1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/bootmem.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 #ifndef CONFIG_X86 57 static unsigned long dma_alloc_coherent_mask(struct device *dev, 58 gfp_t gfp) 59 { 60 unsigned long dma_mask = 0; 61 62 dma_mask = dev->coherent_dma_mask; 63 if (!dma_mask) 64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32); 65 66 return dma_mask; 67 } 68 #endif 69 70 static char *xen_io_tlb_start, *xen_io_tlb_end; 71 static unsigned long xen_io_tlb_nslabs; 72 /* 73 * Quick lookup value of the bus address of the IOTLB. 74 */ 75 76 static u64 start_dma_addr; 77 78 /* 79 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 80 * can be 32bit when dma_addr_t is 64bit leading to a loss in 81 * information if the shift is done before casting to 64bit. 82 */ 83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 84 { 85 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 86 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 87 88 dma |= paddr & ~XEN_PAGE_MASK; 89 90 return dma; 91 } 92 93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 94 { 95 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 96 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 97 phys_addr_t paddr = dma; 98 99 paddr |= baddr & ~XEN_PAGE_MASK; 100 101 return paddr; 102 } 103 104 static inline dma_addr_t xen_virt_to_bus(void *address) 105 { 106 return xen_phys_to_bus(virt_to_phys(address)); 107 } 108 109 static int check_pages_physically_contiguous(unsigned long xen_pfn, 110 unsigned int offset, 111 size_t length) 112 { 113 unsigned long next_bfn; 114 int i; 115 int nr_pages; 116 117 next_bfn = pfn_to_bfn(xen_pfn); 118 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 119 120 for (i = 1; i < nr_pages; i++) { 121 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 122 return 0; 123 } 124 return 1; 125 } 126 127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 128 { 129 unsigned long xen_pfn = XEN_PFN_DOWN(p); 130 unsigned int offset = p & ~XEN_PAGE_MASK; 131 132 if (offset + size <= XEN_PAGE_SIZE) 133 return 0; 134 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 135 return 0; 136 return 1; 137 } 138 139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 140 { 141 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 142 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 143 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 144 145 /* If the address is outside our domain, it CAN 146 * have the same virtual address as another address 147 * in our domain. Therefore _only_ check address within our domain. 148 */ 149 if (pfn_valid(PFN_DOWN(paddr))) { 150 return paddr >= virt_to_phys(xen_io_tlb_start) && 151 paddr < virt_to_phys(xen_io_tlb_end); 152 } 153 return 0; 154 } 155 156 static int max_dma_bits = 32; 157 158 static int 159 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 160 { 161 int i, rc; 162 int dma_bits; 163 dma_addr_t dma_handle; 164 phys_addr_t p = virt_to_phys(buf); 165 166 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 167 168 i = 0; 169 do { 170 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 171 172 do { 173 rc = xen_create_contiguous_region( 174 p + (i << IO_TLB_SHIFT), 175 get_order(slabs << IO_TLB_SHIFT), 176 dma_bits, &dma_handle); 177 } while (rc && dma_bits++ < max_dma_bits); 178 if (rc) 179 return rc; 180 181 i += slabs; 182 } while (i < nslabs); 183 return 0; 184 } 185 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 186 { 187 if (!nr_tbl) { 188 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 189 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 190 } else 191 xen_io_tlb_nslabs = nr_tbl; 192 193 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 194 } 195 196 enum xen_swiotlb_err { 197 XEN_SWIOTLB_UNKNOWN = 0, 198 XEN_SWIOTLB_ENOMEM, 199 XEN_SWIOTLB_EFIXUP 200 }; 201 202 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 203 { 204 switch (err) { 205 case XEN_SWIOTLB_ENOMEM: 206 return "Cannot allocate Xen-SWIOTLB buffer\n"; 207 case XEN_SWIOTLB_EFIXUP: 208 return "Failed to get contiguous memory for DMA from Xen!\n"\ 209 "You either: don't have the permissions, do not have"\ 210 " enough free memory under 4GB, or the hypervisor memory"\ 211 " is too fragmented!"; 212 default: 213 break; 214 } 215 return ""; 216 } 217 int __ref xen_swiotlb_init(int verbose, bool early) 218 { 219 unsigned long bytes, order; 220 int rc = -ENOMEM; 221 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 222 unsigned int repeat = 3; 223 224 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 225 retry: 226 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 227 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 228 /* 229 * Get IO TLB memory from any location. 230 */ 231 if (early) 232 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 233 else { 234 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 235 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 236 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 237 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 238 if (xen_io_tlb_start) 239 break; 240 order--; 241 } 242 if (order != get_order(bytes)) { 243 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 244 (PAGE_SIZE << order) >> 20); 245 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 246 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 247 } 248 } 249 if (!xen_io_tlb_start) { 250 m_ret = XEN_SWIOTLB_ENOMEM; 251 goto error; 252 } 253 xen_io_tlb_end = xen_io_tlb_start + bytes; 254 /* 255 * And replace that memory with pages under 4GB. 256 */ 257 rc = xen_swiotlb_fixup(xen_io_tlb_start, 258 bytes, 259 xen_io_tlb_nslabs); 260 if (rc) { 261 if (early) 262 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 263 else { 264 free_pages((unsigned long)xen_io_tlb_start, order); 265 xen_io_tlb_start = NULL; 266 } 267 m_ret = XEN_SWIOTLB_EFIXUP; 268 goto error; 269 } 270 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 271 if (early) { 272 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 273 verbose)) 274 panic("Cannot allocate SWIOTLB buffer"); 275 rc = 0; 276 } else 277 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 278 return rc; 279 error: 280 if (repeat--) { 281 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 282 (xen_io_tlb_nslabs >> 1)); 283 pr_info("Lowering to %luMB\n", 284 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 285 goto retry; 286 } 287 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 288 if (early) 289 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 290 else 291 free_pages((unsigned long)xen_io_tlb_start, order); 292 return rc; 293 } 294 void * 295 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 296 dma_addr_t *dma_handle, gfp_t flags, 297 struct dma_attrs *attrs) 298 { 299 void *ret; 300 int order = get_order(size); 301 u64 dma_mask = DMA_BIT_MASK(32); 302 phys_addr_t phys; 303 dma_addr_t dev_addr; 304 305 /* 306 * Ignore region specifiers - the kernel's ideas of 307 * pseudo-phys memory layout has nothing to do with the 308 * machine physical layout. We can't allocate highmem 309 * because we can't return a pointer to it. 310 */ 311 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 312 313 /* On ARM this function returns an ioremap'ped virtual address for 314 * which virt_to_phys doesn't return the corresponding physical 315 * address. In fact on ARM virt_to_phys only works for kernel direct 316 * mapped RAM memory. Also see comment below. 317 */ 318 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 319 320 if (!ret) 321 return ret; 322 323 if (hwdev && hwdev->coherent_dma_mask) 324 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 325 326 /* At this point dma_handle is the physical address, next we are 327 * going to set it to the machine address. 328 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 329 * to *dma_handle. */ 330 phys = *dma_handle; 331 dev_addr = xen_phys_to_bus(phys); 332 if (((dev_addr + size - 1 <= dma_mask)) && 333 !range_straddles_page_boundary(phys, size)) 334 *dma_handle = dev_addr; 335 else { 336 if (xen_create_contiguous_region(phys, order, 337 fls64(dma_mask), dma_handle) != 0) { 338 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 339 return NULL; 340 } 341 } 342 memset(ret, 0, size); 343 return ret; 344 } 345 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 346 347 void 348 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 349 dma_addr_t dev_addr, struct dma_attrs *attrs) 350 { 351 int order = get_order(size); 352 phys_addr_t phys; 353 u64 dma_mask = DMA_BIT_MASK(32); 354 355 if (hwdev && hwdev->coherent_dma_mask) 356 dma_mask = hwdev->coherent_dma_mask; 357 358 /* do not use virt_to_phys because on ARM it doesn't return you the 359 * physical address */ 360 phys = xen_bus_to_phys(dev_addr); 361 362 if (((dev_addr + size - 1 > dma_mask)) || 363 range_straddles_page_boundary(phys, size)) 364 xen_destroy_contiguous_region(phys, order); 365 366 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 367 } 368 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 369 370 371 /* 372 * Map a single buffer of the indicated size for DMA in streaming mode. The 373 * physical address to use is returned. 374 * 375 * Once the device is given the dma address, the device owns this memory until 376 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 377 */ 378 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 379 unsigned long offset, size_t size, 380 enum dma_data_direction dir, 381 struct dma_attrs *attrs) 382 { 383 phys_addr_t map, phys = page_to_phys(page) + offset; 384 dma_addr_t dev_addr = xen_phys_to_bus(phys); 385 386 BUG_ON(dir == DMA_NONE); 387 /* 388 * If the address happens to be in the device's DMA window, 389 * we can safely return the device addr and not worry about bounce 390 * buffering it. 391 */ 392 if (dma_capable(dev, dev_addr, size) && 393 !range_straddles_page_boundary(phys, size) && 394 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 395 !swiotlb_force) { 396 /* we are not interested in the dma_addr returned by 397 * xen_dma_map_page, only in the potential cache flushes executed 398 * by the function. */ 399 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 400 return dev_addr; 401 } 402 403 /* 404 * Oh well, have to allocate and map a bounce buffer. 405 */ 406 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 407 408 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 409 if (map == SWIOTLB_MAP_ERROR) 410 return DMA_ERROR_CODE; 411 412 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 413 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 414 dev_addr = xen_phys_to_bus(map); 415 416 /* 417 * Ensure that the address returned is DMA'ble 418 */ 419 if (!dma_capable(dev, dev_addr, size)) { 420 swiotlb_tbl_unmap_single(dev, map, size, dir); 421 dev_addr = 0; 422 } 423 return dev_addr; 424 } 425 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 426 427 /* 428 * Unmap a single streaming mode DMA translation. The dma_addr and size must 429 * match what was provided for in a previous xen_swiotlb_map_page call. All 430 * other usages are undefined. 431 * 432 * After this call, reads by the cpu to the buffer are guaranteed to see 433 * whatever the device wrote there. 434 */ 435 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 436 size_t size, enum dma_data_direction dir, 437 struct dma_attrs *attrs) 438 { 439 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 440 441 BUG_ON(dir == DMA_NONE); 442 443 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 444 445 /* NOTE: We use dev_addr here, not paddr! */ 446 if (is_xen_swiotlb_buffer(dev_addr)) { 447 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); 448 return; 449 } 450 451 if (dir != DMA_FROM_DEVICE) 452 return; 453 454 /* 455 * phys_to_virt doesn't work with hihgmem page but we could 456 * call dma_mark_clean() with hihgmem page here. However, we 457 * are fine since dma_mark_clean() is null on POWERPC. We can 458 * make dma_mark_clean() take a physical address if necessary. 459 */ 460 dma_mark_clean(phys_to_virt(paddr), size); 461 } 462 463 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 464 size_t size, enum dma_data_direction dir, 465 struct dma_attrs *attrs) 466 { 467 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 468 } 469 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 470 471 /* 472 * Make physical memory consistent for a single streaming mode DMA translation 473 * after a transfer. 474 * 475 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 476 * using the cpu, yet do not wish to teardown the dma mapping, you must 477 * call this function before doing so. At the next point you give the dma 478 * address back to the card, you must first perform a 479 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 480 */ 481 static void 482 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 483 size_t size, enum dma_data_direction dir, 484 enum dma_sync_target target) 485 { 486 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 487 488 BUG_ON(dir == DMA_NONE); 489 490 if (target == SYNC_FOR_CPU) 491 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 492 493 /* NOTE: We use dev_addr here, not paddr! */ 494 if (is_xen_swiotlb_buffer(dev_addr)) 495 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 496 497 if (target == SYNC_FOR_DEVICE) 498 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 499 500 if (dir != DMA_FROM_DEVICE) 501 return; 502 503 dma_mark_clean(phys_to_virt(paddr), size); 504 } 505 506 void 507 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 508 size_t size, enum dma_data_direction dir) 509 { 510 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 511 } 512 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 513 514 void 515 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 516 size_t size, enum dma_data_direction dir) 517 { 518 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 519 } 520 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 521 522 /* 523 * Map a set of buffers described by scatterlist in streaming mode for DMA. 524 * This is the scatter-gather version of the above xen_swiotlb_map_page 525 * interface. Here the scatter gather list elements are each tagged with the 526 * appropriate dma address and length. They are obtained via 527 * sg_dma_{address,length}(SG). 528 * 529 * NOTE: An implementation may be able to use a smaller number of 530 * DMA address/length pairs than there are SG table elements. 531 * (for example via virtual mapping capabilities) 532 * The routine returns the number of addr/length pairs actually 533 * used, at most nents. 534 * 535 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 536 * same here. 537 */ 538 int 539 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 540 int nelems, enum dma_data_direction dir, 541 struct dma_attrs *attrs) 542 { 543 struct scatterlist *sg; 544 int i; 545 546 BUG_ON(dir == DMA_NONE); 547 548 for_each_sg(sgl, sg, nelems, i) { 549 phys_addr_t paddr = sg_phys(sg); 550 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 551 552 if (swiotlb_force || 553 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) || 554 !dma_capable(hwdev, dev_addr, sg->length) || 555 range_straddles_page_boundary(paddr, sg->length)) { 556 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 557 start_dma_addr, 558 sg_phys(sg), 559 sg->length, 560 dir); 561 if (map == SWIOTLB_MAP_ERROR) { 562 dev_warn(hwdev, "swiotlb buffer is full\n"); 563 /* Don't panic here, we expect map_sg users 564 to do proper error handling. */ 565 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 566 attrs); 567 sg_dma_len(sgl) = 0; 568 return 0; 569 } 570 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 571 dev_addr, 572 map & ~PAGE_MASK, 573 sg->length, 574 dir, 575 attrs); 576 sg->dma_address = xen_phys_to_bus(map); 577 } else { 578 /* we are not interested in the dma_addr returned by 579 * xen_dma_map_page, only in the potential cache flushes executed 580 * by the function. */ 581 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 582 dev_addr, 583 paddr & ~PAGE_MASK, 584 sg->length, 585 dir, 586 attrs); 587 sg->dma_address = dev_addr; 588 } 589 sg_dma_len(sg) = sg->length; 590 } 591 return nelems; 592 } 593 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 594 595 /* 596 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 597 * concerning calls here are the same as for swiotlb_unmap_page() above. 598 */ 599 void 600 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 601 int nelems, enum dma_data_direction dir, 602 struct dma_attrs *attrs) 603 { 604 struct scatterlist *sg; 605 int i; 606 607 BUG_ON(dir == DMA_NONE); 608 609 for_each_sg(sgl, sg, nelems, i) 610 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 611 612 } 613 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 614 615 /* 616 * Make physical memory consistent for a set of streaming mode DMA translations 617 * after a transfer. 618 * 619 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 620 * and usage. 621 */ 622 static void 623 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 624 int nelems, enum dma_data_direction dir, 625 enum dma_sync_target target) 626 { 627 struct scatterlist *sg; 628 int i; 629 630 for_each_sg(sgl, sg, nelems, i) 631 xen_swiotlb_sync_single(hwdev, sg->dma_address, 632 sg_dma_len(sg), dir, target); 633 } 634 635 void 636 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 637 int nelems, enum dma_data_direction dir) 638 { 639 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 640 } 641 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 642 643 void 644 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 645 int nelems, enum dma_data_direction dir) 646 { 647 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 648 } 649 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 650 651 int 652 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 653 { 654 return !dma_addr; 655 } 656 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 657 658 /* 659 * Return whether the given device DMA address mask can be supported 660 * properly. For example, if your device can only drive the low 24-bits 661 * during bus mastering, then you would pass 0x00ffffff as the mask to 662 * this function. 663 */ 664 int 665 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 666 { 667 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 668 } 669 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 670 671 int 672 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask) 673 { 674 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask)) 675 return -EIO; 676 677 *dev->dma_mask = dma_mask; 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask); 682