xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision f7777dcc)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 /*
46  * Used to do a quick range check in swiotlb_tbl_unmap_single and
47  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
48  * API.
49  */
50 
51 static char *xen_io_tlb_start, *xen_io_tlb_end;
52 static unsigned long xen_io_tlb_nslabs;
53 /*
54  * Quick lookup value of the bus address of the IOTLB.
55  */
56 
57 static u64 start_dma_addr;
58 
59 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
60 {
61 	return phys_to_machine(XPADDR(paddr)).maddr;
62 }
63 
64 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
65 {
66 	return machine_to_phys(XMADDR(baddr)).paddr;
67 }
68 
69 static dma_addr_t xen_virt_to_bus(void *address)
70 {
71 	return xen_phys_to_bus(virt_to_phys(address));
72 }
73 
74 static int check_pages_physically_contiguous(unsigned long pfn,
75 					     unsigned int offset,
76 					     size_t length)
77 {
78 	unsigned long next_mfn;
79 	int i;
80 	int nr_pages;
81 
82 	next_mfn = pfn_to_mfn(pfn);
83 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
84 
85 	for (i = 1; i < nr_pages; i++) {
86 		if (pfn_to_mfn(++pfn) != ++next_mfn)
87 			return 0;
88 	}
89 	return 1;
90 }
91 
92 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
93 {
94 	unsigned long pfn = PFN_DOWN(p);
95 	unsigned int offset = p & ~PAGE_MASK;
96 
97 	if (offset + size <= PAGE_SIZE)
98 		return 0;
99 	if (check_pages_physically_contiguous(pfn, offset, size))
100 		return 0;
101 	return 1;
102 }
103 
104 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
105 {
106 	unsigned long mfn = PFN_DOWN(dma_addr);
107 	unsigned long pfn = mfn_to_local_pfn(mfn);
108 	phys_addr_t paddr;
109 
110 	/* If the address is outside our domain, it CAN
111 	 * have the same virtual address as another address
112 	 * in our domain. Therefore _only_ check address within our domain.
113 	 */
114 	if (pfn_valid(pfn)) {
115 		paddr = PFN_PHYS(pfn);
116 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
117 		       paddr < virt_to_phys(xen_io_tlb_end);
118 	}
119 	return 0;
120 }
121 
122 static int max_dma_bits = 32;
123 
124 static int
125 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
126 {
127 	int i, rc;
128 	int dma_bits;
129 
130 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
131 
132 	i = 0;
133 	do {
134 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
135 
136 		do {
137 			rc = xen_create_contiguous_region(
138 				(unsigned long)buf + (i << IO_TLB_SHIFT),
139 				get_order(slabs << IO_TLB_SHIFT),
140 				dma_bits);
141 		} while (rc && dma_bits++ < max_dma_bits);
142 		if (rc)
143 			return rc;
144 
145 		i += slabs;
146 	} while (i < nslabs);
147 	return 0;
148 }
149 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
150 {
151 	if (!nr_tbl) {
152 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
153 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
154 	} else
155 		xen_io_tlb_nslabs = nr_tbl;
156 
157 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
158 }
159 
160 enum xen_swiotlb_err {
161 	XEN_SWIOTLB_UNKNOWN = 0,
162 	XEN_SWIOTLB_ENOMEM,
163 	XEN_SWIOTLB_EFIXUP
164 };
165 
166 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
167 {
168 	switch (err) {
169 	case XEN_SWIOTLB_ENOMEM:
170 		return "Cannot allocate Xen-SWIOTLB buffer\n";
171 	case XEN_SWIOTLB_EFIXUP:
172 		return "Failed to get contiguous memory for DMA from Xen!\n"\
173 		    "You either: don't have the permissions, do not have"\
174 		    " enough free memory under 4GB, or the hypervisor memory"\
175 		    " is too fragmented!";
176 	default:
177 		break;
178 	}
179 	return "";
180 }
181 int __ref xen_swiotlb_init(int verbose, bool early)
182 {
183 	unsigned long bytes, order;
184 	int rc = -ENOMEM;
185 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
186 	unsigned int repeat = 3;
187 
188 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
189 retry:
190 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
191 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
192 	/*
193 	 * Get IO TLB memory from any location.
194 	 */
195 	if (early)
196 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
197 	else {
198 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
199 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
200 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
201 			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
202 			if (xen_io_tlb_start)
203 				break;
204 			order--;
205 		}
206 		if (order != get_order(bytes)) {
207 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
208 				(PAGE_SIZE << order) >> 20);
209 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
210 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
211 		}
212 	}
213 	if (!xen_io_tlb_start) {
214 		m_ret = XEN_SWIOTLB_ENOMEM;
215 		goto error;
216 	}
217 	xen_io_tlb_end = xen_io_tlb_start + bytes;
218 	/*
219 	 * And replace that memory with pages under 4GB.
220 	 */
221 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
222 			       bytes,
223 			       xen_io_tlb_nslabs);
224 	if (rc) {
225 		if (early)
226 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
227 		else {
228 			free_pages((unsigned long)xen_io_tlb_start, order);
229 			xen_io_tlb_start = NULL;
230 		}
231 		m_ret = XEN_SWIOTLB_EFIXUP;
232 		goto error;
233 	}
234 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
235 	if (early) {
236 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
237 			 verbose))
238 			panic("Cannot allocate SWIOTLB buffer");
239 		rc = 0;
240 	} else
241 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
242 	return rc;
243 error:
244 	if (repeat--) {
245 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
246 					(xen_io_tlb_nslabs >> 1));
247 		pr_info("Lowering to %luMB\n",
248 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
249 		goto retry;
250 	}
251 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
252 	if (early)
253 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
254 	else
255 		free_pages((unsigned long)xen_io_tlb_start, order);
256 	return rc;
257 }
258 void *
259 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
260 			   dma_addr_t *dma_handle, gfp_t flags,
261 			   struct dma_attrs *attrs)
262 {
263 	void *ret;
264 	int order = get_order(size);
265 	u64 dma_mask = DMA_BIT_MASK(32);
266 	unsigned long vstart;
267 	phys_addr_t phys;
268 	dma_addr_t dev_addr;
269 
270 	/*
271 	* Ignore region specifiers - the kernel's ideas of
272 	* pseudo-phys memory layout has nothing to do with the
273 	* machine physical layout.  We can't allocate highmem
274 	* because we can't return a pointer to it.
275 	*/
276 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
277 
278 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
279 		return ret;
280 
281 	vstart = __get_free_pages(flags, order);
282 	ret = (void *)vstart;
283 
284 	if (!ret)
285 		return ret;
286 
287 	if (hwdev && hwdev->coherent_dma_mask)
288 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
289 
290 	phys = virt_to_phys(ret);
291 	dev_addr = xen_phys_to_bus(phys);
292 	if (((dev_addr + size - 1 <= dma_mask)) &&
293 	    !range_straddles_page_boundary(phys, size))
294 		*dma_handle = dev_addr;
295 	else {
296 		if (xen_create_contiguous_region(vstart, order,
297 						 fls64(dma_mask)) != 0) {
298 			free_pages(vstart, order);
299 			return NULL;
300 		}
301 		*dma_handle = virt_to_machine(ret).maddr;
302 	}
303 	memset(ret, 0, size);
304 	return ret;
305 }
306 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
307 
308 void
309 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
310 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
311 {
312 	int order = get_order(size);
313 	phys_addr_t phys;
314 	u64 dma_mask = DMA_BIT_MASK(32);
315 
316 	if (dma_release_from_coherent(hwdev, order, vaddr))
317 		return;
318 
319 	if (hwdev && hwdev->coherent_dma_mask)
320 		dma_mask = hwdev->coherent_dma_mask;
321 
322 	phys = virt_to_phys(vaddr);
323 
324 	if (((dev_addr + size - 1 > dma_mask)) ||
325 	    range_straddles_page_boundary(phys, size))
326 		xen_destroy_contiguous_region((unsigned long)vaddr, order);
327 
328 	free_pages((unsigned long)vaddr, order);
329 }
330 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
331 
332 
333 /*
334  * Map a single buffer of the indicated size for DMA in streaming mode.  The
335  * physical address to use is returned.
336  *
337  * Once the device is given the dma address, the device owns this memory until
338  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
339  */
340 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
341 				unsigned long offset, size_t size,
342 				enum dma_data_direction dir,
343 				struct dma_attrs *attrs)
344 {
345 	phys_addr_t map, phys = page_to_phys(page) + offset;
346 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
347 
348 	BUG_ON(dir == DMA_NONE);
349 	/*
350 	 * If the address happens to be in the device's DMA window,
351 	 * we can safely return the device addr and not worry about bounce
352 	 * buffering it.
353 	 */
354 	if (dma_capable(dev, dev_addr, size) &&
355 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
356 		return dev_addr;
357 
358 	/*
359 	 * Oh well, have to allocate and map a bounce buffer.
360 	 */
361 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
362 	if (map == SWIOTLB_MAP_ERROR)
363 		return DMA_ERROR_CODE;
364 
365 	dev_addr = xen_phys_to_bus(map);
366 
367 	/*
368 	 * Ensure that the address returned is DMA'ble
369 	 */
370 	if (!dma_capable(dev, dev_addr, size)) {
371 		swiotlb_tbl_unmap_single(dev, map, size, dir);
372 		dev_addr = 0;
373 	}
374 	return dev_addr;
375 }
376 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
377 
378 /*
379  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
380  * match what was provided for in a previous xen_swiotlb_map_page call.  All
381  * other usages are undefined.
382  *
383  * After this call, reads by the cpu to the buffer are guaranteed to see
384  * whatever the device wrote there.
385  */
386 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
387 			     size_t size, enum dma_data_direction dir)
388 {
389 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
390 
391 	BUG_ON(dir == DMA_NONE);
392 
393 	/* NOTE: We use dev_addr here, not paddr! */
394 	if (is_xen_swiotlb_buffer(dev_addr)) {
395 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
396 		return;
397 	}
398 
399 	if (dir != DMA_FROM_DEVICE)
400 		return;
401 
402 	/*
403 	 * phys_to_virt doesn't work with hihgmem page but we could
404 	 * call dma_mark_clean() with hihgmem page here. However, we
405 	 * are fine since dma_mark_clean() is null on POWERPC. We can
406 	 * make dma_mark_clean() take a physical address if necessary.
407 	 */
408 	dma_mark_clean(phys_to_virt(paddr), size);
409 }
410 
411 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
412 			    size_t size, enum dma_data_direction dir,
413 			    struct dma_attrs *attrs)
414 {
415 	xen_unmap_single(hwdev, dev_addr, size, dir);
416 }
417 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
418 
419 /*
420  * Make physical memory consistent for a single streaming mode DMA translation
421  * after a transfer.
422  *
423  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
424  * using the cpu, yet do not wish to teardown the dma mapping, you must
425  * call this function before doing so.  At the next point you give the dma
426  * address back to the card, you must first perform a
427  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
428  */
429 static void
430 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
431 			size_t size, enum dma_data_direction dir,
432 			enum dma_sync_target target)
433 {
434 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
435 
436 	BUG_ON(dir == DMA_NONE);
437 
438 	/* NOTE: We use dev_addr here, not paddr! */
439 	if (is_xen_swiotlb_buffer(dev_addr)) {
440 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
441 		return;
442 	}
443 
444 	if (dir != DMA_FROM_DEVICE)
445 		return;
446 
447 	dma_mark_clean(phys_to_virt(paddr), size);
448 }
449 
450 void
451 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
452 				size_t size, enum dma_data_direction dir)
453 {
454 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
455 }
456 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
457 
458 void
459 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
460 				   size_t size, enum dma_data_direction dir)
461 {
462 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
463 }
464 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
465 
466 /*
467  * Map a set of buffers described by scatterlist in streaming mode for DMA.
468  * This is the scatter-gather version of the above xen_swiotlb_map_page
469  * interface.  Here the scatter gather list elements are each tagged with the
470  * appropriate dma address and length.  They are obtained via
471  * sg_dma_{address,length}(SG).
472  *
473  * NOTE: An implementation may be able to use a smaller number of
474  *       DMA address/length pairs than there are SG table elements.
475  *       (for example via virtual mapping capabilities)
476  *       The routine returns the number of addr/length pairs actually
477  *       used, at most nents.
478  *
479  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
480  * same here.
481  */
482 int
483 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
484 			 int nelems, enum dma_data_direction dir,
485 			 struct dma_attrs *attrs)
486 {
487 	struct scatterlist *sg;
488 	int i;
489 
490 	BUG_ON(dir == DMA_NONE);
491 
492 	for_each_sg(sgl, sg, nelems, i) {
493 		phys_addr_t paddr = sg_phys(sg);
494 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
495 
496 		if (swiotlb_force ||
497 		    !dma_capable(hwdev, dev_addr, sg->length) ||
498 		    range_straddles_page_boundary(paddr, sg->length)) {
499 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
500 								 start_dma_addr,
501 								 sg_phys(sg),
502 								 sg->length,
503 								 dir);
504 			if (map == SWIOTLB_MAP_ERROR) {
505 				/* Don't panic here, we expect map_sg users
506 				   to do proper error handling. */
507 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
508 							   attrs);
509 				sg_dma_len(sgl) = 0;
510 				return DMA_ERROR_CODE;
511 			}
512 			sg->dma_address = xen_phys_to_bus(map);
513 		} else
514 			sg->dma_address = dev_addr;
515 		sg_dma_len(sg) = sg->length;
516 	}
517 	return nelems;
518 }
519 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
520 
521 /*
522  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
523  * concerning calls here are the same as for swiotlb_unmap_page() above.
524  */
525 void
526 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
527 			   int nelems, enum dma_data_direction dir,
528 			   struct dma_attrs *attrs)
529 {
530 	struct scatterlist *sg;
531 	int i;
532 
533 	BUG_ON(dir == DMA_NONE);
534 
535 	for_each_sg(sgl, sg, nelems, i)
536 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
537 
538 }
539 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
540 
541 /*
542  * Make physical memory consistent for a set of streaming mode DMA translations
543  * after a transfer.
544  *
545  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
546  * and usage.
547  */
548 static void
549 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
550 		    int nelems, enum dma_data_direction dir,
551 		    enum dma_sync_target target)
552 {
553 	struct scatterlist *sg;
554 	int i;
555 
556 	for_each_sg(sgl, sg, nelems, i)
557 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
558 					sg_dma_len(sg), dir, target);
559 }
560 
561 void
562 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
563 			    int nelems, enum dma_data_direction dir)
564 {
565 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
566 }
567 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
568 
569 void
570 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
571 			       int nelems, enum dma_data_direction dir)
572 {
573 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
574 }
575 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
576 
577 int
578 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
579 {
580 	return !dma_addr;
581 }
582 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
583 
584 /*
585  * Return whether the given device DMA address mask can be supported
586  * properly.  For example, if your device can only drive the low 24-bits
587  * during bus mastering, then you would pass 0x00ffffff as the mask to
588  * this function.
589  */
590 int
591 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
592 {
593 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
594 }
595 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
596