1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2010 4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 5 * 6 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 7 * 8 * PV guests under Xen are running in an non-contiguous memory architecture. 9 * 10 * When PCI pass-through is utilized, this necessitates an IOMMU for 11 * translating bus (DMA) to virtual and vice-versa and also providing a 12 * mechanism to have contiguous pages for device drivers operations (say DMA 13 * operations). 14 * 15 * Specifically, under Xen the Linux idea of pages is an illusion. It 16 * assumes that pages start at zero and go up to the available memory. To 17 * help with that, the Linux Xen MMU provides a lookup mechanism to 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 20 * memory is not contiguous. Xen hypervisor stitches memory for guests 21 * from different pools, which means there is no guarantee that PFN==MFN 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 23 * allocated in descending order (high to low), meaning the guest might 24 * never get any MFN's under the 4GB mark. 25 */ 26 27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 28 29 #include <linux/memblock.h> 30 #include <linux/dma-direct.h> 31 #include <linux/dma-map-ops.h> 32 #include <linux/export.h> 33 #include <xen/swiotlb-xen.h> 34 #include <xen/page.h> 35 #include <xen/xen-ops.h> 36 #include <xen/hvc-console.h> 37 38 #include <asm/dma-mapping.h> 39 #include <asm/xen/page-coherent.h> 40 41 #include <trace/events/swiotlb.h> 42 #define MAX_DMA_BITS 32 43 /* 44 * Used to do a quick range check in swiotlb_tbl_unmap_single and 45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 46 * API. 47 */ 48 49 static char *xen_io_tlb_start, *xen_io_tlb_end; 50 static unsigned long xen_io_tlb_nslabs; 51 /* 52 * Quick lookup value of the bus address of the IOTLB. 53 */ 54 55 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr) 56 { 57 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 58 phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT; 59 60 baddr |= paddr & ~XEN_PAGE_MASK; 61 return baddr; 62 } 63 64 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr) 65 { 66 return phys_to_dma(dev, xen_phys_to_bus(dev, paddr)); 67 } 68 69 static inline phys_addr_t xen_bus_to_phys(struct device *dev, 70 phys_addr_t baddr) 71 { 72 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 73 phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) | 74 (baddr & ~XEN_PAGE_MASK); 75 76 return paddr; 77 } 78 79 static inline phys_addr_t xen_dma_to_phys(struct device *dev, 80 dma_addr_t dma_addr) 81 { 82 return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr)); 83 } 84 85 static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address) 86 { 87 return xen_phys_to_dma(dev, virt_to_phys(address)); 88 } 89 90 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 91 { 92 unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p); 93 unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size); 94 95 next_bfn = pfn_to_bfn(xen_pfn); 96 97 for (i = 1; i < nr_pages; i++) 98 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 99 return 1; 100 101 return 0; 102 } 103 104 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr) 105 { 106 unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr)); 107 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 108 phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT; 109 110 /* If the address is outside our domain, it CAN 111 * have the same virtual address as another address 112 * in our domain. Therefore _only_ check address within our domain. 113 */ 114 if (pfn_valid(PFN_DOWN(paddr))) { 115 return paddr >= virt_to_phys(xen_io_tlb_start) && 116 paddr < virt_to_phys(xen_io_tlb_end); 117 } 118 return 0; 119 } 120 121 static int 122 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 123 { 124 int i, rc; 125 int dma_bits; 126 dma_addr_t dma_handle; 127 phys_addr_t p = virt_to_phys(buf); 128 129 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 130 131 i = 0; 132 do { 133 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 134 135 do { 136 rc = xen_create_contiguous_region( 137 p + (i << IO_TLB_SHIFT), 138 get_order(slabs << IO_TLB_SHIFT), 139 dma_bits, &dma_handle); 140 } while (rc && dma_bits++ < MAX_DMA_BITS); 141 if (rc) 142 return rc; 143 144 i += slabs; 145 } while (i < nslabs); 146 return 0; 147 } 148 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 149 { 150 if (!nr_tbl) { 151 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 152 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 153 } else 154 xen_io_tlb_nslabs = nr_tbl; 155 156 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 157 } 158 159 enum xen_swiotlb_err { 160 XEN_SWIOTLB_UNKNOWN = 0, 161 XEN_SWIOTLB_ENOMEM, 162 XEN_SWIOTLB_EFIXUP 163 }; 164 165 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 166 { 167 switch (err) { 168 case XEN_SWIOTLB_ENOMEM: 169 return "Cannot allocate Xen-SWIOTLB buffer\n"; 170 case XEN_SWIOTLB_EFIXUP: 171 return "Failed to get contiguous memory for DMA from Xen!\n"\ 172 "You either: don't have the permissions, do not have"\ 173 " enough free memory under 4GB, or the hypervisor memory"\ 174 " is too fragmented!"; 175 default: 176 break; 177 } 178 return ""; 179 } 180 int __ref xen_swiotlb_init(int verbose, bool early) 181 { 182 unsigned long bytes, order; 183 int rc = -ENOMEM; 184 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 185 unsigned int repeat = 3; 186 187 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 188 retry: 189 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 190 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 191 192 /* 193 * IO TLB memory already allocated. Just use it. 194 */ 195 if (io_tlb_start != 0) { 196 xen_io_tlb_start = phys_to_virt(io_tlb_start); 197 goto end; 198 } 199 200 /* 201 * Get IO TLB memory from any location. 202 */ 203 if (early) { 204 xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes), 205 PAGE_SIZE); 206 if (!xen_io_tlb_start) 207 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 208 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 209 } else { 210 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 211 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 212 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 213 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 214 if (xen_io_tlb_start) 215 break; 216 order--; 217 } 218 if (order != get_order(bytes)) { 219 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 220 (PAGE_SIZE << order) >> 20); 221 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 222 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 223 } 224 } 225 if (!xen_io_tlb_start) { 226 m_ret = XEN_SWIOTLB_ENOMEM; 227 goto error; 228 } 229 /* 230 * And replace that memory with pages under 4GB. 231 */ 232 rc = xen_swiotlb_fixup(xen_io_tlb_start, 233 bytes, 234 xen_io_tlb_nslabs); 235 if (rc) { 236 if (early) 237 memblock_free(__pa(xen_io_tlb_start), 238 PAGE_ALIGN(bytes)); 239 else { 240 free_pages((unsigned long)xen_io_tlb_start, order); 241 xen_io_tlb_start = NULL; 242 } 243 m_ret = XEN_SWIOTLB_EFIXUP; 244 goto error; 245 } 246 if (early) { 247 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 248 verbose)) 249 panic("Cannot allocate SWIOTLB buffer"); 250 rc = 0; 251 } else 252 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 253 254 end: 255 xen_io_tlb_end = xen_io_tlb_start + bytes; 256 if (!rc) 257 swiotlb_set_max_segment(PAGE_SIZE); 258 259 return rc; 260 error: 261 if (repeat--) { 262 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 263 (xen_io_tlb_nslabs >> 1)); 264 pr_info("Lowering to %luMB\n", 265 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 266 goto retry; 267 } 268 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 269 if (early) 270 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 271 else 272 free_pages((unsigned long)xen_io_tlb_start, order); 273 return rc; 274 } 275 276 static void * 277 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 278 dma_addr_t *dma_handle, gfp_t flags, 279 unsigned long attrs) 280 { 281 void *ret; 282 int order = get_order(size); 283 u64 dma_mask = DMA_BIT_MASK(32); 284 phys_addr_t phys; 285 dma_addr_t dev_addr; 286 287 /* 288 * Ignore region specifiers - the kernel's ideas of 289 * pseudo-phys memory layout has nothing to do with the 290 * machine physical layout. We can't allocate highmem 291 * because we can't return a pointer to it. 292 */ 293 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 294 295 /* Convert the size to actually allocated. */ 296 size = 1UL << (order + XEN_PAGE_SHIFT); 297 298 /* On ARM this function returns an ioremap'ped virtual address for 299 * which virt_to_phys doesn't return the corresponding physical 300 * address. In fact on ARM virt_to_phys only works for kernel direct 301 * mapped RAM memory. Also see comment below. 302 */ 303 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 304 305 if (!ret) 306 return ret; 307 308 if (hwdev && hwdev->coherent_dma_mask) 309 dma_mask = hwdev->coherent_dma_mask; 310 311 /* At this point dma_handle is the dma address, next we are 312 * going to set it to the machine address. 313 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 314 * to *dma_handle. */ 315 phys = dma_to_phys(hwdev, *dma_handle); 316 dev_addr = xen_phys_to_dma(hwdev, phys); 317 if (((dev_addr + size - 1 <= dma_mask)) && 318 !range_straddles_page_boundary(phys, size)) 319 *dma_handle = dev_addr; 320 else { 321 if (xen_create_contiguous_region(phys, order, 322 fls64(dma_mask), dma_handle) != 0) { 323 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 324 return NULL; 325 } 326 *dma_handle = phys_to_dma(hwdev, *dma_handle); 327 SetPageXenRemapped(virt_to_page(ret)); 328 } 329 memset(ret, 0, size); 330 return ret; 331 } 332 333 static void 334 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 335 dma_addr_t dev_addr, unsigned long attrs) 336 { 337 int order = get_order(size); 338 phys_addr_t phys; 339 u64 dma_mask = DMA_BIT_MASK(32); 340 struct page *page; 341 342 if (hwdev && hwdev->coherent_dma_mask) 343 dma_mask = hwdev->coherent_dma_mask; 344 345 /* do not use virt_to_phys because on ARM it doesn't return you the 346 * physical address */ 347 phys = xen_dma_to_phys(hwdev, dev_addr); 348 349 /* Convert the size to actually allocated. */ 350 size = 1UL << (order + XEN_PAGE_SHIFT); 351 352 if (is_vmalloc_addr(vaddr)) 353 page = vmalloc_to_page(vaddr); 354 else 355 page = virt_to_page(vaddr); 356 357 if (!WARN_ON((dev_addr + size - 1 > dma_mask) || 358 range_straddles_page_boundary(phys, size)) && 359 TestClearPageXenRemapped(page)) 360 xen_destroy_contiguous_region(phys, order); 361 362 xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys), 363 attrs); 364 } 365 366 /* 367 * Map a single buffer of the indicated size for DMA in streaming mode. The 368 * physical address to use is returned. 369 * 370 * Once the device is given the dma address, the device owns this memory until 371 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 372 */ 373 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 374 unsigned long offset, size_t size, 375 enum dma_data_direction dir, 376 unsigned long attrs) 377 { 378 phys_addr_t map, phys = page_to_phys(page) + offset; 379 dma_addr_t dev_addr = xen_phys_to_dma(dev, phys); 380 381 BUG_ON(dir == DMA_NONE); 382 /* 383 * If the address happens to be in the device's DMA window, 384 * we can safely return the device addr and not worry about bounce 385 * buffering it. 386 */ 387 if (dma_capable(dev, dev_addr, size, true) && 388 !range_straddles_page_boundary(phys, size) && 389 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 390 swiotlb_force != SWIOTLB_FORCE) 391 goto done; 392 393 /* 394 * Oh well, have to allocate and map a bounce buffer. 395 */ 396 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 397 398 map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs); 399 if (map == (phys_addr_t)DMA_MAPPING_ERROR) 400 return DMA_MAPPING_ERROR; 401 402 phys = map; 403 dev_addr = xen_phys_to_dma(dev, map); 404 405 /* 406 * Ensure that the address returned is DMA'ble 407 */ 408 if (unlikely(!dma_capable(dev, dev_addr, size, true))) { 409 swiotlb_tbl_unmap_single(dev, map, size, size, dir, 410 attrs | DMA_ATTR_SKIP_CPU_SYNC); 411 return DMA_MAPPING_ERROR; 412 } 413 414 done: 415 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 416 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr)))) 417 arch_sync_dma_for_device(phys, size, dir); 418 else 419 xen_dma_sync_for_device(dev, dev_addr, size, dir); 420 } 421 return dev_addr; 422 } 423 424 /* 425 * Unmap a single streaming mode DMA translation. The dma_addr and size must 426 * match what was provided for in a previous xen_swiotlb_map_page call. All 427 * other usages are undefined. 428 * 429 * After this call, reads by the cpu to the buffer are guaranteed to see 430 * whatever the device wrote there. 431 */ 432 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 433 size_t size, enum dma_data_direction dir, unsigned long attrs) 434 { 435 phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr); 436 437 BUG_ON(dir == DMA_NONE); 438 439 if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 440 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr)))) 441 arch_sync_dma_for_cpu(paddr, size, dir); 442 else 443 xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir); 444 } 445 446 /* NOTE: We use dev_addr here, not paddr! */ 447 if (is_xen_swiotlb_buffer(hwdev, dev_addr)) 448 swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs); 449 } 450 451 static void 452 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 453 size_t size, enum dma_data_direction dir) 454 { 455 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 456 457 if (!dev_is_dma_coherent(dev)) { 458 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 459 arch_sync_dma_for_cpu(paddr, size, dir); 460 else 461 xen_dma_sync_for_cpu(dev, dma_addr, size, dir); 462 } 463 464 if (is_xen_swiotlb_buffer(dev, dma_addr)) 465 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); 466 } 467 468 static void 469 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 470 size_t size, enum dma_data_direction dir) 471 { 472 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 473 474 if (is_xen_swiotlb_buffer(dev, dma_addr)) 475 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); 476 477 if (!dev_is_dma_coherent(dev)) { 478 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 479 arch_sync_dma_for_device(paddr, size, dir); 480 else 481 xen_dma_sync_for_device(dev, dma_addr, size, dir); 482 } 483 } 484 485 /* 486 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 487 * concerning calls here are the same as for swiotlb_unmap_page() above. 488 */ 489 static void 490 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 491 enum dma_data_direction dir, unsigned long attrs) 492 { 493 struct scatterlist *sg; 494 int i; 495 496 BUG_ON(dir == DMA_NONE); 497 498 for_each_sg(sgl, sg, nelems, i) 499 xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), 500 dir, attrs); 501 502 } 503 504 static int 505 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 506 enum dma_data_direction dir, unsigned long attrs) 507 { 508 struct scatterlist *sg; 509 int i; 510 511 BUG_ON(dir == DMA_NONE); 512 513 for_each_sg(sgl, sg, nelems, i) { 514 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 515 sg->offset, sg->length, dir, attrs); 516 if (sg->dma_address == DMA_MAPPING_ERROR) 517 goto out_unmap; 518 sg_dma_len(sg) = sg->length; 519 } 520 521 return nelems; 522 out_unmap: 523 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 524 sg_dma_len(sgl) = 0; 525 return 0; 526 } 527 528 static void 529 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 530 int nelems, enum dma_data_direction dir) 531 { 532 struct scatterlist *sg; 533 int i; 534 535 for_each_sg(sgl, sg, nelems, i) { 536 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 537 sg->length, dir); 538 } 539 } 540 541 static void 542 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 543 int nelems, enum dma_data_direction dir) 544 { 545 struct scatterlist *sg; 546 int i; 547 548 for_each_sg(sgl, sg, nelems, i) { 549 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 550 sg->length, dir); 551 } 552 } 553 554 /* 555 * Return whether the given device DMA address mask can be supported 556 * properly. For example, if your device can only drive the low 24-bits 557 * during bus mastering, then you would pass 0x00ffffff as the mask to 558 * this function. 559 */ 560 static int 561 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 562 { 563 return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask; 564 } 565 566 const struct dma_map_ops xen_swiotlb_dma_ops = { 567 .alloc = xen_swiotlb_alloc_coherent, 568 .free = xen_swiotlb_free_coherent, 569 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 570 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 571 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 572 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 573 .map_sg = xen_swiotlb_map_sg, 574 .unmap_sg = xen_swiotlb_unmap_sg, 575 .map_page = xen_swiotlb_map_page, 576 .unmap_page = xen_swiotlb_unmap_page, 577 .dma_supported = xen_swiotlb_dma_supported, 578 .mmap = dma_common_mmap, 579 .get_sgtable = dma_common_get_sgtable, 580 .alloc_pages = dma_common_alloc_pages, 581 .free_pages = dma_common_free_pages, 582 }; 583