xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 9cfc5c90)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 					    gfp_t gfp)
59 {
60 	unsigned long dma_mask = 0;
61 
62 	dma_mask = dev->coherent_dma_mask;
63 	if (!dma_mask)
64 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65 
66 	return dma_mask;
67 }
68 #endif
69 
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73  * Quick lookup value of the bus address of the IOTLB.
74  */
75 
76 static u64 start_dma_addr;
77 
78 /*
79  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
80  * can be 32bit when dma_addr_t is 64bit leading to a loss in
81  * information if the shift is done before casting to 64bit.
82  */
83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84 {
85 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
86 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
87 
88 	dma |= paddr & ~XEN_PAGE_MASK;
89 
90 	return dma;
91 }
92 
93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94 {
95 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
96 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 	phys_addr_t paddr = dma;
98 
99 	paddr |= baddr & ~XEN_PAGE_MASK;
100 
101 	return paddr;
102 }
103 
104 static inline dma_addr_t xen_virt_to_bus(void *address)
105 {
106 	return xen_phys_to_bus(virt_to_phys(address));
107 }
108 
109 static int check_pages_physically_contiguous(unsigned long xen_pfn,
110 					     unsigned int offset,
111 					     size_t length)
112 {
113 	unsigned long next_bfn;
114 	int i;
115 	int nr_pages;
116 
117 	next_bfn = pfn_to_bfn(xen_pfn);
118 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119 
120 	for (i = 1; i < nr_pages; i++) {
121 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122 			return 0;
123 	}
124 	return 1;
125 }
126 
127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128 {
129 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
130 	unsigned int offset = p & ~XEN_PAGE_MASK;
131 
132 	if (offset + size <= XEN_PAGE_SIZE)
133 		return 0;
134 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135 		return 0;
136 	return 1;
137 }
138 
139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
140 {
141 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
142 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
143 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144 
145 	/* If the address is outside our domain, it CAN
146 	 * have the same virtual address as another address
147 	 * in our domain. Therefore _only_ check address within our domain.
148 	 */
149 	if (pfn_valid(PFN_DOWN(paddr))) {
150 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
151 		       paddr < virt_to_phys(xen_io_tlb_end);
152 	}
153 	return 0;
154 }
155 
156 static int max_dma_bits = 32;
157 
158 static int
159 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
160 {
161 	int i, rc;
162 	int dma_bits;
163 	dma_addr_t dma_handle;
164 	phys_addr_t p = virt_to_phys(buf);
165 
166 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
167 
168 	i = 0;
169 	do {
170 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
171 
172 		do {
173 			rc = xen_create_contiguous_region(
174 				p + (i << IO_TLB_SHIFT),
175 				get_order(slabs << IO_TLB_SHIFT),
176 				dma_bits, &dma_handle);
177 		} while (rc && dma_bits++ < max_dma_bits);
178 		if (rc)
179 			return rc;
180 
181 		i += slabs;
182 	} while (i < nslabs);
183 	return 0;
184 }
185 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
186 {
187 	if (!nr_tbl) {
188 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
189 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
190 	} else
191 		xen_io_tlb_nslabs = nr_tbl;
192 
193 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
194 }
195 
196 enum xen_swiotlb_err {
197 	XEN_SWIOTLB_UNKNOWN = 0,
198 	XEN_SWIOTLB_ENOMEM,
199 	XEN_SWIOTLB_EFIXUP
200 };
201 
202 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
203 {
204 	switch (err) {
205 	case XEN_SWIOTLB_ENOMEM:
206 		return "Cannot allocate Xen-SWIOTLB buffer\n";
207 	case XEN_SWIOTLB_EFIXUP:
208 		return "Failed to get contiguous memory for DMA from Xen!\n"\
209 		    "You either: don't have the permissions, do not have"\
210 		    " enough free memory under 4GB, or the hypervisor memory"\
211 		    " is too fragmented!";
212 	default:
213 		break;
214 	}
215 	return "";
216 }
217 int __ref xen_swiotlb_init(int verbose, bool early)
218 {
219 	unsigned long bytes, order;
220 	int rc = -ENOMEM;
221 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222 	unsigned int repeat = 3;
223 
224 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225 retry:
226 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
228 	/*
229 	 * Get IO TLB memory from any location.
230 	 */
231 	if (early)
232 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
233 	else {
234 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
235 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
236 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238 			if (xen_io_tlb_start)
239 				break;
240 			order--;
241 		}
242 		if (order != get_order(bytes)) {
243 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
244 				(PAGE_SIZE << order) >> 20);
245 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
246 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
247 		}
248 	}
249 	if (!xen_io_tlb_start) {
250 		m_ret = XEN_SWIOTLB_ENOMEM;
251 		goto error;
252 	}
253 	xen_io_tlb_end = xen_io_tlb_start + bytes;
254 	/*
255 	 * And replace that memory with pages under 4GB.
256 	 */
257 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
258 			       bytes,
259 			       xen_io_tlb_nslabs);
260 	if (rc) {
261 		if (early)
262 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
263 		else {
264 			free_pages((unsigned long)xen_io_tlb_start, order);
265 			xen_io_tlb_start = NULL;
266 		}
267 		m_ret = XEN_SWIOTLB_EFIXUP;
268 		goto error;
269 	}
270 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271 	if (early) {
272 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
273 			 verbose))
274 			panic("Cannot allocate SWIOTLB buffer");
275 		rc = 0;
276 	} else
277 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
278 	return rc;
279 error:
280 	if (repeat--) {
281 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
282 					(xen_io_tlb_nslabs >> 1));
283 		pr_info("Lowering to %luMB\n",
284 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
285 		goto retry;
286 	}
287 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
288 	if (early)
289 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
290 	else
291 		free_pages((unsigned long)xen_io_tlb_start, order);
292 	return rc;
293 }
294 void *
295 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
296 			   dma_addr_t *dma_handle, gfp_t flags,
297 			   struct dma_attrs *attrs)
298 {
299 	void *ret;
300 	int order = get_order(size);
301 	u64 dma_mask = DMA_BIT_MASK(32);
302 	phys_addr_t phys;
303 	dma_addr_t dev_addr;
304 
305 	/*
306 	* Ignore region specifiers - the kernel's ideas of
307 	* pseudo-phys memory layout has nothing to do with the
308 	* machine physical layout.  We can't allocate highmem
309 	* because we can't return a pointer to it.
310 	*/
311 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
312 
313 	/* On ARM this function returns an ioremap'ped virtual address for
314 	 * which virt_to_phys doesn't return the corresponding physical
315 	 * address. In fact on ARM virt_to_phys only works for kernel direct
316 	 * mapped RAM memory. Also see comment below.
317 	 */
318 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
319 
320 	if (!ret)
321 		return ret;
322 
323 	if (hwdev && hwdev->coherent_dma_mask)
324 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
325 
326 	/* At this point dma_handle is the physical address, next we are
327 	 * going to set it to the machine address.
328 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
329 	 * to *dma_handle. */
330 	phys = *dma_handle;
331 	dev_addr = xen_phys_to_bus(phys);
332 	if (((dev_addr + size - 1 <= dma_mask)) &&
333 	    !range_straddles_page_boundary(phys, size))
334 		*dma_handle = dev_addr;
335 	else {
336 		if (xen_create_contiguous_region(phys, order,
337 						 fls64(dma_mask), dma_handle) != 0) {
338 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
339 			return NULL;
340 		}
341 	}
342 	memset(ret, 0, size);
343 	return ret;
344 }
345 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
346 
347 void
348 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
349 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
350 {
351 	int order = get_order(size);
352 	phys_addr_t phys;
353 	u64 dma_mask = DMA_BIT_MASK(32);
354 
355 	if (hwdev && hwdev->coherent_dma_mask)
356 		dma_mask = hwdev->coherent_dma_mask;
357 
358 	/* do not use virt_to_phys because on ARM it doesn't return you the
359 	 * physical address */
360 	phys = xen_bus_to_phys(dev_addr);
361 
362 	if (((dev_addr + size - 1 > dma_mask)) ||
363 	    range_straddles_page_boundary(phys, size))
364 		xen_destroy_contiguous_region(phys, order);
365 
366 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
367 }
368 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
369 
370 
371 /*
372  * Map a single buffer of the indicated size for DMA in streaming mode.  The
373  * physical address to use is returned.
374  *
375  * Once the device is given the dma address, the device owns this memory until
376  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
377  */
378 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
379 				unsigned long offset, size_t size,
380 				enum dma_data_direction dir,
381 				struct dma_attrs *attrs)
382 {
383 	phys_addr_t map, phys = page_to_phys(page) + offset;
384 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
385 
386 	BUG_ON(dir == DMA_NONE);
387 	/*
388 	 * If the address happens to be in the device's DMA window,
389 	 * we can safely return the device addr and not worry about bounce
390 	 * buffering it.
391 	 */
392 	if (dma_capable(dev, dev_addr, size) &&
393 	    !range_straddles_page_boundary(phys, size) &&
394 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
395 		!swiotlb_force) {
396 		/* we are not interested in the dma_addr returned by
397 		 * xen_dma_map_page, only in the potential cache flushes executed
398 		 * by the function. */
399 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
400 		return dev_addr;
401 	}
402 
403 	/*
404 	 * Oh well, have to allocate and map a bounce buffer.
405 	 */
406 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
407 
408 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
409 	if (map == SWIOTLB_MAP_ERROR)
410 		return DMA_ERROR_CODE;
411 
412 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
413 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
414 	dev_addr = xen_phys_to_bus(map);
415 
416 	/*
417 	 * Ensure that the address returned is DMA'ble
418 	 */
419 	if (!dma_capable(dev, dev_addr, size)) {
420 		swiotlb_tbl_unmap_single(dev, map, size, dir);
421 		dev_addr = 0;
422 	}
423 	return dev_addr;
424 }
425 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
426 
427 /*
428  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
429  * match what was provided for in a previous xen_swiotlb_map_page call.  All
430  * other usages are undefined.
431  *
432  * After this call, reads by the cpu to the buffer are guaranteed to see
433  * whatever the device wrote there.
434  */
435 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
436 			     size_t size, enum dma_data_direction dir,
437 				 struct dma_attrs *attrs)
438 {
439 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
440 
441 	BUG_ON(dir == DMA_NONE);
442 
443 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
444 
445 	/* NOTE: We use dev_addr here, not paddr! */
446 	if (is_xen_swiotlb_buffer(dev_addr)) {
447 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
448 		return;
449 	}
450 
451 	if (dir != DMA_FROM_DEVICE)
452 		return;
453 
454 	/*
455 	 * phys_to_virt doesn't work with hihgmem page but we could
456 	 * call dma_mark_clean() with hihgmem page here. However, we
457 	 * are fine since dma_mark_clean() is null on POWERPC. We can
458 	 * make dma_mark_clean() take a physical address if necessary.
459 	 */
460 	dma_mark_clean(phys_to_virt(paddr), size);
461 }
462 
463 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
464 			    size_t size, enum dma_data_direction dir,
465 			    struct dma_attrs *attrs)
466 {
467 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
468 }
469 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
470 
471 /*
472  * Make physical memory consistent for a single streaming mode DMA translation
473  * after a transfer.
474  *
475  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
476  * using the cpu, yet do not wish to teardown the dma mapping, you must
477  * call this function before doing so.  At the next point you give the dma
478  * address back to the card, you must first perform a
479  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
480  */
481 static void
482 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
483 			size_t size, enum dma_data_direction dir,
484 			enum dma_sync_target target)
485 {
486 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
487 
488 	BUG_ON(dir == DMA_NONE);
489 
490 	if (target == SYNC_FOR_CPU)
491 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
492 
493 	/* NOTE: We use dev_addr here, not paddr! */
494 	if (is_xen_swiotlb_buffer(dev_addr))
495 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
496 
497 	if (target == SYNC_FOR_DEVICE)
498 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
499 
500 	if (dir != DMA_FROM_DEVICE)
501 		return;
502 
503 	dma_mark_clean(phys_to_virt(paddr), size);
504 }
505 
506 void
507 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
508 				size_t size, enum dma_data_direction dir)
509 {
510 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
511 }
512 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
513 
514 void
515 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
516 				   size_t size, enum dma_data_direction dir)
517 {
518 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
519 }
520 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
521 
522 /*
523  * Map a set of buffers described by scatterlist in streaming mode for DMA.
524  * This is the scatter-gather version of the above xen_swiotlb_map_page
525  * interface.  Here the scatter gather list elements are each tagged with the
526  * appropriate dma address and length.  They are obtained via
527  * sg_dma_{address,length}(SG).
528  *
529  * NOTE: An implementation may be able to use a smaller number of
530  *       DMA address/length pairs than there are SG table elements.
531  *       (for example via virtual mapping capabilities)
532  *       The routine returns the number of addr/length pairs actually
533  *       used, at most nents.
534  *
535  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
536  * same here.
537  */
538 int
539 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
540 			 int nelems, enum dma_data_direction dir,
541 			 struct dma_attrs *attrs)
542 {
543 	struct scatterlist *sg;
544 	int i;
545 
546 	BUG_ON(dir == DMA_NONE);
547 
548 	for_each_sg(sgl, sg, nelems, i) {
549 		phys_addr_t paddr = sg_phys(sg);
550 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
551 
552 		if (swiotlb_force ||
553 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
554 		    !dma_capable(hwdev, dev_addr, sg->length) ||
555 		    range_straddles_page_boundary(paddr, sg->length)) {
556 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
557 								 start_dma_addr,
558 								 sg_phys(sg),
559 								 sg->length,
560 								 dir);
561 			if (map == SWIOTLB_MAP_ERROR) {
562 				dev_warn(hwdev, "swiotlb buffer is full\n");
563 				/* Don't panic here, we expect map_sg users
564 				   to do proper error handling. */
565 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
566 							   attrs);
567 				sg_dma_len(sgl) = 0;
568 				return 0;
569 			}
570 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
571 						dev_addr,
572 						map & ~PAGE_MASK,
573 						sg->length,
574 						dir,
575 						attrs);
576 			sg->dma_address = xen_phys_to_bus(map);
577 		} else {
578 			/* we are not interested in the dma_addr returned by
579 			 * xen_dma_map_page, only in the potential cache flushes executed
580 			 * by the function. */
581 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
582 						dev_addr,
583 						paddr & ~PAGE_MASK,
584 						sg->length,
585 						dir,
586 						attrs);
587 			sg->dma_address = dev_addr;
588 		}
589 		sg_dma_len(sg) = sg->length;
590 	}
591 	return nelems;
592 }
593 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
594 
595 /*
596  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
597  * concerning calls here are the same as for swiotlb_unmap_page() above.
598  */
599 void
600 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
601 			   int nelems, enum dma_data_direction dir,
602 			   struct dma_attrs *attrs)
603 {
604 	struct scatterlist *sg;
605 	int i;
606 
607 	BUG_ON(dir == DMA_NONE);
608 
609 	for_each_sg(sgl, sg, nelems, i)
610 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
611 
612 }
613 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
614 
615 /*
616  * Make physical memory consistent for a set of streaming mode DMA translations
617  * after a transfer.
618  *
619  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
620  * and usage.
621  */
622 static void
623 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
624 		    int nelems, enum dma_data_direction dir,
625 		    enum dma_sync_target target)
626 {
627 	struct scatterlist *sg;
628 	int i;
629 
630 	for_each_sg(sgl, sg, nelems, i)
631 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
632 					sg_dma_len(sg), dir, target);
633 }
634 
635 void
636 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
637 			    int nelems, enum dma_data_direction dir)
638 {
639 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
640 }
641 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
642 
643 void
644 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
645 			       int nelems, enum dma_data_direction dir)
646 {
647 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
648 }
649 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
650 
651 int
652 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
653 {
654 	return !dma_addr;
655 }
656 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
657 
658 /*
659  * Return whether the given device DMA address mask can be supported
660  * properly.  For example, if your device can only drive the low 24-bits
661  * during bus mastering, then you would pass 0x00ffffff as the mask to
662  * this function.
663  */
664 int
665 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
666 {
667 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
668 }
669 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
670 
671 int
672 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
673 {
674 	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
675 		return -EIO;
676 
677 	*dev->dma_mask = dma_mask;
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
682