1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/memblock.h> 39 #include <linux/dma-direct.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 static char *xen_io_tlb_start, *xen_io_tlb_end; 57 static unsigned long xen_io_tlb_nslabs; 58 /* 59 * Quick lookup value of the bus address of the IOTLB. 60 */ 61 62 static u64 start_dma_addr; 63 64 /* 65 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 66 * can be 32bit when dma_addr_t is 64bit leading to a loss in 67 * information if the shift is done before casting to 64bit. 68 */ 69 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 70 { 71 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 72 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 73 74 dma |= paddr & ~XEN_PAGE_MASK; 75 76 return dma; 77 } 78 79 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 80 { 81 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 82 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 83 phys_addr_t paddr = dma; 84 85 paddr |= baddr & ~XEN_PAGE_MASK; 86 87 return paddr; 88 } 89 90 static inline dma_addr_t xen_virt_to_bus(void *address) 91 { 92 return xen_phys_to_bus(virt_to_phys(address)); 93 } 94 95 static int check_pages_physically_contiguous(unsigned long xen_pfn, 96 unsigned int offset, 97 size_t length) 98 { 99 unsigned long next_bfn; 100 int i; 101 int nr_pages; 102 103 next_bfn = pfn_to_bfn(xen_pfn); 104 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 105 106 for (i = 1; i < nr_pages; i++) { 107 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 108 return 0; 109 } 110 return 1; 111 } 112 113 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 114 { 115 unsigned long xen_pfn = XEN_PFN_DOWN(p); 116 unsigned int offset = p & ~XEN_PAGE_MASK; 117 118 if (offset + size <= XEN_PAGE_SIZE) 119 return 0; 120 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 121 return 0; 122 return 1; 123 } 124 125 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 126 { 127 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 128 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 129 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 130 131 /* If the address is outside our domain, it CAN 132 * have the same virtual address as another address 133 * in our domain. Therefore _only_ check address within our domain. 134 */ 135 if (pfn_valid(PFN_DOWN(paddr))) { 136 return paddr >= virt_to_phys(xen_io_tlb_start) && 137 paddr < virt_to_phys(xen_io_tlb_end); 138 } 139 return 0; 140 } 141 142 static int max_dma_bits = 32; 143 144 static int 145 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 146 { 147 int i, rc; 148 int dma_bits; 149 dma_addr_t dma_handle; 150 phys_addr_t p = virt_to_phys(buf); 151 152 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 153 154 i = 0; 155 do { 156 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 157 158 do { 159 rc = xen_create_contiguous_region( 160 p + (i << IO_TLB_SHIFT), 161 get_order(slabs << IO_TLB_SHIFT), 162 dma_bits, &dma_handle); 163 } while (rc && dma_bits++ < max_dma_bits); 164 if (rc) 165 return rc; 166 167 i += slabs; 168 } while (i < nslabs); 169 return 0; 170 } 171 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 172 { 173 if (!nr_tbl) { 174 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 175 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 176 } else 177 xen_io_tlb_nslabs = nr_tbl; 178 179 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 180 } 181 182 enum xen_swiotlb_err { 183 XEN_SWIOTLB_UNKNOWN = 0, 184 XEN_SWIOTLB_ENOMEM, 185 XEN_SWIOTLB_EFIXUP 186 }; 187 188 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 189 { 190 switch (err) { 191 case XEN_SWIOTLB_ENOMEM: 192 return "Cannot allocate Xen-SWIOTLB buffer\n"; 193 case XEN_SWIOTLB_EFIXUP: 194 return "Failed to get contiguous memory for DMA from Xen!\n"\ 195 "You either: don't have the permissions, do not have"\ 196 " enough free memory under 4GB, or the hypervisor memory"\ 197 " is too fragmented!"; 198 default: 199 break; 200 } 201 return ""; 202 } 203 int __ref xen_swiotlb_init(int verbose, bool early) 204 { 205 unsigned long bytes, order; 206 int rc = -ENOMEM; 207 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 208 unsigned int repeat = 3; 209 210 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 211 retry: 212 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 213 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 214 /* 215 * Get IO TLB memory from any location. 216 */ 217 if (early) { 218 xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes), 219 PAGE_SIZE); 220 if (!xen_io_tlb_start) 221 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 222 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 223 } else { 224 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 225 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 226 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 227 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 228 if (xen_io_tlb_start) 229 break; 230 order--; 231 } 232 if (order != get_order(bytes)) { 233 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 234 (PAGE_SIZE << order) >> 20); 235 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 236 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 237 } 238 } 239 if (!xen_io_tlb_start) { 240 m_ret = XEN_SWIOTLB_ENOMEM; 241 goto error; 242 } 243 xen_io_tlb_end = xen_io_tlb_start + bytes; 244 /* 245 * And replace that memory with pages under 4GB. 246 */ 247 rc = xen_swiotlb_fixup(xen_io_tlb_start, 248 bytes, 249 xen_io_tlb_nslabs); 250 if (rc) { 251 if (early) 252 memblock_free(__pa(xen_io_tlb_start), 253 PAGE_ALIGN(bytes)); 254 else { 255 free_pages((unsigned long)xen_io_tlb_start, order); 256 xen_io_tlb_start = NULL; 257 } 258 m_ret = XEN_SWIOTLB_EFIXUP; 259 goto error; 260 } 261 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 262 if (early) { 263 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 264 verbose)) 265 panic("Cannot allocate SWIOTLB buffer"); 266 rc = 0; 267 } else 268 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 269 270 if (!rc) 271 swiotlb_set_max_segment(PAGE_SIZE); 272 273 return rc; 274 error: 275 if (repeat--) { 276 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 277 (xen_io_tlb_nslabs >> 1)); 278 pr_info("Lowering to %luMB\n", 279 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 280 goto retry; 281 } 282 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 283 if (early) 284 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 285 else 286 free_pages((unsigned long)xen_io_tlb_start, order); 287 return rc; 288 } 289 290 static void * 291 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 292 dma_addr_t *dma_handle, gfp_t flags, 293 unsigned long attrs) 294 { 295 void *ret; 296 int order = get_order(size); 297 u64 dma_mask = DMA_BIT_MASK(32); 298 phys_addr_t phys; 299 dma_addr_t dev_addr; 300 301 /* 302 * Ignore region specifiers - the kernel's ideas of 303 * pseudo-phys memory layout has nothing to do with the 304 * machine physical layout. We can't allocate highmem 305 * because we can't return a pointer to it. 306 */ 307 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 308 309 /* Convert the size to actually allocated. */ 310 size = 1UL << (order + XEN_PAGE_SHIFT); 311 312 /* On ARM this function returns an ioremap'ped virtual address for 313 * which virt_to_phys doesn't return the corresponding physical 314 * address. In fact on ARM virt_to_phys only works for kernel direct 315 * mapped RAM memory. Also see comment below. 316 */ 317 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 318 319 if (!ret) 320 return ret; 321 322 if (hwdev && hwdev->coherent_dma_mask) 323 dma_mask = hwdev->coherent_dma_mask; 324 325 /* At this point dma_handle is the physical address, next we are 326 * going to set it to the machine address. 327 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 328 * to *dma_handle. */ 329 phys = *dma_handle; 330 dev_addr = xen_phys_to_bus(phys); 331 if (((dev_addr + size - 1 <= dma_mask)) && 332 !range_straddles_page_boundary(phys, size)) 333 *dma_handle = dev_addr; 334 else { 335 if (xen_create_contiguous_region(phys, order, 336 fls64(dma_mask), dma_handle) != 0) { 337 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 338 return NULL; 339 } 340 } 341 memset(ret, 0, size); 342 return ret; 343 } 344 345 static void 346 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 347 dma_addr_t dev_addr, unsigned long attrs) 348 { 349 int order = get_order(size); 350 phys_addr_t phys; 351 u64 dma_mask = DMA_BIT_MASK(32); 352 353 if (hwdev && hwdev->coherent_dma_mask) 354 dma_mask = hwdev->coherent_dma_mask; 355 356 /* do not use virt_to_phys because on ARM it doesn't return you the 357 * physical address */ 358 phys = xen_bus_to_phys(dev_addr); 359 360 /* Convert the size to actually allocated. */ 361 size = 1UL << (order + XEN_PAGE_SHIFT); 362 363 if (((dev_addr + size - 1 <= dma_mask)) || 364 range_straddles_page_boundary(phys, size)) 365 xen_destroy_contiguous_region(phys, order); 366 367 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 368 } 369 370 /* 371 * Map a single buffer of the indicated size for DMA in streaming mode. The 372 * physical address to use is returned. 373 * 374 * Once the device is given the dma address, the device owns this memory until 375 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 376 */ 377 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 378 unsigned long offset, size_t size, 379 enum dma_data_direction dir, 380 unsigned long attrs) 381 { 382 phys_addr_t map, phys = page_to_phys(page) + offset; 383 dma_addr_t dev_addr = xen_phys_to_bus(phys); 384 385 BUG_ON(dir == DMA_NONE); 386 /* 387 * If the address happens to be in the device's DMA window, 388 * we can safely return the device addr and not worry about bounce 389 * buffering it. 390 */ 391 if (dma_capable(dev, dev_addr, size) && 392 !range_straddles_page_boundary(phys, size) && 393 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 394 (swiotlb_force != SWIOTLB_FORCE)) { 395 /* we are not interested in the dma_addr returned by 396 * xen_dma_map_page, only in the potential cache flushes executed 397 * by the function. */ 398 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 399 return dev_addr; 400 } 401 402 /* 403 * Oh well, have to allocate and map a bounce buffer. 404 */ 405 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 406 407 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir, 408 attrs); 409 if (map == DMA_MAPPING_ERROR) 410 return DMA_MAPPING_ERROR; 411 412 dev_addr = xen_phys_to_bus(map); 413 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 414 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 415 416 /* 417 * Ensure that the address returned is DMA'ble 418 */ 419 if (dma_capable(dev, dev_addr, size)) 420 return dev_addr; 421 422 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 423 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); 424 425 return DMA_MAPPING_ERROR; 426 } 427 428 /* 429 * Unmap a single streaming mode DMA translation. The dma_addr and size must 430 * match what was provided for in a previous xen_swiotlb_map_page call. All 431 * other usages are undefined. 432 * 433 * After this call, reads by the cpu to the buffer are guaranteed to see 434 * whatever the device wrote there. 435 */ 436 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 437 size_t size, enum dma_data_direction dir, 438 unsigned long attrs) 439 { 440 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 441 442 BUG_ON(dir == DMA_NONE); 443 444 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 445 446 /* NOTE: We use dev_addr here, not paddr! */ 447 if (is_xen_swiotlb_buffer(dev_addr)) 448 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 449 } 450 451 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 452 size_t size, enum dma_data_direction dir, 453 unsigned long attrs) 454 { 455 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 456 } 457 458 /* 459 * Make physical memory consistent for a single streaming mode DMA translation 460 * after a transfer. 461 * 462 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 463 * using the cpu, yet do not wish to teardown the dma mapping, you must 464 * call this function before doing so. At the next point you give the dma 465 * address back to the card, you must first perform a 466 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 467 */ 468 static void 469 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 470 size_t size, enum dma_data_direction dir, 471 enum dma_sync_target target) 472 { 473 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 474 475 BUG_ON(dir == DMA_NONE); 476 477 if (target == SYNC_FOR_CPU) 478 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 479 480 /* NOTE: We use dev_addr here, not paddr! */ 481 if (is_xen_swiotlb_buffer(dev_addr)) 482 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 483 484 if (target == SYNC_FOR_DEVICE) 485 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 486 } 487 488 void 489 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 490 size_t size, enum dma_data_direction dir) 491 { 492 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 493 } 494 495 void 496 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 497 size_t size, enum dma_data_direction dir) 498 { 499 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 500 } 501 502 /* 503 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 504 * concerning calls here are the same as for swiotlb_unmap_page() above. 505 */ 506 static void 507 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 508 int nelems, enum dma_data_direction dir, 509 unsigned long attrs) 510 { 511 struct scatterlist *sg; 512 int i; 513 514 BUG_ON(dir == DMA_NONE); 515 516 for_each_sg(sgl, sg, nelems, i) 517 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 518 519 } 520 521 /* 522 * Map a set of buffers described by scatterlist in streaming mode for DMA. 523 * This is the scatter-gather version of the above xen_swiotlb_map_page 524 * interface. Here the scatter gather list elements are each tagged with the 525 * appropriate dma address and length. They are obtained via 526 * sg_dma_{address,length}(SG). 527 * 528 * NOTE: An implementation may be able to use a smaller number of 529 * DMA address/length pairs than there are SG table elements. 530 * (for example via virtual mapping capabilities) 531 * The routine returns the number of addr/length pairs actually 532 * used, at most nents. 533 * 534 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 535 * same here. 536 */ 537 static int 538 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 539 int nelems, enum dma_data_direction dir, 540 unsigned long attrs) 541 { 542 struct scatterlist *sg; 543 int i; 544 545 BUG_ON(dir == DMA_NONE); 546 547 for_each_sg(sgl, sg, nelems, i) { 548 phys_addr_t paddr = sg_phys(sg); 549 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 550 551 if (swiotlb_force == SWIOTLB_FORCE || 552 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) || 553 !dma_capable(hwdev, dev_addr, sg->length) || 554 range_straddles_page_boundary(paddr, sg->length)) { 555 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 556 start_dma_addr, 557 sg_phys(sg), 558 sg->length, 559 dir, attrs); 560 if (map == DMA_MAPPING_ERROR) { 561 dev_warn(hwdev, "swiotlb buffer is full\n"); 562 /* Don't panic here, we expect map_sg users 563 to do proper error handling. */ 564 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 565 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 566 attrs); 567 sg_dma_len(sgl) = 0; 568 return 0; 569 } 570 dev_addr = xen_phys_to_bus(map); 571 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 572 dev_addr, 573 map & ~PAGE_MASK, 574 sg->length, 575 dir, 576 attrs); 577 sg->dma_address = dev_addr; 578 } else { 579 /* we are not interested in the dma_addr returned by 580 * xen_dma_map_page, only in the potential cache flushes executed 581 * by the function. */ 582 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 583 dev_addr, 584 paddr & ~PAGE_MASK, 585 sg->length, 586 dir, 587 attrs); 588 sg->dma_address = dev_addr; 589 } 590 sg_dma_len(sg) = sg->length; 591 } 592 return nelems; 593 } 594 595 /* 596 * Make physical memory consistent for a set of streaming mode DMA translations 597 * after a transfer. 598 * 599 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 600 * and usage. 601 */ 602 static void 603 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 604 int nelems, enum dma_data_direction dir, 605 enum dma_sync_target target) 606 { 607 struct scatterlist *sg; 608 int i; 609 610 for_each_sg(sgl, sg, nelems, i) 611 xen_swiotlb_sync_single(hwdev, sg->dma_address, 612 sg_dma_len(sg), dir, target); 613 } 614 615 static void 616 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 617 int nelems, enum dma_data_direction dir) 618 { 619 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 620 } 621 622 static void 623 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 624 int nelems, enum dma_data_direction dir) 625 { 626 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 627 } 628 629 /* 630 * Return whether the given device DMA address mask can be supported 631 * properly. For example, if your device can only drive the low 24-bits 632 * during bus mastering, then you would pass 0x00ffffff as the mask to 633 * this function. 634 */ 635 static int 636 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 637 { 638 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 639 } 640 641 /* 642 * Create userspace mapping for the DMA-coherent memory. 643 * This function should be called with the pages from the current domain only, 644 * passing pages mapped from other domains would lead to memory corruption. 645 */ 646 static int 647 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma, 648 void *cpu_addr, dma_addr_t dma_addr, size_t size, 649 unsigned long attrs) 650 { 651 #ifdef CONFIG_ARM 652 if (xen_get_dma_ops(dev)->mmap) 653 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr, 654 dma_addr, size, attrs); 655 #endif 656 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 657 } 658 659 /* 660 * This function should be called with the pages from the current domain only, 661 * passing pages mapped from other domains would lead to memory corruption. 662 */ 663 static int 664 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 665 void *cpu_addr, dma_addr_t handle, size_t size, 666 unsigned long attrs) 667 { 668 #ifdef CONFIG_ARM 669 if (xen_get_dma_ops(dev)->get_sgtable) { 670 #if 0 671 /* 672 * This check verifies that the page belongs to the current domain and 673 * is not one mapped from another domain. 674 * This check is for debug only, and should not go to production build 675 */ 676 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle)); 677 BUG_ON (!page_is_ram(bfn)); 678 #endif 679 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr, 680 handle, size, attrs); 681 } 682 #endif 683 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs); 684 } 685 686 const struct dma_map_ops xen_swiotlb_dma_ops = { 687 .alloc = xen_swiotlb_alloc_coherent, 688 .free = xen_swiotlb_free_coherent, 689 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 690 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 691 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 692 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 693 .map_sg = xen_swiotlb_map_sg_attrs, 694 .unmap_sg = xen_swiotlb_unmap_sg_attrs, 695 .map_page = xen_swiotlb_map_page, 696 .unmap_page = xen_swiotlb_unmap_page, 697 .dma_supported = xen_swiotlb_dma_supported, 698 .mmap = xen_swiotlb_dma_mmap, 699 .get_sgtable = xen_swiotlb_get_sgtable, 700 }; 701