xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision c4ee0af3)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 					    gfp_t gfp)
59 {
60 	unsigned long dma_mask = 0;
61 
62 	dma_mask = dev->coherent_dma_mask;
63 	if (!dma_mask)
64 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65 
66 	return dma_mask;
67 }
68 #endif
69 
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73  * Quick lookup value of the bus address of the IOTLB.
74  */
75 
76 static u64 start_dma_addr;
77 
78 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
79 {
80 	return phys_to_machine(XPADDR(paddr)).maddr;
81 }
82 
83 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
84 {
85 	return machine_to_phys(XMADDR(baddr)).paddr;
86 }
87 
88 static inline dma_addr_t xen_virt_to_bus(void *address)
89 {
90 	return xen_phys_to_bus(virt_to_phys(address));
91 }
92 
93 static int check_pages_physically_contiguous(unsigned long pfn,
94 					     unsigned int offset,
95 					     size_t length)
96 {
97 	unsigned long next_mfn;
98 	int i;
99 	int nr_pages;
100 
101 	next_mfn = pfn_to_mfn(pfn);
102 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
103 
104 	for (i = 1; i < nr_pages; i++) {
105 		if (pfn_to_mfn(++pfn) != ++next_mfn)
106 			return 0;
107 	}
108 	return 1;
109 }
110 
111 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
112 {
113 	unsigned long pfn = PFN_DOWN(p);
114 	unsigned int offset = p & ~PAGE_MASK;
115 
116 	if (offset + size <= PAGE_SIZE)
117 		return 0;
118 	if (check_pages_physically_contiguous(pfn, offset, size))
119 		return 0;
120 	return 1;
121 }
122 
123 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
124 {
125 	unsigned long mfn = PFN_DOWN(dma_addr);
126 	unsigned long pfn = mfn_to_local_pfn(mfn);
127 	phys_addr_t paddr;
128 
129 	/* If the address is outside our domain, it CAN
130 	 * have the same virtual address as another address
131 	 * in our domain. Therefore _only_ check address within our domain.
132 	 */
133 	if (pfn_valid(pfn)) {
134 		paddr = PFN_PHYS(pfn);
135 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
136 		       paddr < virt_to_phys(xen_io_tlb_end);
137 	}
138 	return 0;
139 }
140 
141 static int max_dma_bits = 32;
142 
143 static int
144 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
145 {
146 	int i, rc;
147 	int dma_bits;
148 	dma_addr_t dma_handle;
149 	phys_addr_t p = virt_to_phys(buf);
150 
151 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
152 
153 	i = 0;
154 	do {
155 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
156 
157 		do {
158 			rc = xen_create_contiguous_region(
159 				p + (i << IO_TLB_SHIFT),
160 				get_order(slabs << IO_TLB_SHIFT),
161 				dma_bits, &dma_handle);
162 		} while (rc && dma_bits++ < max_dma_bits);
163 		if (rc)
164 			return rc;
165 
166 		i += slabs;
167 	} while (i < nslabs);
168 	return 0;
169 }
170 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
171 {
172 	if (!nr_tbl) {
173 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
174 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
175 	} else
176 		xen_io_tlb_nslabs = nr_tbl;
177 
178 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
179 }
180 
181 enum xen_swiotlb_err {
182 	XEN_SWIOTLB_UNKNOWN = 0,
183 	XEN_SWIOTLB_ENOMEM,
184 	XEN_SWIOTLB_EFIXUP
185 };
186 
187 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
188 {
189 	switch (err) {
190 	case XEN_SWIOTLB_ENOMEM:
191 		return "Cannot allocate Xen-SWIOTLB buffer\n";
192 	case XEN_SWIOTLB_EFIXUP:
193 		return "Failed to get contiguous memory for DMA from Xen!\n"\
194 		    "You either: don't have the permissions, do not have"\
195 		    " enough free memory under 4GB, or the hypervisor memory"\
196 		    " is too fragmented!";
197 	default:
198 		break;
199 	}
200 	return "";
201 }
202 int __ref xen_swiotlb_init(int verbose, bool early)
203 {
204 	unsigned long bytes, order;
205 	int rc = -ENOMEM;
206 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
207 	unsigned int repeat = 3;
208 
209 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
210 retry:
211 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
212 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
213 	/*
214 	 * Get IO TLB memory from any location.
215 	 */
216 	if (early)
217 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
218 	else {
219 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
220 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
221 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
222 			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
223 			if (xen_io_tlb_start)
224 				break;
225 			order--;
226 		}
227 		if (order != get_order(bytes)) {
228 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
229 				(PAGE_SIZE << order) >> 20);
230 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
231 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
232 		}
233 	}
234 	if (!xen_io_tlb_start) {
235 		m_ret = XEN_SWIOTLB_ENOMEM;
236 		goto error;
237 	}
238 	xen_io_tlb_end = xen_io_tlb_start + bytes;
239 	/*
240 	 * And replace that memory with pages under 4GB.
241 	 */
242 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
243 			       bytes,
244 			       xen_io_tlb_nslabs);
245 	if (rc) {
246 		if (early)
247 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
248 		else {
249 			free_pages((unsigned long)xen_io_tlb_start, order);
250 			xen_io_tlb_start = NULL;
251 		}
252 		m_ret = XEN_SWIOTLB_EFIXUP;
253 		goto error;
254 	}
255 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
256 	if (early) {
257 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
258 			 verbose))
259 			panic("Cannot allocate SWIOTLB buffer");
260 		rc = 0;
261 	} else
262 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
263 	return rc;
264 error:
265 	if (repeat--) {
266 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
267 					(xen_io_tlb_nslabs >> 1));
268 		pr_info("Lowering to %luMB\n",
269 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
270 		goto retry;
271 	}
272 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
273 	if (early)
274 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
275 	else
276 		free_pages((unsigned long)xen_io_tlb_start, order);
277 	return rc;
278 }
279 void *
280 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
281 			   dma_addr_t *dma_handle, gfp_t flags,
282 			   struct dma_attrs *attrs)
283 {
284 	void *ret;
285 	int order = get_order(size);
286 	u64 dma_mask = DMA_BIT_MASK(32);
287 	phys_addr_t phys;
288 	dma_addr_t dev_addr;
289 
290 	/*
291 	* Ignore region specifiers - the kernel's ideas of
292 	* pseudo-phys memory layout has nothing to do with the
293 	* machine physical layout.  We can't allocate highmem
294 	* because we can't return a pointer to it.
295 	*/
296 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
297 
298 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
299 		return ret;
300 
301 	/* On ARM this function returns an ioremap'ped virtual address for
302 	 * which virt_to_phys doesn't return the corresponding physical
303 	 * address. In fact on ARM virt_to_phys only works for kernel direct
304 	 * mapped RAM memory. Also see comment below.
305 	 */
306 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
307 
308 	if (!ret)
309 		return ret;
310 
311 	if (hwdev && hwdev->coherent_dma_mask)
312 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
313 
314 	/* At this point dma_handle is the physical address, next we are
315 	 * going to set it to the machine address.
316 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
317 	 * to *dma_handle. */
318 	phys = *dma_handle;
319 	dev_addr = xen_phys_to_bus(phys);
320 	if (((dev_addr + size - 1 <= dma_mask)) &&
321 	    !range_straddles_page_boundary(phys, size))
322 		*dma_handle = dev_addr;
323 	else {
324 		if (xen_create_contiguous_region(phys, order,
325 						 fls64(dma_mask), dma_handle) != 0) {
326 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
327 			return NULL;
328 		}
329 	}
330 	memset(ret, 0, size);
331 	return ret;
332 }
333 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
334 
335 void
336 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
337 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
338 {
339 	int order = get_order(size);
340 	phys_addr_t phys;
341 	u64 dma_mask = DMA_BIT_MASK(32);
342 
343 	if (dma_release_from_coherent(hwdev, order, vaddr))
344 		return;
345 
346 	if (hwdev && hwdev->coherent_dma_mask)
347 		dma_mask = hwdev->coherent_dma_mask;
348 
349 	/* do not use virt_to_phys because on ARM it doesn't return you the
350 	 * physical address */
351 	phys = xen_bus_to_phys(dev_addr);
352 
353 	if (((dev_addr + size - 1 > dma_mask)) ||
354 	    range_straddles_page_boundary(phys, size))
355 		xen_destroy_contiguous_region(phys, order);
356 
357 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
358 }
359 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
360 
361 
362 /*
363  * Map a single buffer of the indicated size for DMA in streaming mode.  The
364  * physical address to use is returned.
365  *
366  * Once the device is given the dma address, the device owns this memory until
367  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
368  */
369 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
370 				unsigned long offset, size_t size,
371 				enum dma_data_direction dir,
372 				struct dma_attrs *attrs)
373 {
374 	phys_addr_t map, phys = page_to_phys(page) + offset;
375 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
376 
377 	BUG_ON(dir == DMA_NONE);
378 	/*
379 	 * If the address happens to be in the device's DMA window,
380 	 * we can safely return the device addr and not worry about bounce
381 	 * buffering it.
382 	 */
383 	if (dma_capable(dev, dev_addr, size) &&
384 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force) {
385 		/* we are not interested in the dma_addr returned by
386 		 * xen_dma_map_page, only in the potential cache flushes executed
387 		 * by the function. */
388 		xen_dma_map_page(dev, page, offset, size, dir, attrs);
389 		return dev_addr;
390 	}
391 
392 	/*
393 	 * Oh well, have to allocate and map a bounce buffer.
394 	 */
395 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
396 
397 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
398 	if (map == SWIOTLB_MAP_ERROR)
399 		return DMA_ERROR_CODE;
400 
401 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
402 					map & ~PAGE_MASK, size, dir, attrs);
403 	dev_addr = xen_phys_to_bus(map);
404 
405 	/*
406 	 * Ensure that the address returned is DMA'ble
407 	 */
408 	if (!dma_capable(dev, dev_addr, size)) {
409 		swiotlb_tbl_unmap_single(dev, map, size, dir);
410 		dev_addr = 0;
411 	}
412 	return dev_addr;
413 }
414 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
415 
416 /*
417  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
418  * match what was provided for in a previous xen_swiotlb_map_page call.  All
419  * other usages are undefined.
420  *
421  * After this call, reads by the cpu to the buffer are guaranteed to see
422  * whatever the device wrote there.
423  */
424 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
425 			     size_t size, enum dma_data_direction dir,
426 				 struct dma_attrs *attrs)
427 {
428 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
429 
430 	BUG_ON(dir == DMA_NONE);
431 
432 	xen_dma_unmap_page(hwdev, paddr, size, dir, attrs);
433 
434 	/* NOTE: We use dev_addr here, not paddr! */
435 	if (is_xen_swiotlb_buffer(dev_addr)) {
436 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
437 		return;
438 	}
439 
440 	if (dir != DMA_FROM_DEVICE)
441 		return;
442 
443 	/*
444 	 * phys_to_virt doesn't work with hihgmem page but we could
445 	 * call dma_mark_clean() with hihgmem page here. However, we
446 	 * are fine since dma_mark_clean() is null on POWERPC. We can
447 	 * make dma_mark_clean() take a physical address if necessary.
448 	 */
449 	dma_mark_clean(phys_to_virt(paddr), size);
450 }
451 
452 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
453 			    size_t size, enum dma_data_direction dir,
454 			    struct dma_attrs *attrs)
455 {
456 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
457 }
458 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
459 
460 /*
461  * Make physical memory consistent for a single streaming mode DMA translation
462  * after a transfer.
463  *
464  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
465  * using the cpu, yet do not wish to teardown the dma mapping, you must
466  * call this function before doing so.  At the next point you give the dma
467  * address back to the card, you must first perform a
468  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
469  */
470 static void
471 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
472 			size_t size, enum dma_data_direction dir,
473 			enum dma_sync_target target)
474 {
475 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
476 
477 	BUG_ON(dir == DMA_NONE);
478 
479 	if (target == SYNC_FOR_CPU)
480 		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
481 
482 	/* NOTE: We use dev_addr here, not paddr! */
483 	if (is_xen_swiotlb_buffer(dev_addr))
484 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
485 
486 	if (target == SYNC_FOR_DEVICE)
487 		xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir);
488 
489 	if (dir != DMA_FROM_DEVICE)
490 		return;
491 
492 	dma_mark_clean(phys_to_virt(paddr), size);
493 }
494 
495 void
496 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
497 				size_t size, enum dma_data_direction dir)
498 {
499 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
500 }
501 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
502 
503 void
504 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
505 				   size_t size, enum dma_data_direction dir)
506 {
507 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
508 }
509 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
510 
511 /*
512  * Map a set of buffers described by scatterlist in streaming mode for DMA.
513  * This is the scatter-gather version of the above xen_swiotlb_map_page
514  * interface.  Here the scatter gather list elements are each tagged with the
515  * appropriate dma address and length.  They are obtained via
516  * sg_dma_{address,length}(SG).
517  *
518  * NOTE: An implementation may be able to use a smaller number of
519  *       DMA address/length pairs than there are SG table elements.
520  *       (for example via virtual mapping capabilities)
521  *       The routine returns the number of addr/length pairs actually
522  *       used, at most nents.
523  *
524  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
525  * same here.
526  */
527 int
528 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
529 			 int nelems, enum dma_data_direction dir,
530 			 struct dma_attrs *attrs)
531 {
532 	struct scatterlist *sg;
533 	int i;
534 
535 	BUG_ON(dir == DMA_NONE);
536 
537 	for_each_sg(sgl, sg, nelems, i) {
538 		phys_addr_t paddr = sg_phys(sg);
539 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
540 
541 		if (swiotlb_force ||
542 		    !dma_capable(hwdev, dev_addr, sg->length) ||
543 		    range_straddles_page_boundary(paddr, sg->length)) {
544 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
545 								 start_dma_addr,
546 								 sg_phys(sg),
547 								 sg->length,
548 								 dir);
549 			if (map == SWIOTLB_MAP_ERROR) {
550 				dev_warn(hwdev, "swiotlb buffer is full\n");
551 				/* Don't panic here, we expect map_sg users
552 				   to do proper error handling. */
553 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
554 							   attrs);
555 				sg_dma_len(sgl) = 0;
556 				return 0;
557 			}
558 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
559 						map & ~PAGE_MASK,
560 						sg->length,
561 						dir,
562 						attrs);
563 			sg->dma_address = xen_phys_to_bus(map);
564 		} else {
565 			/* we are not interested in the dma_addr returned by
566 			 * xen_dma_map_page, only in the potential cache flushes executed
567 			 * by the function. */
568 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
569 						paddr & ~PAGE_MASK,
570 						sg->length,
571 						dir,
572 						attrs);
573 			sg->dma_address = dev_addr;
574 		}
575 		sg_dma_len(sg) = sg->length;
576 	}
577 	return nelems;
578 }
579 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
580 
581 /*
582  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
583  * concerning calls here are the same as for swiotlb_unmap_page() above.
584  */
585 void
586 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
587 			   int nelems, enum dma_data_direction dir,
588 			   struct dma_attrs *attrs)
589 {
590 	struct scatterlist *sg;
591 	int i;
592 
593 	BUG_ON(dir == DMA_NONE);
594 
595 	for_each_sg(sgl, sg, nelems, i)
596 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
597 
598 }
599 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
600 
601 /*
602  * Make physical memory consistent for a set of streaming mode DMA translations
603  * after a transfer.
604  *
605  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
606  * and usage.
607  */
608 static void
609 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
610 		    int nelems, enum dma_data_direction dir,
611 		    enum dma_sync_target target)
612 {
613 	struct scatterlist *sg;
614 	int i;
615 
616 	for_each_sg(sgl, sg, nelems, i)
617 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
618 					sg_dma_len(sg), dir, target);
619 }
620 
621 void
622 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
623 			    int nelems, enum dma_data_direction dir)
624 {
625 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
626 }
627 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
628 
629 void
630 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
631 			       int nelems, enum dma_data_direction dir)
632 {
633 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
634 }
635 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
636 
637 int
638 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
639 {
640 	return !dma_addr;
641 }
642 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
643 
644 /*
645  * Return whether the given device DMA address mask can be supported
646  * properly.  For example, if your device can only drive the low 24-bits
647  * during bus mastering, then you would pass 0x00ffffff as the mask to
648  * this function.
649  */
650 int
651 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
652 {
653 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
654 }
655 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
656 
657 int
658 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
659 {
660 	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
661 		return -EIO;
662 
663 	*dev->dma_mask = dma_mask;
664 
665 	return 0;
666 }
667 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
668