the store. 414 */ 415 int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port) 416 { 417 struct evtchn_alloc_unbound alloc_unbound; 418 int err; 419 420 alloc_unbound.dom = DOMID_SELF; 421 alloc_unbound.remote_dom = dev->otherend_id; 422 423 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound, 424 &alloc_unbound); 425 if (err) 426 xenbus_dev_fatal(dev, err, "allocating event channel"); 427 else 428 *port = alloc_unbound.port; 429 430 return err; 431 } 432 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn); 433 434 435 /** 436 * Free an existing event channel. Returns 0 on success or -errno on error. 437 */ 438 int xenbus_free_evtchn(struct xenbus_device *dev, int port) 439 { 440 struct evtchn_close close; 441 int err; 442 443 close.port = port; 444 445 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close); 446 if (err) 447 xenbus_dev_error(dev, err, "freeing event channel %d", port); 448 449 return err; 450 } 451 EXPORT_SYMBOL_GPL(xenbus_free_evtchn); 452 453 454 /** 455 * xenbus_map_ring_valloc 456 * @dev: xenbus device 457 * @gnt_refs: grant reference array 458 * @nr_grefs: number of grant references 459 * @vaddr: pointer to address to be filled out by mapping 460 * 461 * Map @nr_grefs pages of memory into this domain from another 462 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs 463 * pages of virtual address space, maps the pages to that address, and 464 * sets *vaddr to that address. Returns 0 on success, and GNTST_* 465 * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on 466 * error. If an error is returned, device will switch to 467 * XenbusStateClosing and the error message will be saved in XenStore. 468 */ 469 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs, 470 unsigned int nr_grefs, void **vaddr) 471 { 472 return ring_ops->map(dev, gnt_refs, nr_grefs, vaddr); 473 } 474 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc); 475 476 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned 477 * long), e.g. 32-on-64. Caller is responsible for preparing the 478 * right array to feed into this function */ 479 static int __xenbus_map_ring(struct xenbus_device *dev, 480 grant_ref_t *gnt_refs, 481 unsigned int nr_grefs, 482 grant_handle_t *handles, 483 phys_addr_t *addrs, 484 unsigned int flags, 485 bool *leaked) 486 { 487 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS]; 488 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 489 int i, j; 490 int err = GNTST_okay; 491 492 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 493 return -EINVAL; 494 495 for (i = 0; i < nr_grefs; i++) { 496 memset(&map[i], 0, sizeof(map[i])); 497 gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i], 498 dev->otherend_id); 499 handles[i] = INVALID_GRANT_HANDLE; 500 } 501 502 gnttab_batch_map(map, i); 503 504 for (i = 0; i < nr_grefs; i++) { 505 if (map[i].status != GNTST_okay) { 506 err = map[i].status; 507 xenbus_dev_fatal(dev, map[i].status, 508 "mapping in shared page %d from domain %d", 509 gnt_refs[i], dev->otherend_id); 510 goto fail; 511 } else 512 handles[i] = map[i].handle; 513 } 514 515 return GNTST_okay; 516 517 fail: 518 for (i = j = 0; i < nr_grefs; i++) { 519 if (handles[i] != INVALID_GRANT_HANDLE) { 520 memset(&unmap[j], 0, sizeof(unmap[j])); 521 gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i], 522 GNTMAP_host_map, handles[i]); 523 j++; 524 } 525 } 526 527 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j)) 528 BUG(); 529 530 *leaked = false; 531 for (i = 0; i < j; i++) { 532 if (unmap[i].status != GNTST_okay) { 533 *leaked = true; 534 break; 535 } 536 } 537 538 return err; 539 } 540 541 static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev, 542 grant_ref_t *gnt_refs, 543 unsigned int nr_grefs, 544 void **vaddr) 545 { 546 struct xenbus_map_node *node; 547 struct vm_struct *area; 548 pte_t *ptes[XENBUS_MAX_RING_GRANTS]; 549 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS]; 550 int err = GNTST_okay; 551 int i; 552 bool leaked; 553 554 *vaddr = NULL; 555 556 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 557 return -EINVAL; 558 559 node = kzalloc(sizeof(*node), GFP_KERNEL); 560 if (!node) 561 return -ENOMEM; 562 563 area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes); 564 if (!area) { 565 kfree(node); 566 return -ENOMEM; 567 } 568 569 for (i = 0; i < nr_grefs; i++) 570 phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr; 571 572 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles, 573 phys_addrs, 574 GNTMAP_host_map | GNTMAP_contains_pte, 575 &leaked); 576 if (err) 577 goto failed; 578 579 node->nr_handles = nr_grefs; 580 node->pv.area = area; 581 582 spin_lock(&xenbus_valloc_lock); 583 list_add(&node->next, &xenbus_valloc_pages); 584 spin_unlock(&xenbus_valloc_lock); 585 586 *vaddr = area->addr; 587 return 0; 588 589 failed: 590 if (!leaked) 591 free_vm_area(area); 592 else 593 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs); 594 595 kfree(node); 596 return err; 597 } 598 599 struct map_ring_valloc_hvm 600 { 601 unsigned int idx; 602 603 /* Why do we need two arrays? See comment of __xenbus_map_ring */ 604 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS]; 605 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 606 }; 607 608 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn, 609 unsigned int goffset, 610 unsigned int len, 611 void *data) 612 { 613 struct map_ring_valloc_hvm *info = data; 614 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn); 615 616 info->phys_addrs[info->idx] = vaddr; 617 info->addrs[info->idx] = vaddr; 618 619 info->idx++; 620 } 621 622 static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev, 623 grant_ref_t *gnt_ref, 624 unsigned int nr_grefs, 625 void **vaddr) 626 { 627 struct xenbus_map_node *node; 628 int err; 629 void *addr; 630 bool leaked = false; 631 struct map_ring_valloc_hvm info = { 632 .idx = 0, 633 }; 634 unsigned int nr_pages = XENBUS_PAGES(nr_grefs); 635 636 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 637 return -EINVAL; 638 639 *vaddr = NULL; 640 641 node = kzalloc(sizeof(*node), GFP_KERNEL); 642 if (!node) 643 return -ENOMEM; 644 645 err = alloc_xenballooned_pages(nr_pages, node->hvm.pages); 646 if (err) 647 goto out_err; 648 649 gnttab_foreach_grant(node->hvm.pages, nr_grefs, 650 xenbus_map_ring_setup_grant_hvm, 651 &info); 652 653 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles, 654 info.phys_addrs, GNTMAP_host_map, &leaked); 655 node->nr_handles = nr_grefs; 656 657 if (err) 658 goto out_free_ballooned_pages; 659 660 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP, 661 PAGE_KERNEL); 662 if (!addr) { 663 err = -ENOMEM; 664 goto out_xenbus_unmap_ring; 665 } 666 667 node->hvm.addr = addr; 668 669 spin_lock(&xenbus_valloc_lock); 670 list_add(&node->next, &xenbus_valloc_pages); 671 spin_unlock(&xenbus_valloc_lock); 672 673 *vaddr = addr; 674 return 0; 675 676 out_xenbus_unmap_ring: 677 if (!leaked) 678 xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs); 679 else 680 pr_alert("leaking %p size %u page(s)", 681 addr, nr_pages); 682 out_free_ballooned_pages: 683 if (!leaked) 684 free_xenballooned_pages(nr_pages, node->hvm.pages); 685 out_err: 686 kfree(node); 687 return err; 688 } 689 690 691 /** 692 * xenbus_map_ring 693 * @dev: xenbus device 694 * @gnt_refs: grant reference array 695 * @nr_grefs: number of grant reference 696 * @handles: pointer to grant handle to be filled 697 * @vaddrs: addresses to be mapped to 698 * @leaked: fail to clean up a failed map, caller should not free vaddr 699 * 700 * Map pages of memory into this domain from another domain's grant table. 701 * xenbus_map_ring does not allocate the virtual address space (you must do 702 * this yourself!). It only maps in the pages to the specified address. 703 * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h) 704 * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to 705 * XenbusStateClosing and the first error message will be saved in XenStore. 706 * Further more if we fail to map the ring, caller should check @leaked. 707 * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller 708 * should not free the address space of @vaddr. 709 */ 710 int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs, 711 unsigned int nr_grefs, grant_handle_t *handles, 712 unsigned long *vaddrs, bool *leaked) 713 { 714 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS]; 715 int i; 716 717 if (nr_grefs > XENBUS_MAX_RING_GRANTS) 718 return -EINVAL; 719 720 for (i = 0; i < nr_grefs; i++) 721 phys_addrs[i] = (unsigned long)vaddrs[i]; 722 723 return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles, 724 phys_addrs, GNTMAP_host_map, leaked); 725 } 726 EXPORT_SYMBOL_GPL(xenbus_map_ring); 727 728 729 /** 730 * xenbus_unmap_ring_vfree 731 * @dev: xenbus device 732 * @vaddr: addr to unmap 733 * 734 * Based on Rusty Russell's skeleton driver's unmap_page. 735 * Unmap a page of memory in this domain that was imported from another domain. 736 * Use xenbus_unmap_ring_vfree if you mapped in your memory with 737 * xenbus_map_ring_valloc (it will free the virtual address space). 738 * Returns 0 on success and returns GNTST_* on error 739 * (see xen/include/interface/grant_table.h). 740 */ 741 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr) 742 { 743 return ring_ops->unmap(dev, vaddr); 744 } 745 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree); 746 747 static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr) 748 { 749 struct xenbus_map_node *node; 750 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 751 unsigned int level; 752 int i; 753 bool leaked = false; 754 int err; 755 756 spin_lock(&xenbus_valloc_lock); 757 list_for_each_entry(node, &xenbus_valloc_pages, next) { 758 if (node->pv.area->addr == vaddr) { 759 list_del(&node->next); 760 goto found; 761 } 762 } 763 node = NULL; 764 found: 765 spin_unlock(&xenbus_valloc_lock); 766 767 if (!node) { 768 xenbus_dev_error(dev, -ENOENT, 769 "can't find mapped virtual address %p", vaddr); 770 return GNTST_bad_virt_addr; 771 } 772 773 for (i = 0; i < node->nr_handles; i++) { 774 unsigned long addr; 775 776 memset(&unmap[i], 0, sizeof(unmap[i])); 777 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i); 778 unmap[i].host_addr = arbitrary_virt_to_machine( 779 lookup_address(addr, &level)).maddr; 780 unmap[i].dev_bus_addr = 0; 781 unmap[i].handle = node->handles[i]; 782 } 783 784 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i)) 785 BUG(); 786 787 err = GNTST_okay; 788 leaked = false; 789 for (i = 0; i < node->nr_handles; i++) { 790 if (unmap[i].status != GNTST_okay) { 791 leaked = true; 792 xenbus_dev_error(dev, unmap[i].status, 793 "unmapping page at handle %d error %d", 794 node->handles[i], unmap[i].status); 795 err = unmap[i].status; 796 break; 797 } 798 } 799 800 if (!leaked) 801 free_vm_area(node->pv.area); 802 else 803 pr_alert("leaking VM area %p size %u page(s)", 804 node->pv.area, node->nr_handles); 805 806 kfree(node); 807 return err; 808 } 809 810 struct unmap_ring_vfree_hvm 811 { 812 unsigned int idx; 813 unsigned long addrs[XENBUS_MAX_RING_GRANTS]; 814 }; 815 816 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn, 817 unsigned int goffset, 818 unsigned int len, 819 void *data) 820 { 821 struct unmap_ring_vfree_hvm *info = data; 822 823 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn); 824 825 info->idx++; 826 } 827 828 static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr) 829 { 830 int rv; 831 struct xenbus_map_node *node; 832 void *addr; 833 struct unmap_ring_vfree_hvm info = { 834 .idx = 0, 835 }; 836 unsigned int nr_pages; 837 838 spin_lock(&xenbus_valloc_lock); 839 list_for_each_entry(node, &xenbus_valloc_pages, next) { 840 addr = node->hvm.addr; 841 if (addr == vaddr) { 842 list_del(&node->next); 843 goto found; 844 } 845 } 846 node = addr = NULL; 847 found: 848 spin_unlock(&xenbus_valloc_lock); 849 850 if (!node) { 851 xenbus_dev_error(dev, -ENOENT, 852 "can't find mapped virtual address %p", vaddr); 853 return GNTST_bad_virt_addr; 854 } 855 856 nr_pages = XENBUS_PAGES(node->nr_handles); 857 858 gnttab_foreach_grant(node->hvm.pages, node->nr_handles, 859 xenbus_unmap_ring_setup_grant_hvm, 860 &info); 861 862 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles, 863 info.addrs); 864 if (!rv) { 865 vunmap(vaddr); 866 free_xenballooned_pages(nr_pages, node->hvm.pages); 867 } 868 else 869 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages); 870 871 kfree(node); 872 return rv; 873 } 874 875 /** 876 * xenbus_unmap_ring 877 * @dev: xenbus device 878 * @handles: grant handle array 879 * @nr_handles: number of handles in the array 880 * @vaddrs: addresses to unmap 881 * 882 * Unmap memory in this domain that was imported from another domain. 883 * Returns 0 on success and returns GNTST_* on error 884 * (see xen/include/interface/grant_table.h). 885 */ 886 int xenbus_unmap_ring(struct xenbus_device *dev, 887 grant_handle_t *handles, unsigned int nr_handles, 888 unsigned long *vaddrs) 889 { 890 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS]; 891 int i; 892 int err; 893 894 if (nr_handles > XENBUS_MAX_RING_GRANTS) 895 return -EINVAL; 896 897 for (i = 0; i < nr_handles; i++) 898 gnttab_set_unmap_op(&unmap[i], vaddrs[i], 899 GNTMAP_host_map, handles[i]); 900 901 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i)) 902 BUG(); 903 904 err = GNTST_okay; 905 for (i = 0; i < nr_handles; i++) { 906 if (unmap[i].status != GNTST_okay) { 907 xenbus_dev_error(dev, unmap[i].status, 908 "unmapping page at handle %d error %d", 909 handles[i], unmap[i].status); 910 err = unmap[i].status; 911 break; 912 } 913 } 914 915 return err; 916 } 917 EXPORT_SYMBOL_GPL(xenbus_unmap_ring); 918 919 920 /** 921 * xenbus_read_driver_state 922 * @path: path for driver 923 * 924 * Return the state of the driver rooted at the given store path, or 925 * XenbusStateUnknown if no state can be read. 926 */ 927 enum xenbus_state xenbus_read_driver_state(const char *path) 928 { 929 enum xenbus_state result; 930 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL); 931 if (err) 932 result = XenbusStateUnknown; 933 934 return result; 935 } 936 EXPORT_SYMBOL_GPL(xenbus_read_driver_state); 937 938 static const struct xenbus_ring_ops ring_ops_pv = { 939 .map = xenbus_map_ring_valloc_pv, 940 .unmap = xenbus_unmap_ring_vfree_pv, 941 }; 942 943 static const struct xenbus_ring_ops ring_ops_hvm = { 944 .map = xenbus_map_ring_valloc_hvm, 945 .unmap = xenbus_unmap_ring_vfree_hvm, 946 }; 947 948 void __init xenbus_ring_ops_init(void) 949 { 950 if (!xen_feature(XENFEAT_auto_translated_physmap)) 951 ring_ops = &ring_ops_pv; 952 else 953 ring_ops = &ring_ops_hvm; 954 } 955