1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2010 4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 5 * 6 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 7 * 8 * PV guests under Xen are running in an non-contiguous memory architecture. 9 * 10 * When PCI pass-through is utilized, this necessitates an IOMMU for 11 * translating bus (DMA) to virtual and vice-versa and also providing a 12 * mechanism to have contiguous pages for device drivers operations (say DMA 13 * operations). 14 * 15 * Specifically, under Xen the Linux idea of pages is an illusion. It 16 * assumes that pages start at zero and go up to the available memory. To 17 * help with that, the Linux Xen MMU provides a lookup mechanism to 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 20 * memory is not contiguous. Xen hypervisor stitches memory for guests 21 * from different pools, which means there is no guarantee that PFN==MFN 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 23 * allocated in descending order (high to low), meaning the guest might 24 * never get any MFN's under the 4GB mark. 25 */ 26 27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 28 29 #include <linux/memblock.h> 30 #include <linux/dma-direct.h> 31 #include <linux/export.h> 32 #include <xen/swiotlb-xen.h> 33 #include <xen/page.h> 34 #include <xen/xen-ops.h> 35 #include <xen/hvc-console.h> 36 37 #include <asm/dma-mapping.h> 38 #include <asm/xen/page-coherent.h> 39 40 #include <trace/events/swiotlb.h> 41 /* 42 * Used to do a quick range check in swiotlb_tbl_unmap_single and 43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 44 * API. 45 */ 46 47 static char *xen_io_tlb_start, *xen_io_tlb_end; 48 static unsigned long xen_io_tlb_nslabs; 49 /* 50 * Quick lookup value of the bus address of the IOTLB. 51 */ 52 53 static u64 start_dma_addr; 54 55 /* 56 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 57 * can be 32bit when dma_addr_t is 64bit leading to a loss in 58 * information if the shift is done before casting to 64bit. 59 */ 60 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 61 { 62 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 63 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 64 65 dma |= paddr & ~XEN_PAGE_MASK; 66 67 return dma; 68 } 69 70 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 71 { 72 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 73 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 74 phys_addr_t paddr = dma; 75 76 paddr |= baddr & ~XEN_PAGE_MASK; 77 78 return paddr; 79 } 80 81 static inline dma_addr_t xen_virt_to_bus(void *address) 82 { 83 return xen_phys_to_bus(virt_to_phys(address)); 84 } 85 86 static int check_pages_physically_contiguous(unsigned long xen_pfn, 87 unsigned int offset, 88 size_t length) 89 { 90 unsigned long next_bfn; 91 int i; 92 int nr_pages; 93 94 next_bfn = pfn_to_bfn(xen_pfn); 95 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 96 97 for (i = 1; i < nr_pages; i++) { 98 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 99 return 0; 100 } 101 return 1; 102 } 103 104 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 105 { 106 unsigned long xen_pfn = XEN_PFN_DOWN(p); 107 unsigned int offset = p & ~XEN_PAGE_MASK; 108 109 if (offset + size <= XEN_PAGE_SIZE) 110 return 0; 111 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 112 return 0; 113 return 1; 114 } 115 116 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 117 { 118 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 119 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 120 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 121 122 /* If the address is outside our domain, it CAN 123 * have the same virtual address as another address 124 * in our domain. Therefore _only_ check address within our domain. 125 */ 126 if (pfn_valid(PFN_DOWN(paddr))) { 127 return paddr >= virt_to_phys(xen_io_tlb_start) && 128 paddr < virt_to_phys(xen_io_tlb_end); 129 } 130 return 0; 131 } 132 133 static int max_dma_bits = 32; 134 135 static int 136 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 137 { 138 int i, rc; 139 int dma_bits; 140 dma_addr_t dma_handle; 141 phys_addr_t p = virt_to_phys(buf); 142 143 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 144 145 i = 0; 146 do { 147 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 148 149 do { 150 rc = xen_create_contiguous_region( 151 p + (i << IO_TLB_SHIFT), 152 get_order(slabs << IO_TLB_SHIFT), 153 dma_bits, &dma_handle); 154 } while (rc && dma_bits++ < max_dma_bits); 155 if (rc) 156 return rc; 157 158 i += slabs; 159 } while (i < nslabs); 160 return 0; 161 } 162 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 163 { 164 if (!nr_tbl) { 165 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 166 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 167 } else 168 xen_io_tlb_nslabs = nr_tbl; 169 170 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 171 } 172 173 enum xen_swiotlb_err { 174 XEN_SWIOTLB_UNKNOWN = 0, 175 XEN_SWIOTLB_ENOMEM, 176 XEN_SWIOTLB_EFIXUP 177 }; 178 179 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 180 { 181 switch (err) { 182 case XEN_SWIOTLB_ENOMEM: 183 return "Cannot allocate Xen-SWIOTLB buffer\n"; 184 case XEN_SWIOTLB_EFIXUP: 185 return "Failed to get contiguous memory for DMA from Xen!\n"\ 186 "You either: don't have the permissions, do not have"\ 187 " enough free memory under 4GB, or the hypervisor memory"\ 188 " is too fragmented!"; 189 default: 190 break; 191 } 192 return ""; 193 } 194 int __ref xen_swiotlb_init(int verbose, bool early) 195 { 196 unsigned long bytes, order; 197 int rc = -ENOMEM; 198 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 199 unsigned int repeat = 3; 200 201 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 202 retry: 203 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 204 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 205 206 /* 207 * IO TLB memory already allocated. Just use it. 208 */ 209 if (io_tlb_start != 0) { 210 xen_io_tlb_start = phys_to_virt(io_tlb_start); 211 goto end; 212 } 213 214 /* 215 * Get IO TLB memory from any location. 216 */ 217 if (early) { 218 xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes), 219 PAGE_SIZE); 220 if (!xen_io_tlb_start) 221 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 222 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 223 } else { 224 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 225 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 226 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 227 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 228 if (xen_io_tlb_start) 229 break; 230 order--; 231 } 232 if (order != get_order(bytes)) { 233 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 234 (PAGE_SIZE << order) >> 20); 235 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 236 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 237 } 238 } 239 if (!xen_io_tlb_start) { 240 m_ret = XEN_SWIOTLB_ENOMEM; 241 goto error; 242 } 243 /* 244 * And replace that memory with pages under 4GB. 245 */ 246 rc = xen_swiotlb_fixup(xen_io_tlb_start, 247 bytes, 248 xen_io_tlb_nslabs); 249 if (rc) { 250 if (early) 251 memblock_free(__pa(xen_io_tlb_start), 252 PAGE_ALIGN(bytes)); 253 else { 254 free_pages((unsigned long)xen_io_tlb_start, order); 255 xen_io_tlb_start = NULL; 256 } 257 m_ret = XEN_SWIOTLB_EFIXUP; 258 goto error; 259 } 260 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 261 if (early) { 262 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 263 verbose)) 264 panic("Cannot allocate SWIOTLB buffer"); 265 rc = 0; 266 } else 267 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 268 269 end: 270 xen_io_tlb_end = xen_io_tlb_start + bytes; 271 if (!rc) 272 swiotlb_set_max_segment(PAGE_SIZE); 273 274 return rc; 275 error: 276 if (repeat--) { 277 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 278 (xen_io_tlb_nslabs >> 1)); 279 pr_info("Lowering to %luMB\n", 280 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 281 goto retry; 282 } 283 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 284 if (early) 285 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 286 else 287 free_pages((unsigned long)xen_io_tlb_start, order); 288 return rc; 289 } 290 291 static void * 292 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 293 dma_addr_t *dma_handle, gfp_t flags, 294 unsigned long attrs) 295 { 296 void *ret; 297 int order = get_order(size); 298 u64 dma_mask = DMA_BIT_MASK(32); 299 phys_addr_t phys; 300 dma_addr_t dev_addr; 301 302 /* 303 * Ignore region specifiers - the kernel's ideas of 304 * pseudo-phys memory layout has nothing to do with the 305 * machine physical layout. We can't allocate highmem 306 * because we can't return a pointer to it. 307 */ 308 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 309 310 /* Convert the size to actually allocated. */ 311 size = 1UL << (order + XEN_PAGE_SHIFT); 312 313 /* On ARM this function returns an ioremap'ped virtual address for 314 * which virt_to_phys doesn't return the corresponding physical 315 * address. In fact on ARM virt_to_phys only works for kernel direct 316 * mapped RAM memory. Also see comment below. 317 */ 318 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 319 320 if (!ret) 321 return ret; 322 323 if (hwdev && hwdev->coherent_dma_mask) 324 dma_mask = hwdev->coherent_dma_mask; 325 326 /* At this point dma_handle is the physical address, next we are 327 * going to set it to the machine address. 328 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 329 * to *dma_handle. */ 330 phys = *dma_handle; 331 dev_addr = xen_phys_to_bus(phys); 332 if (((dev_addr + size - 1 <= dma_mask)) && 333 !range_straddles_page_boundary(phys, size)) 334 *dma_handle = dev_addr; 335 else { 336 if (xen_create_contiguous_region(phys, order, 337 fls64(dma_mask), dma_handle) != 0) { 338 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 339 return NULL; 340 } 341 } 342 memset(ret, 0, size); 343 return ret; 344 } 345 346 static void 347 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 348 dma_addr_t dev_addr, unsigned long attrs) 349 { 350 int order = get_order(size); 351 phys_addr_t phys; 352 u64 dma_mask = DMA_BIT_MASK(32); 353 354 if (hwdev && hwdev->coherent_dma_mask) 355 dma_mask = hwdev->coherent_dma_mask; 356 357 /* do not use virt_to_phys because on ARM it doesn't return you the 358 * physical address */ 359 phys = xen_bus_to_phys(dev_addr); 360 361 /* Convert the size to actually allocated. */ 362 size = 1UL << (order + XEN_PAGE_SHIFT); 363 364 if (((dev_addr + size - 1 <= dma_mask)) || 365 range_straddles_page_boundary(phys, size)) 366 xen_destroy_contiguous_region(phys, order); 367 368 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 369 } 370 371 /* 372 * Map a single buffer of the indicated size for DMA in streaming mode. The 373 * physical address to use is returned. 374 * 375 * Once the device is given the dma address, the device owns this memory until 376 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 377 */ 378 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 379 unsigned long offset, size_t size, 380 enum dma_data_direction dir, 381 unsigned long attrs) 382 { 383 phys_addr_t map, phys = page_to_phys(page) + offset; 384 dma_addr_t dev_addr = xen_phys_to_bus(phys); 385 386 BUG_ON(dir == DMA_NONE); 387 /* 388 * If the address happens to be in the device's DMA window, 389 * we can safely return the device addr and not worry about bounce 390 * buffering it. 391 */ 392 if (dma_capable(dev, dev_addr, size) && 393 !range_straddles_page_boundary(phys, size) && 394 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 395 swiotlb_force != SWIOTLB_FORCE) 396 goto done; 397 398 /* 399 * Oh well, have to allocate and map a bounce buffer. 400 */ 401 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 402 403 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir, 404 attrs); 405 if (map == (phys_addr_t)DMA_MAPPING_ERROR) 406 return DMA_MAPPING_ERROR; 407 408 dev_addr = xen_phys_to_bus(map); 409 410 /* 411 * Ensure that the address returned is DMA'ble 412 */ 413 if (unlikely(!dma_capable(dev, dev_addr, size))) { 414 swiotlb_tbl_unmap_single(dev, map, size, dir, 415 attrs | DMA_ATTR_SKIP_CPU_SYNC); 416 return DMA_MAPPING_ERROR; 417 } 418 419 page = pfn_to_page(map >> PAGE_SHIFT); 420 offset = map & ~PAGE_MASK; 421 done: 422 /* 423 * we are not interested in the dma_addr returned by xen_dma_map_page, 424 * only in the potential cache flushes executed by the function. 425 */ 426 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 427 return dev_addr; 428 } 429 430 /* 431 * Unmap a single streaming mode DMA translation. The dma_addr and size must 432 * match what was provided for in a previous xen_swiotlb_map_page call. All 433 * other usages are undefined. 434 * 435 * After this call, reads by the cpu to the buffer are guaranteed to see 436 * whatever the device wrote there. 437 */ 438 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 439 size_t size, enum dma_data_direction dir, 440 unsigned long attrs) 441 { 442 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 443 444 BUG_ON(dir == DMA_NONE); 445 446 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 447 448 /* NOTE: We use dev_addr here, not paddr! */ 449 if (is_xen_swiotlb_buffer(dev_addr)) 450 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 451 } 452 453 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 454 size_t size, enum dma_data_direction dir, 455 unsigned long attrs) 456 { 457 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 458 } 459 460 static void 461 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 462 size_t size, enum dma_data_direction dir) 463 { 464 phys_addr_t paddr = xen_bus_to_phys(dma_addr); 465 466 xen_dma_sync_single_for_cpu(dev, dma_addr, size, dir); 467 468 if (is_xen_swiotlb_buffer(dma_addr)) 469 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); 470 } 471 472 static void 473 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 474 size_t size, enum dma_data_direction dir) 475 { 476 phys_addr_t paddr = xen_bus_to_phys(dma_addr); 477 478 if (is_xen_swiotlb_buffer(dma_addr)) 479 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); 480 481 xen_dma_sync_single_for_device(dev, dma_addr, size, dir); 482 } 483 484 /* 485 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 486 * concerning calls here are the same as for swiotlb_unmap_page() above. 487 */ 488 static void 489 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 490 enum dma_data_direction dir, unsigned long attrs) 491 { 492 struct scatterlist *sg; 493 int i; 494 495 BUG_ON(dir == DMA_NONE); 496 497 for_each_sg(sgl, sg, nelems, i) 498 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 499 500 } 501 502 static int 503 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 504 enum dma_data_direction dir, unsigned long attrs) 505 { 506 struct scatterlist *sg; 507 int i; 508 509 BUG_ON(dir == DMA_NONE); 510 511 for_each_sg(sgl, sg, nelems, i) { 512 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 513 sg->offset, sg->length, dir, attrs); 514 if (sg->dma_address == DMA_MAPPING_ERROR) 515 goto out_unmap; 516 sg_dma_len(sg) = sg->length; 517 } 518 519 return nelems; 520 out_unmap: 521 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 522 sg_dma_len(sgl) = 0; 523 return 0; 524 } 525 526 static void 527 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 528 int nelems, enum dma_data_direction dir) 529 { 530 struct scatterlist *sg; 531 int i; 532 533 for_each_sg(sgl, sg, nelems, i) { 534 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 535 sg->length, dir); 536 } 537 } 538 539 static void 540 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 541 int nelems, enum dma_data_direction dir) 542 { 543 struct scatterlist *sg; 544 int i; 545 546 for_each_sg(sgl, sg, nelems, i) { 547 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 548 sg->length, dir); 549 } 550 } 551 552 /* 553 * Return whether the given device DMA address mask can be supported 554 * properly. For example, if your device can only drive the low 24-bits 555 * during bus mastering, then you would pass 0x00ffffff as the mask to 556 * this function. 557 */ 558 static int 559 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 560 { 561 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 562 } 563 564 /* 565 * Create userspace mapping for the DMA-coherent memory. 566 * This function should be called with the pages from the current domain only, 567 * passing pages mapped from other domains would lead to memory corruption. 568 */ 569 static int 570 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma, 571 void *cpu_addr, dma_addr_t dma_addr, size_t size, 572 unsigned long attrs) 573 { 574 #ifdef CONFIG_ARM 575 if (xen_get_dma_ops(dev)->mmap) 576 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr, 577 dma_addr, size, attrs); 578 #endif 579 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 580 } 581 582 /* 583 * This function should be called with the pages from the current domain only, 584 * passing pages mapped from other domains would lead to memory corruption. 585 */ 586 static int 587 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 588 void *cpu_addr, dma_addr_t handle, size_t size, 589 unsigned long attrs) 590 { 591 #ifdef CONFIG_ARM 592 if (xen_get_dma_ops(dev)->get_sgtable) { 593 #if 0 594 /* 595 * This check verifies that the page belongs to the current domain and 596 * is not one mapped from another domain. 597 * This check is for debug only, and should not go to production build 598 */ 599 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle)); 600 BUG_ON (!page_is_ram(bfn)); 601 #endif 602 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr, 603 handle, size, attrs); 604 } 605 #endif 606 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs); 607 } 608 609 const struct dma_map_ops xen_swiotlb_dma_ops = { 610 .alloc = xen_swiotlb_alloc_coherent, 611 .free = xen_swiotlb_free_coherent, 612 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 613 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 614 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 615 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 616 .map_sg = xen_swiotlb_map_sg, 617 .unmap_sg = xen_swiotlb_unmap_sg, 618 .map_page = xen_swiotlb_map_page, 619 .unmap_page = xen_swiotlb_unmap_page, 620 .dma_supported = xen_swiotlb_dma_supported, 621 .mmap = xen_swiotlb_dma_mmap, 622 .get_sgtable = xen_swiotlb_get_sgtable, 623 }; 624