1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2010 4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 5 * 6 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 7 * 8 * PV guests under Xen are running in an non-contiguous memory architecture. 9 * 10 * When PCI pass-through is utilized, this necessitates an IOMMU for 11 * translating bus (DMA) to virtual and vice-versa and also providing a 12 * mechanism to have contiguous pages for device drivers operations (say DMA 13 * operations). 14 * 15 * Specifically, under Xen the Linux idea of pages is an illusion. It 16 * assumes that pages start at zero and go up to the available memory. To 17 * help with that, the Linux Xen MMU provides a lookup mechanism to 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 20 * memory is not contiguous. Xen hypervisor stitches memory for guests 21 * from different pools, which means there is no guarantee that PFN==MFN 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 23 * allocated in descending order (high to low), meaning the guest might 24 * never get any MFN's under the 4GB mark. 25 */ 26 27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 28 29 #include <linux/memblock.h> 30 #include <linux/dma-direct.h> 31 #include <linux/dma-map-ops.h> 32 #include <linux/export.h> 33 #include <xen/swiotlb-xen.h> 34 #include <xen/page.h> 35 #include <xen/xen-ops.h> 36 #include <xen/hvc-console.h> 37 38 #include <asm/dma-mapping.h> 39 #include <asm/xen/page-coherent.h> 40 41 #include <trace/events/swiotlb.h> 42 #define MAX_DMA_BITS 32 43 44 /* 45 * Quick lookup value of the bus address of the IOTLB. 46 */ 47 48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr) 49 { 50 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 51 phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT; 52 53 baddr |= paddr & ~XEN_PAGE_MASK; 54 return baddr; 55 } 56 57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr) 58 { 59 return phys_to_dma(dev, xen_phys_to_bus(dev, paddr)); 60 } 61 62 static inline phys_addr_t xen_bus_to_phys(struct device *dev, 63 phys_addr_t baddr) 64 { 65 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 66 phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) | 67 (baddr & ~XEN_PAGE_MASK); 68 69 return paddr; 70 } 71 72 static inline phys_addr_t xen_dma_to_phys(struct device *dev, 73 dma_addr_t dma_addr) 74 { 75 return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr)); 76 } 77 78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 79 { 80 unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p); 81 unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size); 82 83 next_bfn = pfn_to_bfn(xen_pfn); 84 85 for (i = 1; i < nr_pages; i++) 86 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 87 return 1; 88 89 return 0; 90 } 91 92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr) 93 { 94 unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr)); 95 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 96 phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT; 97 98 /* If the address is outside our domain, it CAN 99 * have the same virtual address as another address 100 * in our domain. Therefore _only_ check address within our domain. 101 */ 102 if (pfn_valid(PFN_DOWN(paddr))) 103 return is_swiotlb_buffer(dev, paddr); 104 return 0; 105 } 106 107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs) 108 { 109 int i, rc; 110 int dma_bits; 111 dma_addr_t dma_handle; 112 phys_addr_t p = virt_to_phys(buf); 113 114 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 115 116 i = 0; 117 do { 118 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 119 120 do { 121 rc = xen_create_contiguous_region( 122 p + (i << IO_TLB_SHIFT), 123 get_order(slabs << IO_TLB_SHIFT), 124 dma_bits, &dma_handle); 125 } while (rc && dma_bits++ < MAX_DMA_BITS); 126 if (rc) 127 return rc; 128 129 i += slabs; 130 } while (i < nslabs); 131 return 0; 132 } 133 134 enum xen_swiotlb_err { 135 XEN_SWIOTLB_UNKNOWN = 0, 136 XEN_SWIOTLB_ENOMEM, 137 XEN_SWIOTLB_EFIXUP 138 }; 139 140 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 141 { 142 switch (err) { 143 case XEN_SWIOTLB_ENOMEM: 144 return "Cannot allocate Xen-SWIOTLB buffer\n"; 145 case XEN_SWIOTLB_EFIXUP: 146 return "Failed to get contiguous memory for DMA from Xen!\n"\ 147 "You either: don't have the permissions, do not have"\ 148 " enough free memory under 4GB, or the hypervisor memory"\ 149 " is too fragmented!"; 150 default: 151 break; 152 } 153 return ""; 154 } 155 156 #define DEFAULT_NSLABS ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE) 157 158 int __ref xen_swiotlb_init(void) 159 { 160 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 161 unsigned long bytes = swiotlb_size_or_default(); 162 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 163 unsigned int order, repeat = 3; 164 int rc = -ENOMEM; 165 char *start; 166 167 if (io_tlb_default_mem.nslabs) { 168 pr_warn("swiotlb buffer already initialized\n"); 169 return -EEXIST; 170 } 171 172 retry: 173 m_ret = XEN_SWIOTLB_ENOMEM; 174 order = get_order(bytes); 175 176 /* 177 * Get IO TLB memory from any location. 178 */ 179 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 180 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 181 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 182 start = (void *)xen_get_swiotlb_free_pages(order); 183 if (start) 184 break; 185 order--; 186 } 187 if (!start) 188 goto error; 189 if (order != get_order(bytes)) { 190 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 191 (PAGE_SIZE << order) >> 20); 192 nslabs = SLABS_PER_PAGE << order; 193 bytes = nslabs << IO_TLB_SHIFT; 194 } 195 196 /* 197 * And replace that memory with pages under 4GB. 198 */ 199 rc = xen_swiotlb_fixup(start, nslabs); 200 if (rc) { 201 free_pages((unsigned long)start, order); 202 m_ret = XEN_SWIOTLB_EFIXUP; 203 goto error; 204 } 205 rc = swiotlb_late_init_with_tbl(start, nslabs); 206 if (rc) 207 return rc; 208 swiotlb_set_max_segment(PAGE_SIZE); 209 return 0; 210 error: 211 if (repeat--) { 212 /* Min is 2MB */ 213 nslabs = max(1024UL, (nslabs >> 1)); 214 pr_info("Lowering to %luMB\n", 215 (nslabs << IO_TLB_SHIFT) >> 20); 216 goto retry; 217 } 218 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 219 free_pages((unsigned long)start, order); 220 return rc; 221 } 222 223 #ifdef CONFIG_X86 224 void __init xen_swiotlb_init_early(void) 225 { 226 unsigned long bytes = swiotlb_size_or_default(); 227 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 228 unsigned int repeat = 3; 229 char *start; 230 int rc; 231 232 retry: 233 /* 234 * Get IO TLB memory from any location. 235 */ 236 start = memblock_alloc(PAGE_ALIGN(bytes), PAGE_SIZE); 237 if (!start) 238 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 239 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 240 241 /* 242 * And replace that memory with pages under 4GB. 243 */ 244 rc = xen_swiotlb_fixup(start, nslabs); 245 if (rc) { 246 memblock_free(__pa(start), PAGE_ALIGN(bytes)); 247 if (repeat--) { 248 /* Min is 2MB */ 249 nslabs = max(1024UL, (nslabs >> 1)); 250 bytes = nslabs << IO_TLB_SHIFT; 251 pr_info("Lowering to %luMB\n", bytes >> 20); 252 goto retry; 253 } 254 panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc); 255 } 256 257 if (swiotlb_init_with_tbl(start, nslabs, false)) 258 panic("Cannot allocate SWIOTLB buffer"); 259 swiotlb_set_max_segment(PAGE_SIZE); 260 } 261 #endif /* CONFIG_X86 */ 262 263 static void * 264 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 265 dma_addr_t *dma_handle, gfp_t flags, 266 unsigned long attrs) 267 { 268 void *ret; 269 int order = get_order(size); 270 u64 dma_mask = DMA_BIT_MASK(32); 271 phys_addr_t phys; 272 dma_addr_t dev_addr; 273 274 /* 275 * Ignore region specifiers - the kernel's ideas of 276 * pseudo-phys memory layout has nothing to do with the 277 * machine physical layout. We can't allocate highmem 278 * because we can't return a pointer to it. 279 */ 280 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 281 282 /* Convert the size to actually allocated. */ 283 size = 1UL << (order + XEN_PAGE_SHIFT); 284 285 /* On ARM this function returns an ioremap'ped virtual address for 286 * which virt_to_phys doesn't return the corresponding physical 287 * address. In fact on ARM virt_to_phys only works for kernel direct 288 * mapped RAM memory. Also see comment below. 289 */ 290 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 291 292 if (!ret) 293 return ret; 294 295 if (hwdev && hwdev->coherent_dma_mask) 296 dma_mask = hwdev->coherent_dma_mask; 297 298 /* At this point dma_handle is the dma address, next we are 299 * going to set it to the machine address. 300 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 301 * to *dma_handle. */ 302 phys = dma_to_phys(hwdev, *dma_handle); 303 dev_addr = xen_phys_to_dma(hwdev, phys); 304 if (((dev_addr + size - 1 <= dma_mask)) && 305 !range_straddles_page_boundary(phys, size)) 306 *dma_handle = dev_addr; 307 else { 308 if (xen_create_contiguous_region(phys, order, 309 fls64(dma_mask), dma_handle) != 0) { 310 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 311 return NULL; 312 } 313 *dma_handle = phys_to_dma(hwdev, *dma_handle); 314 SetPageXenRemapped(virt_to_page(ret)); 315 } 316 memset(ret, 0, size); 317 return ret; 318 } 319 320 static void 321 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 322 dma_addr_t dev_addr, unsigned long attrs) 323 { 324 int order = get_order(size); 325 phys_addr_t phys; 326 u64 dma_mask = DMA_BIT_MASK(32); 327 struct page *page; 328 329 if (hwdev && hwdev->coherent_dma_mask) 330 dma_mask = hwdev->coherent_dma_mask; 331 332 /* do not use virt_to_phys because on ARM it doesn't return you the 333 * physical address */ 334 phys = xen_dma_to_phys(hwdev, dev_addr); 335 336 /* Convert the size to actually allocated. */ 337 size = 1UL << (order + XEN_PAGE_SHIFT); 338 339 if (is_vmalloc_addr(vaddr)) 340 page = vmalloc_to_page(vaddr); 341 else 342 page = virt_to_page(vaddr); 343 344 if (!WARN_ON((dev_addr + size - 1 > dma_mask) || 345 range_straddles_page_boundary(phys, size)) && 346 TestClearPageXenRemapped(page)) 347 xen_destroy_contiguous_region(phys, order); 348 349 xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys), 350 attrs); 351 } 352 353 /* 354 * Map a single buffer of the indicated size for DMA in streaming mode. The 355 * physical address to use is returned. 356 * 357 * Once the device is given the dma address, the device owns this memory until 358 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 359 */ 360 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 361 unsigned long offset, size_t size, 362 enum dma_data_direction dir, 363 unsigned long attrs) 364 { 365 phys_addr_t map, phys = page_to_phys(page) + offset; 366 dma_addr_t dev_addr = xen_phys_to_dma(dev, phys); 367 368 BUG_ON(dir == DMA_NONE); 369 /* 370 * If the address happens to be in the device's DMA window, 371 * we can safely return the device addr and not worry about bounce 372 * buffering it. 373 */ 374 if (dma_capable(dev, dev_addr, size, true) && 375 !range_straddles_page_boundary(phys, size) && 376 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 377 !is_swiotlb_force_bounce(dev)) 378 goto done; 379 380 /* 381 * Oh well, have to allocate and map a bounce buffer. 382 */ 383 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 384 385 map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs); 386 if (map == (phys_addr_t)DMA_MAPPING_ERROR) 387 return DMA_MAPPING_ERROR; 388 389 phys = map; 390 dev_addr = xen_phys_to_dma(dev, map); 391 392 /* 393 * Ensure that the address returned is DMA'ble 394 */ 395 if (unlikely(!dma_capable(dev, dev_addr, size, true))) { 396 swiotlb_tbl_unmap_single(dev, map, size, dir, 397 attrs | DMA_ATTR_SKIP_CPU_SYNC); 398 return DMA_MAPPING_ERROR; 399 } 400 401 done: 402 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 403 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr)))) 404 arch_sync_dma_for_device(phys, size, dir); 405 else 406 xen_dma_sync_for_device(dev, dev_addr, size, dir); 407 } 408 return dev_addr; 409 } 410 411 /* 412 * Unmap a single streaming mode DMA translation. The dma_addr and size must 413 * match what was provided for in a previous xen_swiotlb_map_page call. All 414 * other usages are undefined. 415 * 416 * After this call, reads by the cpu to the buffer are guaranteed to see 417 * whatever the device wrote there. 418 */ 419 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 420 size_t size, enum dma_data_direction dir, unsigned long attrs) 421 { 422 phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr); 423 424 BUG_ON(dir == DMA_NONE); 425 426 if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 427 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr)))) 428 arch_sync_dma_for_cpu(paddr, size, dir); 429 else 430 xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir); 431 } 432 433 /* NOTE: We use dev_addr here, not paddr! */ 434 if (is_xen_swiotlb_buffer(hwdev, dev_addr)) 435 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 436 } 437 438 static void 439 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 440 size_t size, enum dma_data_direction dir) 441 { 442 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 443 444 if (!dev_is_dma_coherent(dev)) { 445 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 446 arch_sync_dma_for_cpu(paddr, size, dir); 447 else 448 xen_dma_sync_for_cpu(dev, dma_addr, size, dir); 449 } 450 451 if (is_xen_swiotlb_buffer(dev, dma_addr)) 452 swiotlb_sync_single_for_cpu(dev, paddr, size, dir); 453 } 454 455 static void 456 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 457 size_t size, enum dma_data_direction dir) 458 { 459 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 460 461 if (is_xen_swiotlb_buffer(dev, dma_addr)) 462 swiotlb_sync_single_for_device(dev, paddr, size, dir); 463 464 if (!dev_is_dma_coherent(dev)) { 465 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 466 arch_sync_dma_for_device(paddr, size, dir); 467 else 468 xen_dma_sync_for_device(dev, dma_addr, size, dir); 469 } 470 } 471 472 /* 473 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 474 * concerning calls here are the same as for swiotlb_unmap_page() above. 475 */ 476 static void 477 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 478 enum dma_data_direction dir, unsigned long attrs) 479 { 480 struct scatterlist *sg; 481 int i; 482 483 BUG_ON(dir == DMA_NONE); 484 485 for_each_sg(sgl, sg, nelems, i) 486 xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), 487 dir, attrs); 488 489 } 490 491 static int 492 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 493 enum dma_data_direction dir, unsigned long attrs) 494 { 495 struct scatterlist *sg; 496 int i; 497 498 BUG_ON(dir == DMA_NONE); 499 500 for_each_sg(sgl, sg, nelems, i) { 501 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 502 sg->offset, sg->length, dir, attrs); 503 if (sg->dma_address == DMA_MAPPING_ERROR) 504 goto out_unmap; 505 sg_dma_len(sg) = sg->length; 506 } 507 508 return nelems; 509 out_unmap: 510 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 511 sg_dma_len(sgl) = 0; 512 return -EIO; 513 } 514 515 static void 516 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 517 int nelems, enum dma_data_direction dir) 518 { 519 struct scatterlist *sg; 520 int i; 521 522 for_each_sg(sgl, sg, nelems, i) { 523 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 524 sg->length, dir); 525 } 526 } 527 528 static void 529 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 530 int nelems, enum dma_data_direction dir) 531 { 532 struct scatterlist *sg; 533 int i; 534 535 for_each_sg(sgl, sg, nelems, i) { 536 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 537 sg->length, dir); 538 } 539 } 540 541 /* 542 * Return whether the given device DMA address mask can be supported 543 * properly. For example, if your device can only drive the low 24-bits 544 * during bus mastering, then you would pass 0x00ffffff as the mask to 545 * this function. 546 */ 547 static int 548 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 549 { 550 return xen_phys_to_dma(hwdev, io_tlb_default_mem.end - 1) <= mask; 551 } 552 553 const struct dma_map_ops xen_swiotlb_dma_ops = { 554 .alloc = xen_swiotlb_alloc_coherent, 555 .free = xen_swiotlb_free_coherent, 556 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 557 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 558 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 559 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 560 .map_sg = xen_swiotlb_map_sg, 561 .unmap_sg = xen_swiotlb_unmap_sg, 562 .map_page = xen_swiotlb_map_page, 563 .unmap_page = xen_swiotlb_unmap_page, 564 .dma_supported = xen_swiotlb_dma_supported, 565 .mmap = dma_common_mmap, 566 .get_sgtable = dma_common_get_sgtable, 567 .alloc_pages = dma_common_alloc_pages, 568 .free_pages = dma_common_free_pages, 569 }; 570