xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision d0b73b48)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 static u64 start_dma_addr;
56 
57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58 {
59 	return phys_to_machine(XPADDR(paddr)).maddr;
60 }
61 
62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63 {
64 	return machine_to_phys(XMADDR(baddr)).paddr;
65 }
66 
67 static dma_addr_t xen_virt_to_bus(void *address)
68 {
69 	return xen_phys_to_bus(virt_to_phys(address));
70 }
71 
72 static int check_pages_physically_contiguous(unsigned long pfn,
73 					     unsigned int offset,
74 					     size_t length)
75 {
76 	unsigned long next_mfn;
77 	int i;
78 	int nr_pages;
79 
80 	next_mfn = pfn_to_mfn(pfn);
81 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82 
83 	for (i = 1; i < nr_pages; i++) {
84 		if (pfn_to_mfn(++pfn) != ++next_mfn)
85 			return 0;
86 	}
87 	return 1;
88 }
89 
90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92 	unsigned long pfn = PFN_DOWN(p);
93 	unsigned int offset = p & ~PAGE_MASK;
94 
95 	if (offset + size <= PAGE_SIZE)
96 		return 0;
97 	if (check_pages_physically_contiguous(pfn, offset, size))
98 		return 0;
99 	return 1;
100 }
101 
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104 	unsigned long mfn = PFN_DOWN(dma_addr);
105 	unsigned long pfn = mfn_to_local_pfn(mfn);
106 	phys_addr_t paddr;
107 
108 	/* If the address is outside our domain, it CAN
109 	 * have the same virtual address as another address
110 	 * in our domain. Therefore _only_ check address within our domain.
111 	 */
112 	if (pfn_valid(pfn)) {
113 		paddr = PFN_PHYS(pfn);
114 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 		       paddr < virt_to_phys(xen_io_tlb_end);
116 	}
117 	return 0;
118 }
119 
120 static int max_dma_bits = 32;
121 
122 static int
123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124 {
125 	int i, rc;
126 	int dma_bits;
127 
128 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129 
130 	i = 0;
131 	do {
132 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134 		do {
135 			rc = xen_create_contiguous_region(
136 				(unsigned long)buf + (i << IO_TLB_SHIFT),
137 				get_order(slabs << IO_TLB_SHIFT),
138 				dma_bits);
139 		} while (rc && dma_bits++ < max_dma_bits);
140 		if (rc)
141 			return rc;
142 
143 		i += slabs;
144 	} while (i < nslabs);
145 	return 0;
146 }
147 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
148 {
149 	if (!nr_tbl) {
150 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
151 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
152 	} else
153 		xen_io_tlb_nslabs = nr_tbl;
154 
155 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
156 }
157 
158 enum xen_swiotlb_err {
159 	XEN_SWIOTLB_UNKNOWN = 0,
160 	XEN_SWIOTLB_ENOMEM,
161 	XEN_SWIOTLB_EFIXUP
162 };
163 
164 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
165 {
166 	switch (err) {
167 	case XEN_SWIOTLB_ENOMEM:
168 		return "Cannot allocate Xen-SWIOTLB buffer\n";
169 	case XEN_SWIOTLB_EFIXUP:
170 		return "Failed to get contiguous memory for DMA from Xen!\n"\
171 		    "You either: don't have the permissions, do not have"\
172 		    " enough free memory under 4GB, or the hypervisor memory"\
173 		    " is too fragmented!";
174 	default:
175 		break;
176 	}
177 	return "";
178 }
179 int __ref xen_swiotlb_init(int verbose, bool early)
180 {
181 	unsigned long bytes, order;
182 	int rc = -ENOMEM;
183 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
184 	unsigned int repeat = 3;
185 
186 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
187 retry:
188 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
189 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
190 	/*
191 	 * Get IO TLB memory from any location.
192 	 */
193 	if (early)
194 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
195 	else {
196 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
197 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
198 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
199 			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
200 			if (xen_io_tlb_start)
201 				break;
202 			order--;
203 		}
204 		if (order != get_order(bytes)) {
205 			pr_warn("Warning: only able to allocate %ld MB "
206 				"for software IO TLB\n", (PAGE_SIZE << order) >> 20);
207 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
208 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
209 		}
210 	}
211 	if (!xen_io_tlb_start) {
212 		m_ret = XEN_SWIOTLB_ENOMEM;
213 		goto error;
214 	}
215 	xen_io_tlb_end = xen_io_tlb_start + bytes;
216 	/*
217 	 * And replace that memory with pages under 4GB.
218 	 */
219 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
220 			       bytes,
221 			       xen_io_tlb_nslabs);
222 	if (rc) {
223 		if (early)
224 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
225 		else {
226 			free_pages((unsigned long)xen_io_tlb_start, order);
227 			xen_io_tlb_start = NULL;
228 		}
229 		m_ret = XEN_SWIOTLB_EFIXUP;
230 		goto error;
231 	}
232 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
233 	if (early) {
234 		swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
235 		rc = 0;
236 	} else
237 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
238 	return rc;
239 error:
240 	if (repeat--) {
241 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
242 					(xen_io_tlb_nslabs >> 1));
243 		printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
244 		      (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
245 		goto retry;
246 	}
247 	pr_err("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
248 	if (early)
249 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
250 	else
251 		free_pages((unsigned long)xen_io_tlb_start, order);
252 	return rc;
253 }
254 void *
255 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
256 			   dma_addr_t *dma_handle, gfp_t flags,
257 			   struct dma_attrs *attrs)
258 {
259 	void *ret;
260 	int order = get_order(size);
261 	u64 dma_mask = DMA_BIT_MASK(32);
262 	unsigned long vstart;
263 	phys_addr_t phys;
264 	dma_addr_t dev_addr;
265 
266 	/*
267 	* Ignore region specifiers - the kernel's ideas of
268 	* pseudo-phys memory layout has nothing to do with the
269 	* machine physical layout.  We can't allocate highmem
270 	* because we can't return a pointer to it.
271 	*/
272 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
273 
274 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
275 		return ret;
276 
277 	vstart = __get_free_pages(flags, order);
278 	ret = (void *)vstart;
279 
280 	if (!ret)
281 		return ret;
282 
283 	if (hwdev && hwdev->coherent_dma_mask)
284 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
285 
286 	phys = virt_to_phys(ret);
287 	dev_addr = xen_phys_to_bus(phys);
288 	if (((dev_addr + size - 1 <= dma_mask)) &&
289 	    !range_straddles_page_boundary(phys, size))
290 		*dma_handle = dev_addr;
291 	else {
292 		if (xen_create_contiguous_region(vstart, order,
293 						 fls64(dma_mask)) != 0) {
294 			free_pages(vstart, order);
295 			return NULL;
296 		}
297 		*dma_handle = virt_to_machine(ret).maddr;
298 	}
299 	memset(ret, 0, size);
300 	return ret;
301 }
302 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
303 
304 void
305 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
306 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
307 {
308 	int order = get_order(size);
309 	phys_addr_t phys;
310 	u64 dma_mask = DMA_BIT_MASK(32);
311 
312 	if (dma_release_from_coherent(hwdev, order, vaddr))
313 		return;
314 
315 	if (hwdev && hwdev->coherent_dma_mask)
316 		dma_mask = hwdev->coherent_dma_mask;
317 
318 	phys = virt_to_phys(vaddr);
319 
320 	if (((dev_addr + size - 1 > dma_mask)) ||
321 	    range_straddles_page_boundary(phys, size))
322 		xen_destroy_contiguous_region((unsigned long)vaddr, order);
323 
324 	free_pages((unsigned long)vaddr, order);
325 }
326 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
327 
328 
329 /*
330  * Map a single buffer of the indicated size for DMA in streaming mode.  The
331  * physical address to use is returned.
332  *
333  * Once the device is given the dma address, the device owns this memory until
334  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
335  */
336 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
337 				unsigned long offset, size_t size,
338 				enum dma_data_direction dir,
339 				struct dma_attrs *attrs)
340 {
341 	phys_addr_t map, phys = page_to_phys(page) + offset;
342 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
343 
344 	BUG_ON(dir == DMA_NONE);
345 	/*
346 	 * If the address happens to be in the device's DMA window,
347 	 * we can safely return the device addr and not worry about bounce
348 	 * buffering it.
349 	 */
350 	if (dma_capable(dev, dev_addr, size) &&
351 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
352 		return dev_addr;
353 
354 	/*
355 	 * Oh well, have to allocate and map a bounce buffer.
356 	 */
357 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
358 	if (map == SWIOTLB_MAP_ERROR)
359 		return DMA_ERROR_CODE;
360 
361 	dev_addr = xen_phys_to_bus(map);
362 
363 	/*
364 	 * Ensure that the address returned is DMA'ble
365 	 */
366 	if (!dma_capable(dev, dev_addr, size)) {
367 		swiotlb_tbl_unmap_single(dev, map, size, dir);
368 		dev_addr = 0;
369 	}
370 	return dev_addr;
371 }
372 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
373 
374 /*
375  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
376  * match what was provided for in a previous xen_swiotlb_map_page call.  All
377  * other usages are undefined.
378  *
379  * After this call, reads by the cpu to the buffer are guaranteed to see
380  * whatever the device wrote there.
381  */
382 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
383 			     size_t size, enum dma_data_direction dir)
384 {
385 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
386 
387 	BUG_ON(dir == DMA_NONE);
388 
389 	/* NOTE: We use dev_addr here, not paddr! */
390 	if (is_xen_swiotlb_buffer(dev_addr)) {
391 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
392 		return;
393 	}
394 
395 	if (dir != DMA_FROM_DEVICE)
396 		return;
397 
398 	/*
399 	 * phys_to_virt doesn't work with hihgmem page but we could
400 	 * call dma_mark_clean() with hihgmem page here. However, we
401 	 * are fine since dma_mark_clean() is null on POWERPC. We can
402 	 * make dma_mark_clean() take a physical address if necessary.
403 	 */
404 	dma_mark_clean(phys_to_virt(paddr), size);
405 }
406 
407 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
408 			    size_t size, enum dma_data_direction dir,
409 			    struct dma_attrs *attrs)
410 {
411 	xen_unmap_single(hwdev, dev_addr, size, dir);
412 }
413 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
414 
415 /*
416  * Make physical memory consistent for a single streaming mode DMA translation
417  * after a transfer.
418  *
419  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
420  * using the cpu, yet do not wish to teardown the dma mapping, you must
421  * call this function before doing so.  At the next point you give the dma
422  * address back to the card, you must first perform a
423  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
424  */
425 static void
426 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
427 			size_t size, enum dma_data_direction dir,
428 			enum dma_sync_target target)
429 {
430 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
431 
432 	BUG_ON(dir == DMA_NONE);
433 
434 	/* NOTE: We use dev_addr here, not paddr! */
435 	if (is_xen_swiotlb_buffer(dev_addr)) {
436 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
437 		return;
438 	}
439 
440 	if (dir != DMA_FROM_DEVICE)
441 		return;
442 
443 	dma_mark_clean(phys_to_virt(paddr), size);
444 }
445 
446 void
447 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
448 				size_t size, enum dma_data_direction dir)
449 {
450 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
451 }
452 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
453 
454 void
455 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
456 				   size_t size, enum dma_data_direction dir)
457 {
458 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
459 }
460 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
461 
462 /*
463  * Map a set of buffers described by scatterlist in streaming mode for DMA.
464  * This is the scatter-gather version of the above xen_swiotlb_map_page
465  * interface.  Here the scatter gather list elements are each tagged with the
466  * appropriate dma address and length.  They are obtained via
467  * sg_dma_{address,length}(SG).
468  *
469  * NOTE: An implementation may be able to use a smaller number of
470  *       DMA address/length pairs than there are SG table elements.
471  *       (for example via virtual mapping capabilities)
472  *       The routine returns the number of addr/length pairs actually
473  *       used, at most nents.
474  *
475  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
476  * same here.
477  */
478 int
479 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
480 			 int nelems, enum dma_data_direction dir,
481 			 struct dma_attrs *attrs)
482 {
483 	struct scatterlist *sg;
484 	int i;
485 
486 	BUG_ON(dir == DMA_NONE);
487 
488 	for_each_sg(sgl, sg, nelems, i) {
489 		phys_addr_t paddr = sg_phys(sg);
490 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
491 
492 		if (swiotlb_force ||
493 		    !dma_capable(hwdev, dev_addr, sg->length) ||
494 		    range_straddles_page_boundary(paddr, sg->length)) {
495 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
496 								 start_dma_addr,
497 								 sg_phys(sg),
498 								 sg->length,
499 								 dir);
500 			if (map == SWIOTLB_MAP_ERROR) {
501 				/* Don't panic here, we expect map_sg users
502 				   to do proper error handling. */
503 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
504 							   attrs);
505 				sgl[0].dma_length = 0;
506 				return DMA_ERROR_CODE;
507 			}
508 			sg->dma_address = xen_phys_to_bus(map);
509 		} else
510 			sg->dma_address = dev_addr;
511 		sg->dma_length = sg->length;
512 	}
513 	return nelems;
514 }
515 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
516 
517 /*
518  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
519  * concerning calls here are the same as for swiotlb_unmap_page() above.
520  */
521 void
522 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
523 			   int nelems, enum dma_data_direction dir,
524 			   struct dma_attrs *attrs)
525 {
526 	struct scatterlist *sg;
527 	int i;
528 
529 	BUG_ON(dir == DMA_NONE);
530 
531 	for_each_sg(sgl, sg, nelems, i)
532 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
533 
534 }
535 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
536 
537 /*
538  * Make physical memory consistent for a set of streaming mode DMA translations
539  * after a transfer.
540  *
541  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
542  * and usage.
543  */
544 static void
545 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
546 		    int nelems, enum dma_data_direction dir,
547 		    enum dma_sync_target target)
548 {
549 	struct scatterlist *sg;
550 	int i;
551 
552 	for_each_sg(sgl, sg, nelems, i)
553 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
554 					sg->dma_length, dir, target);
555 }
556 
557 void
558 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
559 			    int nelems, enum dma_data_direction dir)
560 {
561 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
562 }
563 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
564 
565 void
566 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
567 			       int nelems, enum dma_data_direction dir)
568 {
569 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
570 }
571 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
572 
573 int
574 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
575 {
576 	return !dma_addr;
577 }
578 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
579 
580 /*
581  * Return whether the given device DMA address mask can be supported
582  * properly.  For example, if your device can only drive the low 24-bits
583  * during bus mastering, then you would pass 0x00ffffff as the mask to
584  * this function.
585  */
586 int
587 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
588 {
589 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
590 }
591 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
592