xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 
40 #include <trace/events/swiotlb.h>
41 #define MAX_DMA_BITS 32
42 
43 /*
44  * Quick lookup value of the bus address of the IOTLB.
45  */
46 
47 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
48 {
49 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
50 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
51 
52 	baddr |= paddr & ~XEN_PAGE_MASK;
53 	return baddr;
54 }
55 
56 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
57 {
58 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
59 }
60 
61 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
62 					  phys_addr_t baddr)
63 {
64 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
65 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
66 			    (baddr & ~XEN_PAGE_MASK);
67 
68 	return paddr;
69 }
70 
71 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
72 					  dma_addr_t dma_addr)
73 {
74 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
75 }
76 
77 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
78 {
79 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
80 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
81 	phys_addr_t algn = 1ULL << (get_order(size) + PAGE_SHIFT);
82 
83 	next_bfn = pfn_to_bfn(xen_pfn);
84 
85 	/* If buffer is physically aligned, ensure DMA alignment. */
86 	if (IS_ALIGNED(p, algn) &&
87 	    !IS_ALIGNED((phys_addr_t)next_bfn << XEN_PAGE_SHIFT, algn))
88 		return 1;
89 
90 	for (i = 1; i < nr_pages; i++)
91 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
92 			return 1;
93 
94 	return 0;
95 }
96 
97 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
98 {
99 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
100 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
101 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
102 
103 	/* If the address is outside our domain, it CAN
104 	 * have the same virtual address as another address
105 	 * in our domain. Therefore _only_ check address within our domain.
106 	 */
107 	if (pfn_valid(PFN_DOWN(paddr)))
108 		return is_swiotlb_buffer(dev, paddr);
109 	return 0;
110 }
111 
112 #ifdef CONFIG_X86
113 int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
114 {
115 	int rc;
116 	unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
117 	unsigned int i, dma_bits = order + PAGE_SHIFT;
118 	dma_addr_t dma_handle;
119 	phys_addr_t p = virt_to_phys(buf);
120 
121 	BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
122 	BUG_ON(nslabs % IO_TLB_SEGSIZE);
123 
124 	i = 0;
125 	do {
126 		do {
127 			rc = xen_create_contiguous_region(
128 				p + (i << IO_TLB_SHIFT), order,
129 				dma_bits, &dma_handle);
130 		} while (rc && dma_bits++ < MAX_DMA_BITS);
131 		if (rc)
132 			return rc;
133 
134 		i += IO_TLB_SEGSIZE;
135 	} while (i < nslabs);
136 	return 0;
137 }
138 
139 static void *
140 xen_swiotlb_alloc_coherent(struct device *dev, size_t size,
141 		dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs)
142 {
143 	u64 dma_mask = dev->coherent_dma_mask;
144 	int order = get_order(size);
145 	phys_addr_t phys;
146 	void *ret;
147 
148 	/* Align the allocation to the Xen page size */
149 	size = ALIGN(size, XEN_PAGE_SIZE);
150 
151 	ret = (void *)__get_free_pages(flags, get_order(size));
152 	if (!ret)
153 		return ret;
154 	phys = virt_to_phys(ret);
155 
156 	*dma_handle = xen_phys_to_dma(dev, phys);
157 	if (*dma_handle + size - 1 > dma_mask ||
158 	    range_straddles_page_boundary(phys, size)) {
159 		if (xen_create_contiguous_region(phys, order, fls64(dma_mask),
160 				dma_handle) != 0)
161 			goto out_free_pages;
162 		SetPageXenRemapped(virt_to_page(ret));
163 	}
164 
165 	memset(ret, 0, size);
166 	return ret;
167 
168 out_free_pages:
169 	free_pages((unsigned long)ret, get_order(size));
170 	return NULL;
171 }
172 
173 static void
174 xen_swiotlb_free_coherent(struct device *dev, size_t size, void *vaddr,
175 		dma_addr_t dma_handle, unsigned long attrs)
176 {
177 	phys_addr_t phys = virt_to_phys(vaddr);
178 	int order = get_order(size);
179 
180 	/* Convert the size to actually allocated. */
181 	size = ALIGN(size, XEN_PAGE_SIZE);
182 
183 	if (WARN_ON_ONCE(dma_handle + size - 1 > dev->coherent_dma_mask) ||
184 	    WARN_ON_ONCE(range_straddles_page_boundary(phys, size)))
185 	    	return;
186 
187 	if (TestClearPageXenRemapped(virt_to_page(vaddr)))
188 		xen_destroy_contiguous_region(phys, order);
189 	free_pages((unsigned long)vaddr, get_order(size));
190 }
191 #endif /* CONFIG_X86 */
192 
193 /*
194  * Map a single buffer of the indicated size for DMA in streaming mode.  The
195  * physical address to use is returned.
196  *
197  * Once the device is given the dma address, the device owns this memory until
198  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
199  */
200 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
201 				unsigned long offset, size_t size,
202 				enum dma_data_direction dir,
203 				unsigned long attrs)
204 {
205 	phys_addr_t map, phys = page_to_phys(page) + offset;
206 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
207 
208 	BUG_ON(dir == DMA_NONE);
209 	/*
210 	 * If the address happens to be in the device's DMA window,
211 	 * we can safely return the device addr and not worry about bounce
212 	 * buffering it.
213 	 */
214 	if (dma_capable(dev, dev_addr, size, true) &&
215 	    !range_straddles_page_boundary(phys, size) &&
216 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
217 		!is_swiotlb_force_bounce(dev))
218 		goto done;
219 
220 	/*
221 	 * Oh well, have to allocate and map a bounce buffer.
222 	 */
223 	trace_swiotlb_bounced(dev, dev_addr, size);
224 
225 	map = swiotlb_tbl_map_single(dev, phys, size, size, 0, dir, attrs);
226 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
227 		return DMA_MAPPING_ERROR;
228 
229 	phys = map;
230 	dev_addr = xen_phys_to_dma(dev, map);
231 
232 	/*
233 	 * Ensure that the address returned is DMA'ble
234 	 */
235 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
236 		swiotlb_tbl_unmap_single(dev, map, size, dir,
237 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
238 		return DMA_MAPPING_ERROR;
239 	}
240 
241 done:
242 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
243 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
244 			arch_sync_dma_for_device(phys, size, dir);
245 		else
246 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
247 	}
248 	return dev_addr;
249 }
250 
251 /*
252  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
253  * match what was provided for in a previous xen_swiotlb_map_page call.  All
254  * other usages are undefined.
255  *
256  * After this call, reads by the cpu to the buffer are guaranteed to see
257  * whatever the device wrote there.
258  */
259 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
260 		size_t size, enum dma_data_direction dir, unsigned long attrs)
261 {
262 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
263 
264 	BUG_ON(dir == DMA_NONE);
265 
266 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
267 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
268 			arch_sync_dma_for_cpu(paddr, size, dir);
269 		else
270 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
271 	}
272 
273 	/* NOTE: We use dev_addr here, not paddr! */
274 	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
275 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
276 }
277 
278 static void
279 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
280 		size_t size, enum dma_data_direction dir)
281 {
282 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
283 
284 	if (!dev_is_dma_coherent(dev)) {
285 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
286 			arch_sync_dma_for_cpu(paddr, size, dir);
287 		else
288 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
289 	}
290 
291 	if (is_xen_swiotlb_buffer(dev, dma_addr))
292 		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
293 }
294 
295 static void
296 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
297 		size_t size, enum dma_data_direction dir)
298 {
299 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
300 
301 	if (is_xen_swiotlb_buffer(dev, dma_addr))
302 		swiotlb_sync_single_for_device(dev, paddr, size, dir);
303 
304 	if (!dev_is_dma_coherent(dev)) {
305 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
306 			arch_sync_dma_for_device(paddr, size, dir);
307 		else
308 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
309 	}
310 }
311 
312 /*
313  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
314  * concerning calls here are the same as for swiotlb_unmap_page() above.
315  */
316 static void
317 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
318 		enum dma_data_direction dir, unsigned long attrs)
319 {
320 	struct scatterlist *sg;
321 	int i;
322 
323 	BUG_ON(dir == DMA_NONE);
324 
325 	for_each_sg(sgl, sg, nelems, i)
326 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
327 				dir, attrs);
328 
329 }
330 
331 static int
332 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
333 		enum dma_data_direction dir, unsigned long attrs)
334 {
335 	struct scatterlist *sg;
336 	int i;
337 
338 	BUG_ON(dir == DMA_NONE);
339 
340 	for_each_sg(sgl, sg, nelems, i) {
341 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
342 				sg->offset, sg->length, dir, attrs);
343 		if (sg->dma_address == DMA_MAPPING_ERROR)
344 			goto out_unmap;
345 		sg_dma_len(sg) = sg->length;
346 	}
347 
348 	return nelems;
349 out_unmap:
350 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
351 	sg_dma_len(sgl) = 0;
352 	return -EIO;
353 }
354 
355 static void
356 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
357 			    int nelems, enum dma_data_direction dir)
358 {
359 	struct scatterlist *sg;
360 	int i;
361 
362 	for_each_sg(sgl, sg, nelems, i) {
363 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
364 				sg->length, dir);
365 	}
366 }
367 
368 static void
369 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
370 			       int nelems, enum dma_data_direction dir)
371 {
372 	struct scatterlist *sg;
373 	int i;
374 
375 	for_each_sg(sgl, sg, nelems, i) {
376 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
377 				sg->length, dir);
378 	}
379 }
380 
381 /*
382  * Return whether the given device DMA address mask can be supported
383  * properly.  For example, if your device can only drive the low 24-bits
384  * during bus mastering, then you would pass 0x00ffffff as the mask to
385  * this function.
386  */
387 static int
388 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
389 {
390 	return xen_phys_to_dma(hwdev, default_swiotlb_limit()) <= mask;
391 }
392 
393 const struct dma_map_ops xen_swiotlb_dma_ops = {
394 #ifdef CONFIG_X86
395 	.alloc = xen_swiotlb_alloc_coherent,
396 	.free = xen_swiotlb_free_coherent,
397 #else
398 	.alloc = dma_direct_alloc,
399 	.free = dma_direct_free,
400 #endif
401 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
402 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
403 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
404 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
405 	.map_sg = xen_swiotlb_map_sg,
406 	.unmap_sg = xen_swiotlb_unmap_sg,
407 	.map_page = xen_swiotlb_map_page,
408 	.unmap_page = xen_swiotlb_unmap_page,
409 	.dma_supported = xen_swiotlb_dma_supported,
410 	.mmap = dma_common_mmap,
411 	.get_sgtable = dma_common_get_sgtable,
412 	.alloc_pages = dma_common_alloc_pages,
413 	.free_pages = dma_common_free_pages,
414 	.max_mapping_size = swiotlb_max_mapping_size,
415 };
416