xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/memblock.h>
39 #include <linux/dma-direct.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 static char *xen_io_tlb_start, *xen_io_tlb_end;
57 static unsigned long xen_io_tlb_nslabs;
58 /*
59  * Quick lookup value of the bus address of the IOTLB.
60  */
61 
62 static u64 start_dma_addr;
63 
64 /*
65  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
66  * can be 32bit when dma_addr_t is 64bit leading to a loss in
67  * information if the shift is done before casting to 64bit.
68  */
69 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
70 {
71 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
72 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
73 
74 	dma |= paddr & ~XEN_PAGE_MASK;
75 
76 	return dma;
77 }
78 
79 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
80 {
81 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
82 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
83 	phys_addr_t paddr = dma;
84 
85 	paddr |= baddr & ~XEN_PAGE_MASK;
86 
87 	return paddr;
88 }
89 
90 static inline dma_addr_t xen_virt_to_bus(void *address)
91 {
92 	return xen_phys_to_bus(virt_to_phys(address));
93 }
94 
95 static int check_pages_physically_contiguous(unsigned long xen_pfn,
96 					     unsigned int offset,
97 					     size_t length)
98 {
99 	unsigned long next_bfn;
100 	int i;
101 	int nr_pages;
102 
103 	next_bfn = pfn_to_bfn(xen_pfn);
104 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
105 
106 	for (i = 1; i < nr_pages; i++) {
107 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
108 			return 0;
109 	}
110 	return 1;
111 }
112 
113 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
114 {
115 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
116 	unsigned int offset = p & ~XEN_PAGE_MASK;
117 
118 	if (offset + size <= XEN_PAGE_SIZE)
119 		return 0;
120 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
121 		return 0;
122 	return 1;
123 }
124 
125 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
126 {
127 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
128 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
129 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
130 
131 	/* If the address is outside our domain, it CAN
132 	 * have the same virtual address as another address
133 	 * in our domain. Therefore _only_ check address within our domain.
134 	 */
135 	if (pfn_valid(PFN_DOWN(paddr))) {
136 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
137 		       paddr < virt_to_phys(xen_io_tlb_end);
138 	}
139 	return 0;
140 }
141 
142 static int max_dma_bits = 32;
143 
144 static int
145 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
146 {
147 	int i, rc;
148 	int dma_bits;
149 	dma_addr_t dma_handle;
150 	phys_addr_t p = virt_to_phys(buf);
151 
152 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
153 
154 	i = 0;
155 	do {
156 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
157 
158 		do {
159 			rc = xen_create_contiguous_region(
160 				p + (i << IO_TLB_SHIFT),
161 				get_order(slabs << IO_TLB_SHIFT),
162 				dma_bits, &dma_handle);
163 		} while (rc && dma_bits++ < max_dma_bits);
164 		if (rc)
165 			return rc;
166 
167 		i += slabs;
168 	} while (i < nslabs);
169 	return 0;
170 }
171 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
172 {
173 	if (!nr_tbl) {
174 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
175 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
176 	} else
177 		xen_io_tlb_nslabs = nr_tbl;
178 
179 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
180 }
181 
182 enum xen_swiotlb_err {
183 	XEN_SWIOTLB_UNKNOWN = 0,
184 	XEN_SWIOTLB_ENOMEM,
185 	XEN_SWIOTLB_EFIXUP
186 };
187 
188 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
189 {
190 	switch (err) {
191 	case XEN_SWIOTLB_ENOMEM:
192 		return "Cannot allocate Xen-SWIOTLB buffer\n";
193 	case XEN_SWIOTLB_EFIXUP:
194 		return "Failed to get contiguous memory for DMA from Xen!\n"\
195 		    "You either: don't have the permissions, do not have"\
196 		    " enough free memory under 4GB, or the hypervisor memory"\
197 		    " is too fragmented!";
198 	default:
199 		break;
200 	}
201 	return "";
202 }
203 int __ref xen_swiotlb_init(int verbose, bool early)
204 {
205 	unsigned long bytes, order;
206 	int rc = -ENOMEM;
207 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
208 	unsigned int repeat = 3;
209 
210 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
211 retry:
212 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
213 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
214 	/*
215 	 * Get IO TLB memory from any location.
216 	 */
217 	if (early) {
218 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
219 						  PAGE_SIZE);
220 		if (!xen_io_tlb_start)
221 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
222 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
223 	} else {
224 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
225 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
226 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
227 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
228 			if (xen_io_tlb_start)
229 				break;
230 			order--;
231 		}
232 		if (order != get_order(bytes)) {
233 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
234 				(PAGE_SIZE << order) >> 20);
235 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
236 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
237 		}
238 	}
239 	if (!xen_io_tlb_start) {
240 		m_ret = XEN_SWIOTLB_ENOMEM;
241 		goto error;
242 	}
243 	xen_io_tlb_end = xen_io_tlb_start + bytes;
244 	/*
245 	 * And replace that memory with pages under 4GB.
246 	 */
247 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
248 			       bytes,
249 			       xen_io_tlb_nslabs);
250 	if (rc) {
251 		if (early)
252 			memblock_free(__pa(xen_io_tlb_start),
253 				      PAGE_ALIGN(bytes));
254 		else {
255 			free_pages((unsigned long)xen_io_tlb_start, order);
256 			xen_io_tlb_start = NULL;
257 		}
258 		m_ret = XEN_SWIOTLB_EFIXUP;
259 		goto error;
260 	}
261 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
262 	if (early) {
263 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
264 			 verbose))
265 			panic("Cannot allocate SWIOTLB buffer");
266 		rc = 0;
267 	} else
268 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
269 
270 	if (!rc)
271 		swiotlb_set_max_segment(PAGE_SIZE);
272 
273 	return rc;
274 error:
275 	if (repeat--) {
276 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
277 					(xen_io_tlb_nslabs >> 1));
278 		pr_info("Lowering to %luMB\n",
279 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
280 		goto retry;
281 	}
282 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
283 	if (early)
284 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
285 	else
286 		free_pages((unsigned long)xen_io_tlb_start, order);
287 	return rc;
288 }
289 
290 static void *
291 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
292 			   dma_addr_t *dma_handle, gfp_t flags,
293 			   unsigned long attrs)
294 {
295 	void *ret;
296 	int order = get_order(size);
297 	u64 dma_mask = DMA_BIT_MASK(32);
298 	phys_addr_t phys;
299 	dma_addr_t dev_addr;
300 
301 	/*
302 	* Ignore region specifiers - the kernel's ideas of
303 	* pseudo-phys memory layout has nothing to do with the
304 	* machine physical layout.  We can't allocate highmem
305 	* because we can't return a pointer to it.
306 	*/
307 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
308 
309 	/* Convert the size to actually allocated. */
310 	size = 1UL << (order + XEN_PAGE_SHIFT);
311 
312 	/* On ARM this function returns an ioremap'ped virtual address for
313 	 * which virt_to_phys doesn't return the corresponding physical
314 	 * address. In fact on ARM virt_to_phys only works for kernel direct
315 	 * mapped RAM memory. Also see comment below.
316 	 */
317 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
318 
319 	if (!ret)
320 		return ret;
321 
322 	if (hwdev && hwdev->coherent_dma_mask)
323 		dma_mask = hwdev->coherent_dma_mask;
324 
325 	/* At this point dma_handle is the physical address, next we are
326 	 * going to set it to the machine address.
327 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
328 	 * to *dma_handle. */
329 	phys = *dma_handle;
330 	dev_addr = xen_phys_to_bus(phys);
331 	if (((dev_addr + size - 1 <= dma_mask)) &&
332 	    !range_straddles_page_boundary(phys, size))
333 		*dma_handle = dev_addr;
334 	else {
335 		if (xen_create_contiguous_region(phys, order,
336 						 fls64(dma_mask), dma_handle) != 0) {
337 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
338 			return NULL;
339 		}
340 	}
341 	memset(ret, 0, size);
342 	return ret;
343 }
344 
345 static void
346 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
347 			  dma_addr_t dev_addr, unsigned long attrs)
348 {
349 	int order = get_order(size);
350 	phys_addr_t phys;
351 	u64 dma_mask = DMA_BIT_MASK(32);
352 
353 	if (hwdev && hwdev->coherent_dma_mask)
354 		dma_mask = hwdev->coherent_dma_mask;
355 
356 	/* do not use virt_to_phys because on ARM it doesn't return you the
357 	 * physical address */
358 	phys = xen_bus_to_phys(dev_addr);
359 
360 	/* Convert the size to actually allocated. */
361 	size = 1UL << (order + XEN_PAGE_SHIFT);
362 
363 	if (((dev_addr + size - 1 <= dma_mask)) ||
364 	    range_straddles_page_boundary(phys, size))
365 		xen_destroy_contiguous_region(phys, order);
366 
367 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
368 }
369 
370 /*
371  * Map a single buffer of the indicated size for DMA in streaming mode.  The
372  * physical address to use is returned.
373  *
374  * Once the device is given the dma address, the device owns this memory until
375  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
376  */
377 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
378 				unsigned long offset, size_t size,
379 				enum dma_data_direction dir,
380 				unsigned long attrs)
381 {
382 	phys_addr_t map, phys = page_to_phys(page) + offset;
383 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
384 
385 	BUG_ON(dir == DMA_NONE);
386 	/*
387 	 * If the address happens to be in the device's DMA window,
388 	 * we can safely return the device addr and not worry about bounce
389 	 * buffering it.
390 	 */
391 	if (dma_capable(dev, dev_addr, size) &&
392 	    !range_straddles_page_boundary(phys, size) &&
393 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
394 		(swiotlb_force != SWIOTLB_FORCE)) {
395 		/* we are not interested in the dma_addr returned by
396 		 * xen_dma_map_page, only in the potential cache flushes executed
397 		 * by the function. */
398 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
399 		return dev_addr;
400 	}
401 
402 	/*
403 	 * Oh well, have to allocate and map a bounce buffer.
404 	 */
405 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
406 
407 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
408 				     attrs);
409 	if (map == DMA_MAPPING_ERROR)
410 		return DMA_MAPPING_ERROR;
411 
412 	dev_addr = xen_phys_to_bus(map);
413 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
414 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
415 
416 	/*
417 	 * Ensure that the address returned is DMA'ble
418 	 */
419 	if (dma_capable(dev, dev_addr, size))
420 		return dev_addr;
421 
422 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
423 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
424 
425 	return DMA_MAPPING_ERROR;
426 }
427 
428 /*
429  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
430  * match what was provided for in a previous xen_swiotlb_map_page call.  All
431  * other usages are undefined.
432  *
433  * After this call, reads by the cpu to the buffer are guaranteed to see
434  * whatever the device wrote there.
435  */
436 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
437 			     size_t size, enum dma_data_direction dir,
438 			     unsigned long attrs)
439 {
440 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
441 
442 	BUG_ON(dir == DMA_NONE);
443 
444 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
445 
446 	/* NOTE: We use dev_addr here, not paddr! */
447 	if (is_xen_swiotlb_buffer(dev_addr))
448 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
449 }
450 
451 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
452 			    size_t size, enum dma_data_direction dir,
453 			    unsigned long attrs)
454 {
455 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
456 }
457 
458 /*
459  * Make physical memory consistent for a single streaming mode DMA translation
460  * after a transfer.
461  *
462  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
463  * using the cpu, yet do not wish to teardown the dma mapping, you must
464  * call this function before doing so.  At the next point you give the dma
465  * address back to the card, you must first perform a
466  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
467  */
468 static void
469 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
470 			size_t size, enum dma_data_direction dir,
471 			enum dma_sync_target target)
472 {
473 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
474 
475 	BUG_ON(dir == DMA_NONE);
476 
477 	if (target == SYNC_FOR_CPU)
478 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
479 
480 	/* NOTE: We use dev_addr here, not paddr! */
481 	if (is_xen_swiotlb_buffer(dev_addr))
482 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
483 
484 	if (target == SYNC_FOR_DEVICE)
485 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
486 }
487 
488 void
489 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
490 				size_t size, enum dma_data_direction dir)
491 {
492 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
493 }
494 
495 void
496 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
497 				   size_t size, enum dma_data_direction dir)
498 {
499 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
500 }
501 
502 /*
503  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
504  * concerning calls here are the same as for swiotlb_unmap_page() above.
505  */
506 static void
507 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
508 			   int nelems, enum dma_data_direction dir,
509 			   unsigned long attrs)
510 {
511 	struct scatterlist *sg;
512 	int i;
513 
514 	BUG_ON(dir == DMA_NONE);
515 
516 	for_each_sg(sgl, sg, nelems, i)
517 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
518 
519 }
520 
521 /*
522  * Map a set of buffers described by scatterlist in streaming mode for DMA.
523  * This is the scatter-gather version of the above xen_swiotlb_map_page
524  * interface.  Here the scatter gather list elements are each tagged with the
525  * appropriate dma address and length.  They are obtained via
526  * sg_dma_{address,length}(SG).
527  *
528  * NOTE: An implementation may be able to use a smaller number of
529  *       DMA address/length pairs than there are SG table elements.
530  *       (for example via virtual mapping capabilities)
531  *       The routine returns the number of addr/length pairs actually
532  *       used, at most nents.
533  *
534  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
535  * same here.
536  */
537 static int
538 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
539 			 int nelems, enum dma_data_direction dir,
540 			 unsigned long attrs)
541 {
542 	struct scatterlist *sg;
543 	int i;
544 
545 	BUG_ON(dir == DMA_NONE);
546 
547 	for_each_sg(sgl, sg, nelems, i) {
548 		phys_addr_t paddr = sg_phys(sg);
549 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
550 
551 		if (swiotlb_force == SWIOTLB_FORCE ||
552 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
553 		    !dma_capable(hwdev, dev_addr, sg->length) ||
554 		    range_straddles_page_boundary(paddr, sg->length)) {
555 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
556 								 start_dma_addr,
557 								 sg_phys(sg),
558 								 sg->length,
559 								 dir, attrs);
560 			if (map == DMA_MAPPING_ERROR) {
561 				dev_warn(hwdev, "swiotlb buffer is full\n");
562 				/* Don't panic here, we expect map_sg users
563 				   to do proper error handling. */
564 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
565 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
566 							   attrs);
567 				sg_dma_len(sgl) = 0;
568 				return 0;
569 			}
570 			dev_addr = xen_phys_to_bus(map);
571 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
572 						dev_addr,
573 						map & ~PAGE_MASK,
574 						sg->length,
575 						dir,
576 						attrs);
577 			sg->dma_address = dev_addr;
578 		} else {
579 			/* we are not interested in the dma_addr returned by
580 			 * xen_dma_map_page, only in the potential cache flushes executed
581 			 * by the function. */
582 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
583 						dev_addr,
584 						paddr & ~PAGE_MASK,
585 						sg->length,
586 						dir,
587 						attrs);
588 			sg->dma_address = dev_addr;
589 		}
590 		sg_dma_len(sg) = sg->length;
591 	}
592 	return nelems;
593 }
594 
595 /*
596  * Make physical memory consistent for a set of streaming mode DMA translations
597  * after a transfer.
598  *
599  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
600  * and usage.
601  */
602 static void
603 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
604 		    int nelems, enum dma_data_direction dir,
605 		    enum dma_sync_target target)
606 {
607 	struct scatterlist *sg;
608 	int i;
609 
610 	for_each_sg(sgl, sg, nelems, i)
611 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
612 					sg_dma_len(sg), dir, target);
613 }
614 
615 static void
616 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
617 			    int nelems, enum dma_data_direction dir)
618 {
619 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
620 }
621 
622 static void
623 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
624 			       int nelems, enum dma_data_direction dir)
625 {
626 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
627 }
628 
629 /*
630  * Return whether the given device DMA address mask can be supported
631  * properly.  For example, if your device can only drive the low 24-bits
632  * during bus mastering, then you would pass 0x00ffffff as the mask to
633  * this function.
634  */
635 static int
636 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
637 {
638 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
639 }
640 
641 /*
642  * Create userspace mapping for the DMA-coherent memory.
643  * This function should be called with the pages from the current domain only,
644  * passing pages mapped from other domains would lead to memory corruption.
645  */
646 static int
647 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
648 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
649 		     unsigned long attrs)
650 {
651 #ifdef CONFIG_ARM
652 	if (xen_get_dma_ops(dev)->mmap)
653 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
654 						    dma_addr, size, attrs);
655 #endif
656 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
657 }
658 
659 /*
660  * This function should be called with the pages from the current domain only,
661  * passing pages mapped from other domains would lead to memory corruption.
662  */
663 static int
664 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
665 			void *cpu_addr, dma_addr_t handle, size_t size,
666 			unsigned long attrs)
667 {
668 #ifdef CONFIG_ARM
669 	if (xen_get_dma_ops(dev)->get_sgtable) {
670 #if 0
671 	/*
672 	 * This check verifies that the page belongs to the current domain and
673 	 * is not one mapped from another domain.
674 	 * This check is for debug only, and should not go to production build
675 	 */
676 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
677 		BUG_ON (!page_is_ram(bfn));
678 #endif
679 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
680 							   handle, size, attrs);
681 	}
682 #endif
683 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
684 }
685 
686 const struct dma_map_ops xen_swiotlb_dma_ops = {
687 	.alloc = xen_swiotlb_alloc_coherent,
688 	.free = xen_swiotlb_free_coherent,
689 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
690 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
691 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
692 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
693 	.map_sg = xen_swiotlb_map_sg_attrs,
694 	.unmap_sg = xen_swiotlb_unmap_sg_attrs,
695 	.map_page = xen_swiotlb_map_page,
696 	.unmap_page = xen_swiotlb_unmap_page,
697 	.dma_supported = xen_swiotlb_dma_supported,
698 	.mmap = xen_swiotlb_dma_mmap,
699 	.get_sgtable = xen_swiotlb_get_sgtable,
700 };
701