1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/bootmem.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 #ifndef CONFIG_X86 57 static unsigned long dma_alloc_coherent_mask(struct device *dev, 58 gfp_t gfp) 59 { 60 unsigned long dma_mask = 0; 61 62 dma_mask = dev->coherent_dma_mask; 63 if (!dma_mask) 64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32); 65 66 return dma_mask; 67 } 68 #endif 69 70 static char *xen_io_tlb_start, *xen_io_tlb_end; 71 static unsigned long xen_io_tlb_nslabs; 72 /* 73 * Quick lookup value of the bus address of the IOTLB. 74 */ 75 76 static u64 start_dma_addr; 77 78 /* 79 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 80 * can be 32bit when dma_addr_t is 64bit leading to a loss in 81 * information if the shift is done before casting to 64bit. 82 */ 83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 84 { 85 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 86 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 87 88 dma |= paddr & ~XEN_PAGE_MASK; 89 90 return dma; 91 } 92 93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 94 { 95 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 96 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 97 phys_addr_t paddr = dma; 98 99 paddr |= baddr & ~XEN_PAGE_MASK; 100 101 return paddr; 102 } 103 104 static inline dma_addr_t xen_virt_to_bus(void *address) 105 { 106 return xen_phys_to_bus(virt_to_phys(address)); 107 } 108 109 static int check_pages_physically_contiguous(unsigned long xen_pfn, 110 unsigned int offset, 111 size_t length) 112 { 113 unsigned long next_bfn; 114 int i; 115 int nr_pages; 116 117 next_bfn = pfn_to_bfn(xen_pfn); 118 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 119 120 for (i = 1; i < nr_pages; i++) { 121 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 122 return 0; 123 } 124 return 1; 125 } 126 127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 128 { 129 unsigned long xen_pfn = XEN_PFN_DOWN(p); 130 unsigned int offset = p & ~XEN_PAGE_MASK; 131 132 if (offset + size <= XEN_PAGE_SIZE) 133 return 0; 134 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 135 return 0; 136 return 1; 137 } 138 139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 140 { 141 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 142 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 143 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 144 145 /* If the address is outside our domain, it CAN 146 * have the same virtual address as another address 147 * in our domain. Therefore _only_ check address within our domain. 148 */ 149 if (pfn_valid(PFN_DOWN(paddr))) { 150 return paddr >= virt_to_phys(xen_io_tlb_start) && 151 paddr < virt_to_phys(xen_io_tlb_end); 152 } 153 return 0; 154 } 155 156 static int max_dma_bits = 32; 157 158 static int 159 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 160 { 161 int i, rc; 162 int dma_bits; 163 dma_addr_t dma_handle; 164 phys_addr_t p = virt_to_phys(buf); 165 166 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 167 168 i = 0; 169 do { 170 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 171 172 do { 173 rc = xen_create_contiguous_region( 174 p + (i << IO_TLB_SHIFT), 175 get_order(slabs << IO_TLB_SHIFT), 176 dma_bits, &dma_handle); 177 } while (rc && dma_bits++ < max_dma_bits); 178 if (rc) 179 return rc; 180 181 i += slabs; 182 } while (i < nslabs); 183 return 0; 184 } 185 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 186 { 187 if (!nr_tbl) { 188 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 189 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 190 } else 191 xen_io_tlb_nslabs = nr_tbl; 192 193 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 194 } 195 196 enum xen_swiotlb_err { 197 XEN_SWIOTLB_UNKNOWN = 0, 198 XEN_SWIOTLB_ENOMEM, 199 XEN_SWIOTLB_EFIXUP 200 }; 201 202 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 203 { 204 switch (err) { 205 case XEN_SWIOTLB_ENOMEM: 206 return "Cannot allocate Xen-SWIOTLB buffer\n"; 207 case XEN_SWIOTLB_EFIXUP: 208 return "Failed to get contiguous memory for DMA from Xen!\n"\ 209 "You either: don't have the permissions, do not have"\ 210 " enough free memory under 4GB, or the hypervisor memory"\ 211 " is too fragmented!"; 212 default: 213 break; 214 } 215 return ""; 216 } 217 int __ref xen_swiotlb_init(int verbose, bool early) 218 { 219 unsigned long bytes, order; 220 int rc = -ENOMEM; 221 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 222 unsigned int repeat = 3; 223 224 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 225 retry: 226 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 227 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 228 /* 229 * Get IO TLB memory from any location. 230 */ 231 if (early) 232 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 233 else { 234 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 235 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 236 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 237 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 238 if (xen_io_tlb_start) 239 break; 240 order--; 241 } 242 if (order != get_order(bytes)) { 243 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 244 (PAGE_SIZE << order) >> 20); 245 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 246 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 247 } 248 } 249 if (!xen_io_tlb_start) { 250 m_ret = XEN_SWIOTLB_ENOMEM; 251 goto error; 252 } 253 xen_io_tlb_end = xen_io_tlb_start + bytes; 254 /* 255 * And replace that memory with pages under 4GB. 256 */ 257 rc = xen_swiotlb_fixup(xen_io_tlb_start, 258 bytes, 259 xen_io_tlb_nslabs); 260 if (rc) { 261 if (early) 262 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 263 else { 264 free_pages((unsigned long)xen_io_tlb_start, order); 265 xen_io_tlb_start = NULL; 266 } 267 m_ret = XEN_SWIOTLB_EFIXUP; 268 goto error; 269 } 270 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 271 if (early) { 272 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 273 verbose)) 274 panic("Cannot allocate SWIOTLB buffer"); 275 rc = 0; 276 } else 277 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 278 279 if (!rc) 280 swiotlb_set_max_segment(PAGE_SIZE); 281 282 return rc; 283 error: 284 if (repeat--) { 285 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 286 (xen_io_tlb_nslabs >> 1)); 287 pr_info("Lowering to %luMB\n", 288 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 289 goto retry; 290 } 291 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 292 if (early) 293 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 294 else 295 free_pages((unsigned long)xen_io_tlb_start, order); 296 return rc; 297 } 298 void * 299 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 300 dma_addr_t *dma_handle, gfp_t flags, 301 unsigned long attrs) 302 { 303 void *ret; 304 int order = get_order(size); 305 u64 dma_mask = DMA_BIT_MASK(32); 306 phys_addr_t phys; 307 dma_addr_t dev_addr; 308 309 /* 310 * Ignore region specifiers - the kernel's ideas of 311 * pseudo-phys memory layout has nothing to do with the 312 * machine physical layout. We can't allocate highmem 313 * because we can't return a pointer to it. 314 */ 315 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 316 317 /* On ARM this function returns an ioremap'ped virtual address for 318 * which virt_to_phys doesn't return the corresponding physical 319 * address. In fact on ARM virt_to_phys only works for kernel direct 320 * mapped RAM memory. Also see comment below. 321 */ 322 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 323 324 if (!ret) 325 return ret; 326 327 if (hwdev && hwdev->coherent_dma_mask) 328 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 329 330 /* At this point dma_handle is the physical address, next we are 331 * going to set it to the machine address. 332 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 333 * to *dma_handle. */ 334 phys = *dma_handle; 335 dev_addr = xen_phys_to_bus(phys); 336 if (((dev_addr + size - 1 <= dma_mask)) && 337 !range_straddles_page_boundary(phys, size)) 338 *dma_handle = dev_addr; 339 else { 340 if (xen_create_contiguous_region(phys, order, 341 fls64(dma_mask), dma_handle) != 0) { 342 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 343 return NULL; 344 } 345 } 346 memset(ret, 0, size); 347 return ret; 348 } 349 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 350 351 void 352 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 353 dma_addr_t dev_addr, unsigned long attrs) 354 { 355 int order = get_order(size); 356 phys_addr_t phys; 357 u64 dma_mask = DMA_BIT_MASK(32); 358 359 if (hwdev && hwdev->coherent_dma_mask) 360 dma_mask = hwdev->coherent_dma_mask; 361 362 /* do not use virt_to_phys because on ARM it doesn't return you the 363 * physical address */ 364 phys = xen_bus_to_phys(dev_addr); 365 366 if (((dev_addr + size - 1 > dma_mask)) || 367 range_straddles_page_boundary(phys, size)) 368 xen_destroy_contiguous_region(phys, order); 369 370 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 371 } 372 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 373 374 375 /* 376 * Map a single buffer of the indicated size for DMA in streaming mode. The 377 * physical address to use is returned. 378 * 379 * Once the device is given the dma address, the device owns this memory until 380 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 381 */ 382 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 383 unsigned long offset, size_t size, 384 enum dma_data_direction dir, 385 unsigned long attrs) 386 { 387 phys_addr_t map, phys = page_to_phys(page) + offset; 388 dma_addr_t dev_addr = xen_phys_to_bus(phys); 389 390 BUG_ON(dir == DMA_NONE); 391 /* 392 * If the address happens to be in the device's DMA window, 393 * we can safely return the device addr and not worry about bounce 394 * buffering it. 395 */ 396 if (dma_capable(dev, dev_addr, size) && 397 !range_straddles_page_boundary(phys, size) && 398 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 399 (swiotlb_force != SWIOTLB_FORCE)) { 400 /* we are not interested in the dma_addr returned by 401 * xen_dma_map_page, only in the potential cache flushes executed 402 * by the function. */ 403 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 404 return dev_addr; 405 } 406 407 /* 408 * Oh well, have to allocate and map a bounce buffer. 409 */ 410 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 411 412 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir, 413 attrs); 414 if (map == SWIOTLB_MAP_ERROR) 415 return DMA_ERROR_CODE; 416 417 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 418 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 419 dev_addr = xen_phys_to_bus(map); 420 421 /* 422 * Ensure that the address returned is DMA'ble 423 */ 424 if (dma_capable(dev, dev_addr, size)) 425 return dev_addr; 426 427 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 428 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); 429 430 return DMA_ERROR_CODE; 431 } 432 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 433 434 /* 435 * Unmap a single streaming mode DMA translation. The dma_addr and size must 436 * match what was provided for in a previous xen_swiotlb_map_page call. All 437 * other usages are undefined. 438 * 439 * After this call, reads by the cpu to the buffer are guaranteed to see 440 * whatever the device wrote there. 441 */ 442 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 443 size_t size, enum dma_data_direction dir, 444 unsigned long attrs) 445 { 446 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 447 448 BUG_ON(dir == DMA_NONE); 449 450 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 451 452 /* NOTE: We use dev_addr here, not paddr! */ 453 if (is_xen_swiotlb_buffer(dev_addr)) { 454 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 455 return; 456 } 457 458 if (dir != DMA_FROM_DEVICE) 459 return; 460 461 /* 462 * phys_to_virt doesn't work with hihgmem page but we could 463 * call dma_mark_clean() with hihgmem page here. However, we 464 * are fine since dma_mark_clean() is null on POWERPC. We can 465 * make dma_mark_clean() take a physical address if necessary. 466 */ 467 dma_mark_clean(phys_to_virt(paddr), size); 468 } 469 470 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 471 size_t size, enum dma_data_direction dir, 472 unsigned long attrs) 473 { 474 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 475 } 476 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 477 478 /* 479 * Make physical memory consistent for a single streaming mode DMA translation 480 * after a transfer. 481 * 482 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 483 * using the cpu, yet do not wish to teardown the dma mapping, you must 484 * call this function before doing so. At the next point you give the dma 485 * address back to the card, you must first perform a 486 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 487 */ 488 static void 489 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 490 size_t size, enum dma_data_direction dir, 491 enum dma_sync_target target) 492 { 493 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 494 495 BUG_ON(dir == DMA_NONE); 496 497 if (target == SYNC_FOR_CPU) 498 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 499 500 /* NOTE: We use dev_addr here, not paddr! */ 501 if (is_xen_swiotlb_buffer(dev_addr)) 502 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 503 504 if (target == SYNC_FOR_DEVICE) 505 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 506 507 if (dir != DMA_FROM_DEVICE) 508 return; 509 510 dma_mark_clean(phys_to_virt(paddr), size); 511 } 512 513 void 514 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 515 size_t size, enum dma_data_direction dir) 516 { 517 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 518 } 519 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 520 521 void 522 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 523 size_t size, enum dma_data_direction dir) 524 { 525 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 526 } 527 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 528 529 /* 530 * Map a set of buffers described by scatterlist in streaming mode for DMA. 531 * This is the scatter-gather version of the above xen_swiotlb_map_page 532 * interface. Here the scatter gather list elements are each tagged with the 533 * appropriate dma address and length. They are obtained via 534 * sg_dma_{address,length}(SG). 535 * 536 * NOTE: An implementation may be able to use a smaller number of 537 * DMA address/length pairs than there are SG table elements. 538 * (for example via virtual mapping capabilities) 539 * The routine returns the number of addr/length pairs actually 540 * used, at most nents. 541 * 542 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 543 * same here. 544 */ 545 int 546 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 547 int nelems, enum dma_data_direction dir, 548 unsigned long attrs) 549 { 550 struct scatterlist *sg; 551 int i; 552 553 BUG_ON(dir == DMA_NONE); 554 555 for_each_sg(sgl, sg, nelems, i) { 556 phys_addr_t paddr = sg_phys(sg); 557 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 558 559 if (swiotlb_force == SWIOTLB_FORCE || 560 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) || 561 !dma_capable(hwdev, dev_addr, sg->length) || 562 range_straddles_page_boundary(paddr, sg->length)) { 563 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 564 start_dma_addr, 565 sg_phys(sg), 566 sg->length, 567 dir, attrs); 568 if (map == SWIOTLB_MAP_ERROR) { 569 dev_warn(hwdev, "swiotlb buffer is full\n"); 570 /* Don't panic here, we expect map_sg users 571 to do proper error handling. */ 572 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 573 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 574 attrs); 575 sg_dma_len(sgl) = 0; 576 return 0; 577 } 578 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 579 dev_addr, 580 map & ~PAGE_MASK, 581 sg->length, 582 dir, 583 attrs); 584 sg->dma_address = xen_phys_to_bus(map); 585 } else { 586 /* we are not interested in the dma_addr returned by 587 * xen_dma_map_page, only in the potential cache flushes executed 588 * by the function. */ 589 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 590 dev_addr, 591 paddr & ~PAGE_MASK, 592 sg->length, 593 dir, 594 attrs); 595 sg->dma_address = dev_addr; 596 } 597 sg_dma_len(sg) = sg->length; 598 } 599 return nelems; 600 } 601 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 602 603 /* 604 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 605 * concerning calls here are the same as for swiotlb_unmap_page() above. 606 */ 607 void 608 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 609 int nelems, enum dma_data_direction dir, 610 unsigned long attrs) 611 { 612 struct scatterlist *sg; 613 int i; 614 615 BUG_ON(dir == DMA_NONE); 616 617 for_each_sg(sgl, sg, nelems, i) 618 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 619 620 } 621 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 622 623 /* 624 * Make physical memory consistent for a set of streaming mode DMA translations 625 * after a transfer. 626 * 627 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 628 * and usage. 629 */ 630 static void 631 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 632 int nelems, enum dma_data_direction dir, 633 enum dma_sync_target target) 634 { 635 struct scatterlist *sg; 636 int i; 637 638 for_each_sg(sgl, sg, nelems, i) 639 xen_swiotlb_sync_single(hwdev, sg->dma_address, 640 sg_dma_len(sg), dir, target); 641 } 642 643 void 644 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 645 int nelems, enum dma_data_direction dir) 646 { 647 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 648 } 649 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 650 651 void 652 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 653 int nelems, enum dma_data_direction dir) 654 { 655 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 656 } 657 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 658 659 /* 660 * Return whether the given device DMA address mask can be supported 661 * properly. For example, if your device can only drive the low 24-bits 662 * during bus mastering, then you would pass 0x00ffffff as the mask to 663 * this function. 664 */ 665 int 666 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 667 { 668 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 669 } 670 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 671 672 int 673 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask) 674 { 675 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask)) 676 return -EIO; 677 678 *dev->dma_mask = dma_mask; 679 680 return 0; 681 } 682 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask); 683