xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision f6723b56)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 					    gfp_t gfp)
59 {
60 	unsigned long dma_mask = 0;
61 
62 	dma_mask = dev->coherent_dma_mask;
63 	if (!dma_mask)
64 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65 
66 	return dma_mask;
67 }
68 #endif
69 
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73  * Quick lookup value of the bus address of the IOTLB.
74  */
75 
76 static u64 start_dma_addr;
77 
78 /*
79  * Both of these functions should avoid PFN_PHYS because phys_addr_t
80  * can be 32bit when dma_addr_t is 64bit leading to a loss in
81  * information if the shift is done before casting to 64bit.
82  */
83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84 {
85 	unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr));
86 	dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT;
87 
88 	dma |= paddr & ~PAGE_MASK;
89 
90 	return dma;
91 }
92 
93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94 {
95 	unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr));
96 	dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
97 	phys_addr_t paddr = dma;
98 
99 	BUG_ON(paddr != dma); /* truncation has occurred, should never happen */
100 
101 	paddr |= baddr & ~PAGE_MASK;
102 
103 	return paddr;
104 }
105 
106 static inline dma_addr_t xen_virt_to_bus(void *address)
107 {
108 	return xen_phys_to_bus(virt_to_phys(address));
109 }
110 
111 static int check_pages_physically_contiguous(unsigned long pfn,
112 					     unsigned int offset,
113 					     size_t length)
114 {
115 	unsigned long next_mfn;
116 	int i;
117 	int nr_pages;
118 
119 	next_mfn = pfn_to_mfn(pfn);
120 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
121 
122 	for (i = 1; i < nr_pages; i++) {
123 		if (pfn_to_mfn(++pfn) != ++next_mfn)
124 			return 0;
125 	}
126 	return 1;
127 }
128 
129 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
130 {
131 	unsigned long pfn = PFN_DOWN(p);
132 	unsigned int offset = p & ~PAGE_MASK;
133 
134 	if (offset + size <= PAGE_SIZE)
135 		return 0;
136 	if (check_pages_physically_contiguous(pfn, offset, size))
137 		return 0;
138 	return 1;
139 }
140 
141 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
142 {
143 	unsigned long mfn = PFN_DOWN(dma_addr);
144 	unsigned long pfn = mfn_to_local_pfn(mfn);
145 	phys_addr_t paddr;
146 
147 	/* If the address is outside our domain, it CAN
148 	 * have the same virtual address as another address
149 	 * in our domain. Therefore _only_ check address within our domain.
150 	 */
151 	if (pfn_valid(pfn)) {
152 		paddr = PFN_PHYS(pfn);
153 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
154 		       paddr < virt_to_phys(xen_io_tlb_end);
155 	}
156 	return 0;
157 }
158 
159 static int max_dma_bits = 32;
160 
161 static int
162 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
163 {
164 	int i, rc;
165 	int dma_bits;
166 	dma_addr_t dma_handle;
167 	phys_addr_t p = virt_to_phys(buf);
168 
169 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
170 
171 	i = 0;
172 	do {
173 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
174 
175 		do {
176 			rc = xen_create_contiguous_region(
177 				p + (i << IO_TLB_SHIFT),
178 				get_order(slabs << IO_TLB_SHIFT),
179 				dma_bits, &dma_handle);
180 		} while (rc && dma_bits++ < max_dma_bits);
181 		if (rc)
182 			return rc;
183 
184 		i += slabs;
185 	} while (i < nslabs);
186 	return 0;
187 }
188 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
189 {
190 	if (!nr_tbl) {
191 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
192 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
193 	} else
194 		xen_io_tlb_nslabs = nr_tbl;
195 
196 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
197 }
198 
199 enum xen_swiotlb_err {
200 	XEN_SWIOTLB_UNKNOWN = 0,
201 	XEN_SWIOTLB_ENOMEM,
202 	XEN_SWIOTLB_EFIXUP
203 };
204 
205 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
206 {
207 	switch (err) {
208 	case XEN_SWIOTLB_ENOMEM:
209 		return "Cannot allocate Xen-SWIOTLB buffer\n";
210 	case XEN_SWIOTLB_EFIXUP:
211 		return "Failed to get contiguous memory for DMA from Xen!\n"\
212 		    "You either: don't have the permissions, do not have"\
213 		    " enough free memory under 4GB, or the hypervisor memory"\
214 		    " is too fragmented!";
215 	default:
216 		break;
217 	}
218 	return "";
219 }
220 int __ref xen_swiotlb_init(int verbose, bool early)
221 {
222 	unsigned long bytes, order;
223 	int rc = -ENOMEM;
224 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
225 	unsigned int repeat = 3;
226 
227 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
228 retry:
229 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
230 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
231 	/*
232 	 * Get IO TLB memory from any location.
233 	 */
234 	if (early)
235 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
236 	else {
237 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
238 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
239 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
240 			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
241 			if (xen_io_tlb_start)
242 				break;
243 			order--;
244 		}
245 		if (order != get_order(bytes)) {
246 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
247 				(PAGE_SIZE << order) >> 20);
248 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
249 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
250 		}
251 	}
252 	if (!xen_io_tlb_start) {
253 		m_ret = XEN_SWIOTLB_ENOMEM;
254 		goto error;
255 	}
256 	xen_io_tlb_end = xen_io_tlb_start + bytes;
257 	/*
258 	 * And replace that memory with pages under 4GB.
259 	 */
260 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
261 			       bytes,
262 			       xen_io_tlb_nslabs);
263 	if (rc) {
264 		if (early)
265 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
266 		else {
267 			free_pages((unsigned long)xen_io_tlb_start, order);
268 			xen_io_tlb_start = NULL;
269 		}
270 		m_ret = XEN_SWIOTLB_EFIXUP;
271 		goto error;
272 	}
273 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
274 	if (early) {
275 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
276 			 verbose))
277 			panic("Cannot allocate SWIOTLB buffer");
278 		rc = 0;
279 	} else
280 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
281 	return rc;
282 error:
283 	if (repeat--) {
284 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
285 					(xen_io_tlb_nslabs >> 1));
286 		pr_info("Lowering to %luMB\n",
287 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
288 		goto retry;
289 	}
290 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
291 	if (early)
292 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
293 	else
294 		free_pages((unsigned long)xen_io_tlb_start, order);
295 	return rc;
296 }
297 void *
298 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
299 			   dma_addr_t *dma_handle, gfp_t flags,
300 			   struct dma_attrs *attrs)
301 {
302 	void *ret;
303 	int order = get_order(size);
304 	u64 dma_mask = DMA_BIT_MASK(32);
305 	phys_addr_t phys;
306 	dma_addr_t dev_addr;
307 
308 	/*
309 	* Ignore region specifiers - the kernel's ideas of
310 	* pseudo-phys memory layout has nothing to do with the
311 	* machine physical layout.  We can't allocate highmem
312 	* because we can't return a pointer to it.
313 	*/
314 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
315 
316 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
317 		return ret;
318 
319 	/* On ARM this function returns an ioremap'ped virtual address for
320 	 * which virt_to_phys doesn't return the corresponding physical
321 	 * address. In fact on ARM virt_to_phys only works for kernel direct
322 	 * mapped RAM memory. Also see comment below.
323 	 */
324 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
325 
326 	if (!ret)
327 		return ret;
328 
329 	if (hwdev && hwdev->coherent_dma_mask)
330 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
331 
332 	/* At this point dma_handle is the physical address, next we are
333 	 * going to set it to the machine address.
334 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
335 	 * to *dma_handle. */
336 	phys = *dma_handle;
337 	dev_addr = xen_phys_to_bus(phys);
338 	if (((dev_addr + size - 1 <= dma_mask)) &&
339 	    !range_straddles_page_boundary(phys, size))
340 		*dma_handle = dev_addr;
341 	else {
342 		if (xen_create_contiguous_region(phys, order,
343 						 fls64(dma_mask), dma_handle) != 0) {
344 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
345 			return NULL;
346 		}
347 	}
348 	memset(ret, 0, size);
349 	return ret;
350 }
351 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
352 
353 void
354 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
355 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
356 {
357 	int order = get_order(size);
358 	phys_addr_t phys;
359 	u64 dma_mask = DMA_BIT_MASK(32);
360 
361 	if (dma_release_from_coherent(hwdev, order, vaddr))
362 		return;
363 
364 	if (hwdev && hwdev->coherent_dma_mask)
365 		dma_mask = hwdev->coherent_dma_mask;
366 
367 	/* do not use virt_to_phys because on ARM it doesn't return you the
368 	 * physical address */
369 	phys = xen_bus_to_phys(dev_addr);
370 
371 	if (((dev_addr + size - 1 > dma_mask)) ||
372 	    range_straddles_page_boundary(phys, size))
373 		xen_destroy_contiguous_region(phys, order);
374 
375 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
376 }
377 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
378 
379 
380 /*
381  * Map a single buffer of the indicated size for DMA in streaming mode.  The
382  * physical address to use is returned.
383  *
384  * Once the device is given the dma address, the device owns this memory until
385  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
386  */
387 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
388 				unsigned long offset, size_t size,
389 				enum dma_data_direction dir,
390 				struct dma_attrs *attrs)
391 {
392 	phys_addr_t map, phys = page_to_phys(page) + offset;
393 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
394 
395 	BUG_ON(dir == DMA_NONE);
396 	/*
397 	 * If the address happens to be in the device's DMA window,
398 	 * we can safely return the device addr and not worry about bounce
399 	 * buffering it.
400 	 */
401 	if (dma_capable(dev, dev_addr, size) &&
402 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
403 		/* we are not interested in the dma_addr returned by
404 		 * xen_dma_map_page, only in the potential cache flushes executed
405 		 * by the function. */
406 		xen_dma_map_page(dev, page, offset, size, dir, attrs);
407 		return dev_addr;
408 	}
409 
410 	/*
411 	 * Oh well, have to allocate and map a bounce buffer.
412 	 */
413 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
414 
415 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
416 	if (map == SWIOTLB_MAP_ERROR)
417 		return DMA_ERROR_CODE;
418 
419 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
420 					map & ~PAGE_MASK, size, dir, attrs);
421 	dev_addr = xen_phys_to_bus(map);
422 
423 	/*
424 	 * Ensure that the address returned is DMA'ble
425 	 */
426 	if (!dma_capable(dev, dev_addr, size)) {
427 		swiotlb_tbl_unmap_single(dev, map, size, dir);
428 		dev_addr = 0;
429 	}
430 	return dev_addr;
431 }
432 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
433 
434 /*
435  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
436  * match what was provided for in a previous xen_swiotlb_map_page call.  All
437  * other usages are undefined.
438  *
439  * After this call, reads by the cpu to the buffer are guaranteed to see
440  * whatever the device wrote there.
441  */
442 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
443 			     size_t size, enum dma_data_direction dir,
444 				 struct dma_attrs *attrs)
445 {
446 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
447 
448 	BUG_ON(dir == DMA_NONE);
449 
450 	xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
451 
452 	/* NOTE: We use dev_addr here, not paddr! */
453 	if (is_xen_swiotlb_buffer(dev_addr)) {
454 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
455 		return;
456 	}
457 
458 	if (dir != DMA_FROM_DEVICE)
459 		return;
460 
461 	/*
462 	 * phys_to_virt doesn't work with hihgmem page but we could
463 	 * call dma_mark_clean() with hihgmem page here. However, we
464 	 * are fine since dma_mark_clean() is null on POWERPC. We can
465 	 * make dma_mark_clean() take a physical address if necessary.
466 	 */
467 	dma_mark_clean(phys_to_virt(paddr), size);
468 }
469 
470 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
471 			    size_t size, enum dma_data_direction dir,
472 			    struct dma_attrs *attrs)
473 {
474 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
475 }
476 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
477 
478 /*
479  * Make physical memory consistent for a single streaming mode DMA translation
480  * after a transfer.
481  *
482  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
483  * using the cpu, yet do not wish to teardown the dma mapping, you must
484  * call this function before doing so.  At the next point you give the dma
485  * address back to the card, you must first perform a
486  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
487  */
488 static void
489 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
490 			size_t size, enum dma_data_direction dir,
491 			enum dma_sync_target target)
492 {
493 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
494 
495 	BUG_ON(dir == DMA_NONE);
496 
497 	if (target == SYNC_FOR_CPU)
498 		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
499 
500 	/* NOTE: We use dev_addr here, not paddr! */
501 	if (is_xen_swiotlb_buffer(dev_addr))
502 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
503 
504 	if (target == SYNC_FOR_DEVICE)
505 		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
506 
507 	if (dir != DMA_FROM_DEVICE)
508 		return;
509 
510 	dma_mark_clean(phys_to_virt(paddr), size);
511 }
512 
513 void
514 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
515 				size_t size, enum dma_data_direction dir)
516 {
517 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
518 }
519 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
520 
521 void
522 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
523 				   size_t size, enum dma_data_direction dir)
524 {
525 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
526 }
527 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
528 
529 /*
530  * Map a set of buffers described by scatterlist in streaming mode for DMA.
531  * This is the scatter-gather version of the above xen_swiotlb_map_page
532  * interface.  Here the scatter gather list elements are each tagged with the
533  * appropriate dma address and length.  They are obtained via
534  * sg_dma_{address,length}(SG).
535  *
536  * NOTE: An implementation may be able to use a smaller number of
537  *       DMA address/length pairs than there are SG table elements.
538  *       (for example via virtual mapping capabilities)
539  *       The routine returns the number of addr/length pairs actually
540  *       used, at most nents.
541  *
542  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
543  * same here.
544  */
545 int
546 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
547 			 int nelems, enum dma_data_direction dir,
548 			 struct dma_attrs *attrs)
549 {
550 	struct scatterlist *sg;
551 	int i;
552 
553 	BUG_ON(dir == DMA_NONE);
554 
555 	for_each_sg(sgl, sg, nelems, i) {
556 		phys_addr_t paddr = sg_phys(sg);
557 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
558 
559 		if (swiotlb_force ||
560 		    !dma_capable(hwdev, dev_addr, sg->length) ||
561 		    range_straddles_page_boundary(paddr, sg->length)) {
562 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
563 								 start_dma_addr,
564 								 sg_phys(sg),
565 								 sg->length,
566 								 dir);
567 			if (map == SWIOTLB_MAP_ERROR) {
568 				dev_warn(hwdev, "swiotlb buffer is full\n");
569 				/* Don't panic here, we expect map_sg users
570 				   to do proper error handling. */
571 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
572 							   attrs);
573 				sg_dma_len(sgl) = 0;
574 				return 0;
575 			}
576 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
577 						map & ~PAGE_MASK,
578 						sg->length,
579 						dir,
580 						attrs);
581 			sg->dma_address = xen_phys_to_bus(map);
582 		} else {
583 			/* we are not interested in the dma_addr returned by
584 			 * xen_dma_map_page, only in the potential cache flushes executed
585 			 * by the function. */
586 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
587 						paddr & ~PAGE_MASK,
588 						sg->length,
589 						dir,
590 						attrs);
591 			sg->dma_address = dev_addr;
592 		}
593 		sg_dma_len(sg) = sg->length;
594 	}
595 	return nelems;
596 }
597 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
598 
599 /*
600  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
601  * concerning calls here are the same as for swiotlb_unmap_page() above.
602  */
603 void
604 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
605 			   int nelems, enum dma_data_direction dir,
606 			   struct dma_attrs *attrs)
607 {
608 	struct scatterlist *sg;
609 	int i;
610 
611 	BUG_ON(dir == DMA_NONE);
612 
613 	for_each_sg(sgl, sg, nelems, i)
614 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
615 
616 }
617 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
618 
619 /*
620  * Make physical memory consistent for a set of streaming mode DMA translations
621  * after a transfer.
622  *
623  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
624  * and usage.
625  */
626 static void
627 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
628 		    int nelems, enum dma_data_direction dir,
629 		    enum dma_sync_target target)
630 {
631 	struct scatterlist *sg;
632 	int i;
633 
634 	for_each_sg(sgl, sg, nelems, i)
635 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
636 					sg_dma_len(sg), dir, target);
637 }
638 
639 void
640 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
641 			    int nelems, enum dma_data_direction dir)
642 {
643 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
644 }
645 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
646 
647 void
648 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
649 			       int nelems, enum dma_data_direction dir)
650 {
651 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
652 }
653 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
654 
655 int
656 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
657 {
658 	return !dma_addr;
659 }
660 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
661 
662 /*
663  * Return whether the given device DMA address mask can be supported
664  * properly.  For example, if your device can only drive the low 24-bits
665  * during bus mastering, then you would pass 0x00ffffff as the mask to
666  * this function.
667  */
668 int
669 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
670 {
671 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
672 }
673 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
674 
675 int
676 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
677 {
678 	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
679 		return -EIO;
680 
681 	*dev->dma_mask = dma_mask;
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
686