1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/bootmem.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 #ifndef CONFIG_X86 57 static unsigned long dma_alloc_coherent_mask(struct device *dev, 58 gfp_t gfp) 59 { 60 unsigned long dma_mask = 0; 61 62 dma_mask = dev->coherent_dma_mask; 63 if (!dma_mask) 64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32); 65 66 return dma_mask; 67 } 68 #endif 69 70 static char *xen_io_tlb_start, *xen_io_tlb_end; 71 static unsigned long xen_io_tlb_nslabs; 72 /* 73 * Quick lookup value of the bus address of the IOTLB. 74 */ 75 76 static u64 start_dma_addr; 77 78 /* 79 * Both of these functions should avoid PFN_PHYS because phys_addr_t 80 * can be 32bit when dma_addr_t is 64bit leading to a loss in 81 * information if the shift is done before casting to 64bit. 82 */ 83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 84 { 85 unsigned long bfn = pfn_to_bfn(PFN_DOWN(paddr)); 86 dma_addr_t dma = (dma_addr_t)bfn << PAGE_SHIFT; 87 88 dma |= paddr & ~PAGE_MASK; 89 90 return dma; 91 } 92 93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 94 { 95 unsigned long pfn = bfn_to_pfn(PFN_DOWN(baddr)); 96 dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT; 97 phys_addr_t paddr = dma; 98 99 paddr |= baddr & ~PAGE_MASK; 100 101 return paddr; 102 } 103 104 static inline dma_addr_t xen_virt_to_bus(void *address) 105 { 106 return xen_phys_to_bus(virt_to_phys(address)); 107 } 108 109 static int check_pages_physically_contiguous(unsigned long pfn, 110 unsigned int offset, 111 size_t length) 112 { 113 unsigned long next_bfn; 114 int i; 115 int nr_pages; 116 117 next_bfn = pfn_to_bfn(pfn); 118 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 119 120 for (i = 1; i < nr_pages; i++) { 121 if (pfn_to_bfn(++pfn) != ++next_bfn) 122 return 0; 123 } 124 return 1; 125 } 126 127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 128 { 129 unsigned long pfn = PFN_DOWN(p); 130 unsigned int offset = p & ~PAGE_MASK; 131 132 if (offset + size <= PAGE_SIZE) 133 return 0; 134 if (check_pages_physically_contiguous(pfn, offset, size)) 135 return 0; 136 return 1; 137 } 138 139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 140 { 141 unsigned long bfn = PFN_DOWN(dma_addr); 142 unsigned long pfn = bfn_to_local_pfn(bfn); 143 phys_addr_t paddr; 144 145 /* If the address is outside our domain, it CAN 146 * have the same virtual address as another address 147 * in our domain. Therefore _only_ check address within our domain. 148 */ 149 if (pfn_valid(pfn)) { 150 paddr = PFN_PHYS(pfn); 151 return paddr >= virt_to_phys(xen_io_tlb_start) && 152 paddr < virt_to_phys(xen_io_tlb_end); 153 } 154 return 0; 155 } 156 157 static int max_dma_bits = 32; 158 159 static int 160 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 161 { 162 int i, rc; 163 int dma_bits; 164 dma_addr_t dma_handle; 165 phys_addr_t p = virt_to_phys(buf); 166 167 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 168 169 i = 0; 170 do { 171 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 172 173 do { 174 rc = xen_create_contiguous_region( 175 p + (i << IO_TLB_SHIFT), 176 get_order(slabs << IO_TLB_SHIFT), 177 dma_bits, &dma_handle); 178 } while (rc && dma_bits++ < max_dma_bits); 179 if (rc) 180 return rc; 181 182 i += slabs; 183 } while (i < nslabs); 184 return 0; 185 } 186 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 187 { 188 if (!nr_tbl) { 189 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 190 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 191 } else 192 xen_io_tlb_nslabs = nr_tbl; 193 194 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 195 } 196 197 enum xen_swiotlb_err { 198 XEN_SWIOTLB_UNKNOWN = 0, 199 XEN_SWIOTLB_ENOMEM, 200 XEN_SWIOTLB_EFIXUP 201 }; 202 203 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 204 { 205 switch (err) { 206 case XEN_SWIOTLB_ENOMEM: 207 return "Cannot allocate Xen-SWIOTLB buffer\n"; 208 case XEN_SWIOTLB_EFIXUP: 209 return "Failed to get contiguous memory for DMA from Xen!\n"\ 210 "You either: don't have the permissions, do not have"\ 211 " enough free memory under 4GB, or the hypervisor memory"\ 212 " is too fragmented!"; 213 default: 214 break; 215 } 216 return ""; 217 } 218 int __ref xen_swiotlb_init(int verbose, bool early) 219 { 220 unsigned long bytes, order; 221 int rc = -ENOMEM; 222 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 223 unsigned int repeat = 3; 224 225 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 226 retry: 227 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 228 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 229 /* 230 * Get IO TLB memory from any location. 231 */ 232 if (early) 233 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 234 else { 235 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 236 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 237 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 238 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 239 if (xen_io_tlb_start) 240 break; 241 order--; 242 } 243 if (order != get_order(bytes)) { 244 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 245 (PAGE_SIZE << order) >> 20); 246 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 247 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 248 } 249 } 250 if (!xen_io_tlb_start) { 251 m_ret = XEN_SWIOTLB_ENOMEM; 252 goto error; 253 } 254 xen_io_tlb_end = xen_io_tlb_start + bytes; 255 /* 256 * And replace that memory with pages under 4GB. 257 */ 258 rc = xen_swiotlb_fixup(xen_io_tlb_start, 259 bytes, 260 xen_io_tlb_nslabs); 261 if (rc) { 262 if (early) 263 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 264 else { 265 free_pages((unsigned long)xen_io_tlb_start, order); 266 xen_io_tlb_start = NULL; 267 } 268 m_ret = XEN_SWIOTLB_EFIXUP; 269 goto error; 270 } 271 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 272 if (early) { 273 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 274 verbose)) 275 panic("Cannot allocate SWIOTLB buffer"); 276 rc = 0; 277 } else 278 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 279 return rc; 280 error: 281 if (repeat--) { 282 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 283 (xen_io_tlb_nslabs >> 1)); 284 pr_info("Lowering to %luMB\n", 285 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 286 goto retry; 287 } 288 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 289 if (early) 290 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 291 else 292 free_pages((unsigned long)xen_io_tlb_start, order); 293 return rc; 294 } 295 void * 296 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 297 dma_addr_t *dma_handle, gfp_t flags, 298 struct dma_attrs *attrs) 299 { 300 void *ret; 301 int order = get_order(size); 302 u64 dma_mask = DMA_BIT_MASK(32); 303 phys_addr_t phys; 304 dma_addr_t dev_addr; 305 306 /* 307 * Ignore region specifiers - the kernel's ideas of 308 * pseudo-phys memory layout has nothing to do with the 309 * machine physical layout. We can't allocate highmem 310 * because we can't return a pointer to it. 311 */ 312 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 313 314 /* On ARM this function returns an ioremap'ped virtual address for 315 * which virt_to_phys doesn't return the corresponding physical 316 * address. In fact on ARM virt_to_phys only works for kernel direct 317 * mapped RAM memory. Also see comment below. 318 */ 319 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 320 321 if (!ret) 322 return ret; 323 324 if (hwdev && hwdev->coherent_dma_mask) 325 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 326 327 /* At this point dma_handle is the physical address, next we are 328 * going to set it to the machine address. 329 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 330 * to *dma_handle. */ 331 phys = *dma_handle; 332 dev_addr = xen_phys_to_bus(phys); 333 if (((dev_addr + size - 1 <= dma_mask)) && 334 !range_straddles_page_boundary(phys, size)) 335 *dma_handle = dev_addr; 336 else { 337 if (xen_create_contiguous_region(phys, order, 338 fls64(dma_mask), dma_handle) != 0) { 339 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 340 return NULL; 341 } 342 } 343 memset(ret, 0, size); 344 return ret; 345 } 346 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 347 348 void 349 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 350 dma_addr_t dev_addr, struct dma_attrs *attrs) 351 { 352 int order = get_order(size); 353 phys_addr_t phys; 354 u64 dma_mask = DMA_BIT_MASK(32); 355 356 if (hwdev && hwdev->coherent_dma_mask) 357 dma_mask = hwdev->coherent_dma_mask; 358 359 /* do not use virt_to_phys because on ARM it doesn't return you the 360 * physical address */ 361 phys = xen_bus_to_phys(dev_addr); 362 363 if (((dev_addr + size - 1 > dma_mask)) || 364 range_straddles_page_boundary(phys, size)) 365 xen_destroy_contiguous_region(phys, order); 366 367 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 368 } 369 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 370 371 372 /* 373 * Map a single buffer of the indicated size for DMA in streaming mode. The 374 * physical address to use is returned. 375 * 376 * Once the device is given the dma address, the device owns this memory until 377 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 378 */ 379 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 380 unsigned long offset, size_t size, 381 enum dma_data_direction dir, 382 struct dma_attrs *attrs) 383 { 384 phys_addr_t map, phys = page_to_phys(page) + offset; 385 dma_addr_t dev_addr = xen_phys_to_bus(phys); 386 387 BUG_ON(dir == DMA_NONE); 388 /* 389 * If the address happens to be in the device's DMA window, 390 * we can safely return the device addr and not worry about bounce 391 * buffering it. 392 */ 393 if (dma_capable(dev, dev_addr, size) && 394 !range_straddles_page_boundary(phys, size) && 395 !xen_arch_need_swiotlb(dev, PFN_DOWN(phys), PFN_DOWN(dev_addr)) && 396 !swiotlb_force) { 397 /* we are not interested in the dma_addr returned by 398 * xen_dma_map_page, only in the potential cache flushes executed 399 * by the function. */ 400 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 401 return dev_addr; 402 } 403 404 /* 405 * Oh well, have to allocate and map a bounce buffer. 406 */ 407 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 408 409 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 410 if (map == SWIOTLB_MAP_ERROR) 411 return DMA_ERROR_CODE; 412 413 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 414 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 415 dev_addr = xen_phys_to_bus(map); 416 417 /* 418 * Ensure that the address returned is DMA'ble 419 */ 420 if (!dma_capable(dev, dev_addr, size)) { 421 swiotlb_tbl_unmap_single(dev, map, size, dir); 422 dev_addr = 0; 423 } 424 return dev_addr; 425 } 426 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 427 428 /* 429 * Unmap a single streaming mode DMA translation. The dma_addr and size must 430 * match what was provided for in a previous xen_swiotlb_map_page call. All 431 * other usages are undefined. 432 * 433 * After this call, reads by the cpu to the buffer are guaranteed to see 434 * whatever the device wrote there. 435 */ 436 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 437 size_t size, enum dma_data_direction dir, 438 struct dma_attrs *attrs) 439 { 440 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 441 442 BUG_ON(dir == DMA_NONE); 443 444 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 445 446 /* NOTE: We use dev_addr here, not paddr! */ 447 if (is_xen_swiotlb_buffer(dev_addr)) { 448 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); 449 return; 450 } 451 452 if (dir != DMA_FROM_DEVICE) 453 return; 454 455 /* 456 * phys_to_virt doesn't work with hihgmem page but we could 457 * call dma_mark_clean() with hihgmem page here. However, we 458 * are fine since dma_mark_clean() is null on POWERPC. We can 459 * make dma_mark_clean() take a physical address if necessary. 460 */ 461 dma_mark_clean(phys_to_virt(paddr), size); 462 } 463 464 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 465 size_t size, enum dma_data_direction dir, 466 struct dma_attrs *attrs) 467 { 468 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 469 } 470 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 471 472 /* 473 * Make physical memory consistent for a single streaming mode DMA translation 474 * after a transfer. 475 * 476 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 477 * using the cpu, yet do not wish to teardown the dma mapping, you must 478 * call this function before doing so. At the next point you give the dma 479 * address back to the card, you must first perform a 480 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 481 */ 482 static void 483 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 484 size_t size, enum dma_data_direction dir, 485 enum dma_sync_target target) 486 { 487 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 488 489 BUG_ON(dir == DMA_NONE); 490 491 if (target == SYNC_FOR_CPU) 492 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 493 494 /* NOTE: We use dev_addr here, not paddr! */ 495 if (is_xen_swiotlb_buffer(dev_addr)) 496 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 497 498 if (target == SYNC_FOR_DEVICE) 499 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 500 501 if (dir != DMA_FROM_DEVICE) 502 return; 503 504 dma_mark_clean(phys_to_virt(paddr), size); 505 } 506 507 void 508 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 509 size_t size, enum dma_data_direction dir) 510 { 511 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 512 } 513 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 514 515 void 516 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 517 size_t size, enum dma_data_direction dir) 518 { 519 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 520 } 521 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 522 523 /* 524 * Map a set of buffers described by scatterlist in streaming mode for DMA. 525 * This is the scatter-gather version of the above xen_swiotlb_map_page 526 * interface. Here the scatter gather list elements are each tagged with the 527 * appropriate dma address and length. They are obtained via 528 * sg_dma_{address,length}(SG). 529 * 530 * NOTE: An implementation may be able to use a smaller number of 531 * DMA address/length pairs than there are SG table elements. 532 * (for example via virtual mapping capabilities) 533 * The routine returns the number of addr/length pairs actually 534 * used, at most nents. 535 * 536 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 537 * same here. 538 */ 539 int 540 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 541 int nelems, enum dma_data_direction dir, 542 struct dma_attrs *attrs) 543 { 544 struct scatterlist *sg; 545 int i; 546 547 BUG_ON(dir == DMA_NONE); 548 549 for_each_sg(sgl, sg, nelems, i) { 550 phys_addr_t paddr = sg_phys(sg); 551 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 552 553 if (swiotlb_force || 554 xen_arch_need_swiotlb(hwdev, PFN_DOWN(paddr), PFN_DOWN(dev_addr)) || 555 !dma_capable(hwdev, dev_addr, sg->length) || 556 range_straddles_page_boundary(paddr, sg->length)) { 557 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 558 start_dma_addr, 559 sg_phys(sg), 560 sg->length, 561 dir); 562 if (map == SWIOTLB_MAP_ERROR) { 563 dev_warn(hwdev, "swiotlb buffer is full\n"); 564 /* Don't panic here, we expect map_sg users 565 to do proper error handling. */ 566 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 567 attrs); 568 sg_dma_len(sgl) = 0; 569 return 0; 570 } 571 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 572 dev_addr, 573 map & ~PAGE_MASK, 574 sg->length, 575 dir, 576 attrs); 577 sg->dma_address = xen_phys_to_bus(map); 578 } else { 579 /* we are not interested in the dma_addr returned by 580 * xen_dma_map_page, only in the potential cache flushes executed 581 * by the function. */ 582 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 583 dev_addr, 584 paddr & ~PAGE_MASK, 585 sg->length, 586 dir, 587 attrs); 588 sg->dma_address = dev_addr; 589 } 590 sg_dma_len(sg) = sg->length; 591 } 592 return nelems; 593 } 594 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 595 596 /* 597 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 598 * concerning calls here are the same as for swiotlb_unmap_page() above. 599 */ 600 void 601 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 602 int nelems, enum dma_data_direction dir, 603 struct dma_attrs *attrs) 604 { 605 struct scatterlist *sg; 606 int i; 607 608 BUG_ON(dir == DMA_NONE); 609 610 for_each_sg(sgl, sg, nelems, i) 611 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 612 613 } 614 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 615 616 /* 617 * Make physical memory consistent for a set of streaming mode DMA translations 618 * after a transfer. 619 * 620 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 621 * and usage. 622 */ 623 static void 624 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 625 int nelems, enum dma_data_direction dir, 626 enum dma_sync_target target) 627 { 628 struct scatterlist *sg; 629 int i; 630 631 for_each_sg(sgl, sg, nelems, i) 632 xen_swiotlb_sync_single(hwdev, sg->dma_address, 633 sg_dma_len(sg), dir, target); 634 } 635 636 void 637 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 638 int nelems, enum dma_data_direction dir) 639 { 640 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 641 } 642 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 643 644 void 645 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 646 int nelems, enum dma_data_direction dir) 647 { 648 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 649 } 650 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 651 652 int 653 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 654 { 655 return !dma_addr; 656 } 657 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 658 659 /* 660 * Return whether the given device DMA address mask can be supported 661 * properly. For example, if your device can only drive the low 24-bits 662 * during bus mastering, then you would pass 0x00ffffff as the mask to 663 * this function. 664 */ 665 int 666 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 667 { 668 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 669 } 670 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 671 672 int 673 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask) 674 { 675 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask)) 676 return -EIO; 677 678 *dev->dma_mask = dma_mask; 679 680 return 0; 681 } 682 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask); 683