1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/bootmem.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 #ifndef CONFIG_X86 57 static unsigned long dma_alloc_coherent_mask(struct device *dev, 58 gfp_t gfp) 59 { 60 unsigned long dma_mask = 0; 61 62 dma_mask = dev->coherent_dma_mask; 63 if (!dma_mask) 64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32); 65 66 return dma_mask; 67 } 68 #endif 69 70 static char *xen_io_tlb_start, *xen_io_tlb_end; 71 static unsigned long xen_io_tlb_nslabs; 72 /* 73 * Quick lookup value of the bus address of the IOTLB. 74 */ 75 76 static u64 start_dma_addr; 77 78 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 79 { 80 return phys_to_machine(XPADDR(paddr)).maddr; 81 } 82 83 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 84 { 85 return machine_to_phys(XMADDR(baddr)).paddr; 86 } 87 88 static inline dma_addr_t xen_virt_to_bus(void *address) 89 { 90 return xen_phys_to_bus(virt_to_phys(address)); 91 } 92 93 static int check_pages_physically_contiguous(unsigned long pfn, 94 unsigned int offset, 95 size_t length) 96 { 97 unsigned long next_mfn; 98 int i; 99 int nr_pages; 100 101 next_mfn = pfn_to_mfn(pfn); 102 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 103 104 for (i = 1; i < nr_pages; i++) { 105 if (pfn_to_mfn(++pfn) != ++next_mfn) 106 return 0; 107 } 108 return 1; 109 } 110 111 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 112 { 113 unsigned long pfn = PFN_DOWN(p); 114 unsigned int offset = p & ~PAGE_MASK; 115 116 if (offset + size <= PAGE_SIZE) 117 return 0; 118 if (check_pages_physically_contiguous(pfn, offset, size)) 119 return 0; 120 return 1; 121 } 122 123 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 124 { 125 unsigned long mfn = PFN_DOWN(dma_addr); 126 unsigned long pfn = mfn_to_local_pfn(mfn); 127 phys_addr_t paddr; 128 129 /* If the address is outside our domain, it CAN 130 * have the same virtual address as another address 131 * in our domain. Therefore _only_ check address within our domain. 132 */ 133 if (pfn_valid(pfn)) { 134 paddr = PFN_PHYS(pfn); 135 return paddr >= virt_to_phys(xen_io_tlb_start) && 136 paddr < virt_to_phys(xen_io_tlb_end); 137 } 138 return 0; 139 } 140 141 static int max_dma_bits = 32; 142 143 static int 144 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 145 { 146 int i, rc; 147 int dma_bits; 148 dma_addr_t dma_handle; 149 phys_addr_t p = virt_to_phys(buf); 150 151 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 152 153 i = 0; 154 do { 155 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 156 157 do { 158 rc = xen_create_contiguous_region( 159 p + (i << IO_TLB_SHIFT), 160 get_order(slabs << IO_TLB_SHIFT), 161 dma_bits, &dma_handle); 162 } while (rc && dma_bits++ < max_dma_bits); 163 if (rc) 164 return rc; 165 166 i += slabs; 167 } while (i < nslabs); 168 return 0; 169 } 170 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 171 { 172 if (!nr_tbl) { 173 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 174 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 175 } else 176 xen_io_tlb_nslabs = nr_tbl; 177 178 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 179 } 180 181 enum xen_swiotlb_err { 182 XEN_SWIOTLB_UNKNOWN = 0, 183 XEN_SWIOTLB_ENOMEM, 184 XEN_SWIOTLB_EFIXUP 185 }; 186 187 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 188 { 189 switch (err) { 190 case XEN_SWIOTLB_ENOMEM: 191 return "Cannot allocate Xen-SWIOTLB buffer\n"; 192 case XEN_SWIOTLB_EFIXUP: 193 return "Failed to get contiguous memory for DMA from Xen!\n"\ 194 "You either: don't have the permissions, do not have"\ 195 " enough free memory under 4GB, or the hypervisor memory"\ 196 " is too fragmented!"; 197 default: 198 break; 199 } 200 return ""; 201 } 202 int __ref xen_swiotlb_init(int verbose, bool early) 203 { 204 unsigned long bytes, order; 205 int rc = -ENOMEM; 206 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 207 unsigned int repeat = 3; 208 209 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 210 retry: 211 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 212 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 213 /* 214 * Get IO TLB memory from any location. 215 */ 216 if (early) 217 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 218 else { 219 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 220 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 221 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 222 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order); 223 if (xen_io_tlb_start) 224 break; 225 order--; 226 } 227 if (order != get_order(bytes)) { 228 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 229 (PAGE_SIZE << order) >> 20); 230 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 231 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 232 } 233 } 234 if (!xen_io_tlb_start) { 235 m_ret = XEN_SWIOTLB_ENOMEM; 236 goto error; 237 } 238 xen_io_tlb_end = xen_io_tlb_start + bytes; 239 /* 240 * And replace that memory with pages under 4GB. 241 */ 242 rc = xen_swiotlb_fixup(xen_io_tlb_start, 243 bytes, 244 xen_io_tlb_nslabs); 245 if (rc) { 246 if (early) 247 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 248 else { 249 free_pages((unsigned long)xen_io_tlb_start, order); 250 xen_io_tlb_start = NULL; 251 } 252 m_ret = XEN_SWIOTLB_EFIXUP; 253 goto error; 254 } 255 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 256 if (early) { 257 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 258 verbose)) 259 panic("Cannot allocate SWIOTLB buffer"); 260 rc = 0; 261 } else 262 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 263 return rc; 264 error: 265 if (repeat--) { 266 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 267 (xen_io_tlb_nslabs >> 1)); 268 pr_info("Lowering to %luMB\n", 269 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 270 goto retry; 271 } 272 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 273 if (early) 274 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 275 else 276 free_pages((unsigned long)xen_io_tlb_start, order); 277 return rc; 278 } 279 void * 280 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 281 dma_addr_t *dma_handle, gfp_t flags, 282 struct dma_attrs *attrs) 283 { 284 void *ret; 285 int order = get_order(size); 286 u64 dma_mask = DMA_BIT_MASK(32); 287 phys_addr_t phys; 288 dma_addr_t dev_addr; 289 290 /* 291 * Ignore region specifiers - the kernel's ideas of 292 * pseudo-phys memory layout has nothing to do with the 293 * machine physical layout. We can't allocate highmem 294 * because we can't return a pointer to it. 295 */ 296 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 297 298 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 299 return ret; 300 301 /* On ARM this function returns an ioremap'ped virtual address for 302 * which virt_to_phys doesn't return the corresponding physical 303 * address. In fact on ARM virt_to_phys only works for kernel direct 304 * mapped RAM memory. Also see comment below. 305 */ 306 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 307 308 if (!ret) 309 return ret; 310 311 if (hwdev && hwdev->coherent_dma_mask) 312 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 313 314 /* At this point dma_handle is the physical address, next we are 315 * going to set it to the machine address. 316 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 317 * to *dma_handle. */ 318 phys = *dma_handle; 319 dev_addr = xen_phys_to_bus(phys); 320 if (((dev_addr + size - 1 <= dma_mask)) && 321 !range_straddles_page_boundary(phys, size)) 322 *dma_handle = dev_addr; 323 else { 324 if (xen_create_contiguous_region(phys, order, 325 fls64(dma_mask), dma_handle) != 0) { 326 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 327 return NULL; 328 } 329 } 330 memset(ret, 0, size); 331 return ret; 332 } 333 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 334 335 void 336 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 337 dma_addr_t dev_addr, struct dma_attrs *attrs) 338 { 339 int order = get_order(size); 340 phys_addr_t phys; 341 u64 dma_mask = DMA_BIT_MASK(32); 342 343 if (dma_release_from_coherent(hwdev, order, vaddr)) 344 return; 345 346 if (hwdev && hwdev->coherent_dma_mask) 347 dma_mask = hwdev->coherent_dma_mask; 348 349 /* do not use virt_to_phys because on ARM it doesn't return you the 350 * physical address */ 351 phys = xen_bus_to_phys(dev_addr); 352 353 if (((dev_addr + size - 1 > dma_mask)) || 354 range_straddles_page_boundary(phys, size)) 355 xen_destroy_contiguous_region(phys, order); 356 357 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 358 } 359 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 360 361 362 /* 363 * Map a single buffer of the indicated size for DMA in streaming mode. The 364 * physical address to use is returned. 365 * 366 * Once the device is given the dma address, the device owns this memory until 367 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 368 */ 369 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 370 unsigned long offset, size_t size, 371 enum dma_data_direction dir, 372 struct dma_attrs *attrs) 373 { 374 phys_addr_t map, phys = page_to_phys(page) + offset; 375 dma_addr_t dev_addr = xen_phys_to_bus(phys); 376 377 BUG_ON(dir == DMA_NONE); 378 /* 379 * If the address happens to be in the device's DMA window, 380 * we can safely return the device addr and not worry about bounce 381 * buffering it. 382 */ 383 if (dma_capable(dev, dev_addr, size) && 384 !range_straddles_page_boundary(phys, size) && !swiotlb_force) { 385 /* we are not interested in the dma_addr returned by 386 * xen_dma_map_page, only in the potential cache flushes executed 387 * by the function. */ 388 xen_dma_map_page(dev, page, offset, size, dir, attrs); 389 return dev_addr; 390 } 391 392 /* 393 * Oh well, have to allocate and map a bounce buffer. 394 */ 395 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 396 397 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 398 if (map == SWIOTLB_MAP_ERROR) 399 return DMA_ERROR_CODE; 400 401 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 402 map & ~PAGE_MASK, size, dir, attrs); 403 dev_addr = xen_phys_to_bus(map); 404 405 /* 406 * Ensure that the address returned is DMA'ble 407 */ 408 if (!dma_capable(dev, dev_addr, size)) { 409 swiotlb_tbl_unmap_single(dev, map, size, dir); 410 dev_addr = 0; 411 } 412 return dev_addr; 413 } 414 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 415 416 /* 417 * Unmap a single streaming mode DMA translation. The dma_addr and size must 418 * match what was provided for in a previous xen_swiotlb_map_page call. All 419 * other usages are undefined. 420 * 421 * After this call, reads by the cpu to the buffer are guaranteed to see 422 * whatever the device wrote there. 423 */ 424 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 425 size_t size, enum dma_data_direction dir, 426 struct dma_attrs *attrs) 427 { 428 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 429 430 BUG_ON(dir == DMA_NONE); 431 432 xen_dma_unmap_page(hwdev, paddr, size, dir, attrs); 433 434 /* NOTE: We use dev_addr here, not paddr! */ 435 if (is_xen_swiotlb_buffer(dev_addr)) { 436 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); 437 return; 438 } 439 440 if (dir != DMA_FROM_DEVICE) 441 return; 442 443 /* 444 * phys_to_virt doesn't work with hihgmem page but we could 445 * call dma_mark_clean() with hihgmem page here. However, we 446 * are fine since dma_mark_clean() is null on POWERPC. We can 447 * make dma_mark_clean() take a physical address if necessary. 448 */ 449 dma_mark_clean(phys_to_virt(paddr), size); 450 } 451 452 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 453 size_t size, enum dma_data_direction dir, 454 struct dma_attrs *attrs) 455 { 456 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 457 } 458 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 459 460 /* 461 * Make physical memory consistent for a single streaming mode DMA translation 462 * after a transfer. 463 * 464 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 465 * using the cpu, yet do not wish to teardown the dma mapping, you must 466 * call this function before doing so. At the next point you give the dma 467 * address back to the card, you must first perform a 468 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 469 */ 470 static void 471 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 472 size_t size, enum dma_data_direction dir, 473 enum dma_sync_target target) 474 { 475 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 476 477 BUG_ON(dir == DMA_NONE); 478 479 if (target == SYNC_FOR_CPU) 480 xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir); 481 482 /* NOTE: We use dev_addr here, not paddr! */ 483 if (is_xen_swiotlb_buffer(dev_addr)) 484 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 485 486 if (target == SYNC_FOR_DEVICE) 487 xen_dma_sync_single_for_cpu(hwdev, paddr, size, dir); 488 489 if (dir != DMA_FROM_DEVICE) 490 return; 491 492 dma_mark_clean(phys_to_virt(paddr), size); 493 } 494 495 void 496 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 497 size_t size, enum dma_data_direction dir) 498 { 499 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 500 } 501 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 502 503 void 504 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 505 size_t size, enum dma_data_direction dir) 506 { 507 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 508 } 509 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 510 511 /* 512 * Map a set of buffers described by scatterlist in streaming mode for DMA. 513 * This is the scatter-gather version of the above xen_swiotlb_map_page 514 * interface. Here the scatter gather list elements are each tagged with the 515 * appropriate dma address and length. They are obtained via 516 * sg_dma_{address,length}(SG). 517 * 518 * NOTE: An implementation may be able to use a smaller number of 519 * DMA address/length pairs than there are SG table elements. 520 * (for example via virtual mapping capabilities) 521 * The routine returns the number of addr/length pairs actually 522 * used, at most nents. 523 * 524 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 525 * same here. 526 */ 527 int 528 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 529 int nelems, enum dma_data_direction dir, 530 struct dma_attrs *attrs) 531 { 532 struct scatterlist *sg; 533 int i; 534 535 BUG_ON(dir == DMA_NONE); 536 537 for_each_sg(sgl, sg, nelems, i) { 538 phys_addr_t paddr = sg_phys(sg); 539 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 540 541 if (swiotlb_force || 542 !dma_capable(hwdev, dev_addr, sg->length) || 543 range_straddles_page_boundary(paddr, sg->length)) { 544 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 545 start_dma_addr, 546 sg_phys(sg), 547 sg->length, 548 dir); 549 if (map == SWIOTLB_MAP_ERROR) { 550 dev_warn(hwdev, "swiotlb buffer is full\n"); 551 /* Don't panic here, we expect map_sg users 552 to do proper error handling. */ 553 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 554 attrs); 555 sg_dma_len(sgl) = 0; 556 return 0; 557 } 558 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 559 map & ~PAGE_MASK, 560 sg->length, 561 dir, 562 attrs); 563 sg->dma_address = xen_phys_to_bus(map); 564 } else { 565 /* we are not interested in the dma_addr returned by 566 * xen_dma_map_page, only in the potential cache flushes executed 567 * by the function. */ 568 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 569 paddr & ~PAGE_MASK, 570 sg->length, 571 dir, 572 attrs); 573 sg->dma_address = dev_addr; 574 } 575 sg_dma_len(sg) = sg->length; 576 } 577 return nelems; 578 } 579 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 580 581 /* 582 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 583 * concerning calls here are the same as for swiotlb_unmap_page() above. 584 */ 585 void 586 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 587 int nelems, enum dma_data_direction dir, 588 struct dma_attrs *attrs) 589 { 590 struct scatterlist *sg; 591 int i; 592 593 BUG_ON(dir == DMA_NONE); 594 595 for_each_sg(sgl, sg, nelems, i) 596 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 597 598 } 599 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 600 601 /* 602 * Make physical memory consistent for a set of streaming mode DMA translations 603 * after a transfer. 604 * 605 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 606 * and usage. 607 */ 608 static void 609 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 610 int nelems, enum dma_data_direction dir, 611 enum dma_sync_target target) 612 { 613 struct scatterlist *sg; 614 int i; 615 616 for_each_sg(sgl, sg, nelems, i) 617 xen_swiotlb_sync_single(hwdev, sg->dma_address, 618 sg_dma_len(sg), dir, target); 619 } 620 621 void 622 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 623 int nelems, enum dma_data_direction dir) 624 { 625 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 626 } 627 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 628 629 void 630 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 631 int nelems, enum dma_data_direction dir) 632 { 633 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 634 } 635 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 636 637 int 638 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 639 { 640 return !dma_addr; 641 } 642 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 643 644 /* 645 * Return whether the given device DMA address mask can be supported 646 * properly. For example, if your device can only drive the low 24-bits 647 * during bus mastering, then you would pass 0x00ffffff as the mask to 648 * this function. 649 */ 650 int 651 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 652 { 653 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 654 } 655 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 656 657 int 658 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask) 659 { 660 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask)) 661 return -EIO; 662 663 *dev->dma_mask = dma_mask; 664 665 return 0; 666 } 667 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask); 668