1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/bootmem.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 /* 46 * Used to do a quick range check in swiotlb_tbl_unmap_single and 47 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 48 * API. 49 */ 50 51 static char *xen_io_tlb_start, *xen_io_tlb_end; 52 static unsigned long xen_io_tlb_nslabs; 53 /* 54 * Quick lookup value of the bus address of the IOTLB. 55 */ 56 57 static u64 start_dma_addr; 58 59 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 60 { 61 return phys_to_machine(XPADDR(paddr)).maddr; 62 } 63 64 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 65 { 66 return machine_to_phys(XMADDR(baddr)).paddr; 67 } 68 69 static dma_addr_t xen_virt_to_bus(void *address) 70 { 71 return xen_phys_to_bus(virt_to_phys(address)); 72 } 73 74 static int check_pages_physically_contiguous(unsigned long pfn, 75 unsigned int offset, 76 size_t length) 77 { 78 unsigned long next_mfn; 79 int i; 80 int nr_pages; 81 82 next_mfn = pfn_to_mfn(pfn); 83 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 84 85 for (i = 1; i < nr_pages; i++) { 86 if (pfn_to_mfn(++pfn) != ++next_mfn) 87 return 0; 88 } 89 return 1; 90 } 91 92 static int range_straddles_page_boundary(phys_addr_t p, size_t size) 93 { 94 unsigned long pfn = PFN_DOWN(p); 95 unsigned int offset = p & ~PAGE_MASK; 96 97 if (offset + size <= PAGE_SIZE) 98 return 0; 99 if (check_pages_physically_contiguous(pfn, offset, size)) 100 return 0; 101 return 1; 102 } 103 104 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 105 { 106 unsigned long mfn = PFN_DOWN(dma_addr); 107 unsigned long pfn = mfn_to_local_pfn(mfn); 108 phys_addr_t paddr; 109 110 /* If the address is outside our domain, it CAN 111 * have the same virtual address as another address 112 * in our domain. Therefore _only_ check address within our domain. 113 */ 114 if (pfn_valid(pfn)) { 115 paddr = PFN_PHYS(pfn); 116 return paddr >= virt_to_phys(xen_io_tlb_start) && 117 paddr < virt_to_phys(xen_io_tlb_end); 118 } 119 return 0; 120 } 121 122 static int max_dma_bits = 32; 123 124 static int 125 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 126 { 127 int i, rc; 128 int dma_bits; 129 130 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 131 132 i = 0; 133 do { 134 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 135 136 do { 137 rc = xen_create_contiguous_region( 138 (unsigned long)buf + (i << IO_TLB_SHIFT), 139 get_order(slabs << IO_TLB_SHIFT), 140 dma_bits); 141 } while (rc && dma_bits++ < max_dma_bits); 142 if (rc) 143 return rc; 144 145 i += slabs; 146 } while (i < nslabs); 147 return 0; 148 } 149 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 150 { 151 if (!nr_tbl) { 152 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 153 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 154 } else 155 xen_io_tlb_nslabs = nr_tbl; 156 157 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 158 } 159 160 enum xen_swiotlb_err { 161 XEN_SWIOTLB_UNKNOWN = 0, 162 XEN_SWIOTLB_ENOMEM, 163 XEN_SWIOTLB_EFIXUP 164 }; 165 166 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 167 { 168 switch (err) { 169 case XEN_SWIOTLB_ENOMEM: 170 return "Cannot allocate Xen-SWIOTLB buffer\n"; 171 case XEN_SWIOTLB_EFIXUP: 172 return "Failed to get contiguous memory for DMA from Xen!\n"\ 173 "You either: don't have the permissions, do not have"\ 174 " enough free memory under 4GB, or the hypervisor memory"\ 175 " is too fragmented!"; 176 default: 177 break; 178 } 179 return ""; 180 } 181 int __ref xen_swiotlb_init(int verbose, bool early) 182 { 183 unsigned long bytes, order; 184 int rc = -ENOMEM; 185 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 186 unsigned int repeat = 3; 187 188 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 189 retry: 190 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 191 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 192 /* 193 * Get IO TLB memory from any location. 194 */ 195 if (early) 196 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 197 else { 198 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 199 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 200 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 201 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order); 202 if (xen_io_tlb_start) 203 break; 204 order--; 205 } 206 if (order != get_order(bytes)) { 207 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 208 (PAGE_SIZE << order) >> 20); 209 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 210 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 211 } 212 } 213 if (!xen_io_tlb_start) { 214 m_ret = XEN_SWIOTLB_ENOMEM; 215 goto error; 216 } 217 xen_io_tlb_end = xen_io_tlb_start + bytes; 218 /* 219 * And replace that memory with pages under 4GB. 220 */ 221 rc = xen_swiotlb_fixup(xen_io_tlb_start, 222 bytes, 223 xen_io_tlb_nslabs); 224 if (rc) { 225 if (early) 226 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 227 else { 228 free_pages((unsigned long)xen_io_tlb_start, order); 229 xen_io_tlb_start = NULL; 230 } 231 m_ret = XEN_SWIOTLB_EFIXUP; 232 goto error; 233 } 234 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 235 if (early) { 236 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 237 verbose)) 238 panic("Cannot allocate SWIOTLB buffer"); 239 rc = 0; 240 } else 241 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 242 return rc; 243 error: 244 if (repeat--) { 245 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 246 (xen_io_tlb_nslabs >> 1)); 247 pr_info("Lowering to %luMB\n", 248 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 249 goto retry; 250 } 251 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 252 if (early) 253 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 254 else 255 free_pages((unsigned long)xen_io_tlb_start, order); 256 return rc; 257 } 258 void * 259 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 260 dma_addr_t *dma_handle, gfp_t flags, 261 struct dma_attrs *attrs) 262 { 263 void *ret; 264 int order = get_order(size); 265 u64 dma_mask = DMA_BIT_MASK(32); 266 unsigned long vstart; 267 phys_addr_t phys; 268 dma_addr_t dev_addr; 269 270 /* 271 * Ignore region specifiers - the kernel's ideas of 272 * pseudo-phys memory layout has nothing to do with the 273 * machine physical layout. We can't allocate highmem 274 * because we can't return a pointer to it. 275 */ 276 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 277 278 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 279 return ret; 280 281 vstart = __get_free_pages(flags, order); 282 ret = (void *)vstart; 283 284 if (!ret) 285 return ret; 286 287 if (hwdev && hwdev->coherent_dma_mask) 288 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 289 290 phys = virt_to_phys(ret); 291 dev_addr = xen_phys_to_bus(phys); 292 if (((dev_addr + size - 1 <= dma_mask)) && 293 !range_straddles_page_boundary(phys, size)) 294 *dma_handle = dev_addr; 295 else { 296 if (xen_create_contiguous_region(vstart, order, 297 fls64(dma_mask)) != 0) { 298 free_pages(vstart, order); 299 return NULL; 300 } 301 *dma_handle = virt_to_machine(ret).maddr; 302 } 303 memset(ret, 0, size); 304 return ret; 305 } 306 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 307 308 void 309 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 310 dma_addr_t dev_addr, struct dma_attrs *attrs) 311 { 312 int order = get_order(size); 313 phys_addr_t phys; 314 u64 dma_mask = DMA_BIT_MASK(32); 315 316 if (dma_release_from_coherent(hwdev, order, vaddr)) 317 return; 318 319 if (hwdev && hwdev->coherent_dma_mask) 320 dma_mask = hwdev->coherent_dma_mask; 321 322 phys = virt_to_phys(vaddr); 323 324 if (((dev_addr + size - 1 > dma_mask)) || 325 range_straddles_page_boundary(phys, size)) 326 xen_destroy_contiguous_region((unsigned long)vaddr, order); 327 328 free_pages((unsigned long)vaddr, order); 329 } 330 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 331 332 333 /* 334 * Map a single buffer of the indicated size for DMA in streaming mode. The 335 * physical address to use is returned. 336 * 337 * Once the device is given the dma address, the device owns this memory until 338 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 339 */ 340 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 341 unsigned long offset, size_t size, 342 enum dma_data_direction dir, 343 struct dma_attrs *attrs) 344 { 345 phys_addr_t map, phys = page_to_phys(page) + offset; 346 dma_addr_t dev_addr = xen_phys_to_bus(phys); 347 348 BUG_ON(dir == DMA_NONE); 349 /* 350 * If the address happens to be in the device's DMA window, 351 * we can safely return the device addr and not worry about bounce 352 * buffering it. 353 */ 354 if (dma_capable(dev, dev_addr, size) && 355 !range_straddles_page_boundary(phys, size) && !swiotlb_force) 356 return dev_addr; 357 358 /* 359 * Oh well, have to allocate and map a bounce buffer. 360 */ 361 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 362 if (map == SWIOTLB_MAP_ERROR) 363 return DMA_ERROR_CODE; 364 365 dev_addr = xen_phys_to_bus(map); 366 367 /* 368 * Ensure that the address returned is DMA'ble 369 */ 370 if (!dma_capable(dev, dev_addr, size)) { 371 swiotlb_tbl_unmap_single(dev, map, size, dir); 372 dev_addr = 0; 373 } 374 return dev_addr; 375 } 376 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 377 378 /* 379 * Unmap a single streaming mode DMA translation. The dma_addr and size must 380 * match what was provided for in a previous xen_swiotlb_map_page call. All 381 * other usages are undefined. 382 * 383 * After this call, reads by the cpu to the buffer are guaranteed to see 384 * whatever the device wrote there. 385 */ 386 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 387 size_t size, enum dma_data_direction dir) 388 { 389 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 390 391 BUG_ON(dir == DMA_NONE); 392 393 /* NOTE: We use dev_addr here, not paddr! */ 394 if (is_xen_swiotlb_buffer(dev_addr)) { 395 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); 396 return; 397 } 398 399 if (dir != DMA_FROM_DEVICE) 400 return; 401 402 /* 403 * phys_to_virt doesn't work with hihgmem page but we could 404 * call dma_mark_clean() with hihgmem page here. However, we 405 * are fine since dma_mark_clean() is null on POWERPC. We can 406 * make dma_mark_clean() take a physical address if necessary. 407 */ 408 dma_mark_clean(phys_to_virt(paddr), size); 409 } 410 411 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 412 size_t size, enum dma_data_direction dir, 413 struct dma_attrs *attrs) 414 { 415 xen_unmap_single(hwdev, dev_addr, size, dir); 416 } 417 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 418 419 /* 420 * Make physical memory consistent for a single streaming mode DMA translation 421 * after a transfer. 422 * 423 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 424 * using the cpu, yet do not wish to teardown the dma mapping, you must 425 * call this function before doing so. At the next point you give the dma 426 * address back to the card, you must first perform a 427 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 428 */ 429 static void 430 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 431 size_t size, enum dma_data_direction dir, 432 enum dma_sync_target target) 433 { 434 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 435 436 BUG_ON(dir == DMA_NONE); 437 438 /* NOTE: We use dev_addr here, not paddr! */ 439 if (is_xen_swiotlb_buffer(dev_addr)) { 440 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 441 return; 442 } 443 444 if (dir != DMA_FROM_DEVICE) 445 return; 446 447 dma_mark_clean(phys_to_virt(paddr), size); 448 } 449 450 void 451 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 452 size_t size, enum dma_data_direction dir) 453 { 454 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 455 } 456 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 457 458 void 459 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 460 size_t size, enum dma_data_direction dir) 461 { 462 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 463 } 464 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 465 466 /* 467 * Map a set of buffers described by scatterlist in streaming mode for DMA. 468 * This is the scatter-gather version of the above xen_swiotlb_map_page 469 * interface. Here the scatter gather list elements are each tagged with the 470 * appropriate dma address and length. They are obtained via 471 * sg_dma_{address,length}(SG). 472 * 473 * NOTE: An implementation may be able to use a smaller number of 474 * DMA address/length pairs than there are SG table elements. 475 * (for example via virtual mapping capabilities) 476 * The routine returns the number of addr/length pairs actually 477 * used, at most nents. 478 * 479 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 480 * same here. 481 */ 482 int 483 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 484 int nelems, enum dma_data_direction dir, 485 struct dma_attrs *attrs) 486 { 487 struct scatterlist *sg; 488 int i; 489 490 BUG_ON(dir == DMA_NONE); 491 492 for_each_sg(sgl, sg, nelems, i) { 493 phys_addr_t paddr = sg_phys(sg); 494 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 495 496 if (swiotlb_force || 497 !dma_capable(hwdev, dev_addr, sg->length) || 498 range_straddles_page_boundary(paddr, sg->length)) { 499 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 500 start_dma_addr, 501 sg_phys(sg), 502 sg->length, 503 dir); 504 if (map == SWIOTLB_MAP_ERROR) { 505 /* Don't panic here, we expect map_sg users 506 to do proper error handling. */ 507 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 508 attrs); 509 sg_dma_len(sgl) = 0; 510 return DMA_ERROR_CODE; 511 } 512 sg->dma_address = xen_phys_to_bus(map); 513 } else 514 sg->dma_address = dev_addr; 515 sg_dma_len(sg) = sg->length; 516 } 517 return nelems; 518 } 519 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 520 521 /* 522 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 523 * concerning calls here are the same as for swiotlb_unmap_page() above. 524 */ 525 void 526 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 527 int nelems, enum dma_data_direction dir, 528 struct dma_attrs *attrs) 529 { 530 struct scatterlist *sg; 531 int i; 532 533 BUG_ON(dir == DMA_NONE); 534 535 for_each_sg(sgl, sg, nelems, i) 536 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir); 537 538 } 539 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 540 541 /* 542 * Make physical memory consistent for a set of streaming mode DMA translations 543 * after a transfer. 544 * 545 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 546 * and usage. 547 */ 548 static void 549 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 550 int nelems, enum dma_data_direction dir, 551 enum dma_sync_target target) 552 { 553 struct scatterlist *sg; 554 int i; 555 556 for_each_sg(sgl, sg, nelems, i) 557 xen_swiotlb_sync_single(hwdev, sg->dma_address, 558 sg_dma_len(sg), dir, target); 559 } 560 561 void 562 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 563 int nelems, enum dma_data_direction dir) 564 { 565 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 566 } 567 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 568 569 void 570 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 571 int nelems, enum dma_data_direction dir) 572 { 573 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 574 } 575 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 576 577 int 578 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 579 { 580 return !dma_addr; 581 } 582 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 583 584 /* 585 * Return whether the given device DMA address mask can be supported 586 * properly. For example, if your device can only drive the low 24-bits 587 * during bus mastering, then you would pass 0x00ffffff as the mask to 588 * this function. 589 */ 590 int 591 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 592 { 593 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 594 } 595 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 596