xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 8730046c)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 					    gfp_t gfp)
59 {
60 	unsigned long dma_mask = 0;
61 
62 	dma_mask = dev->coherent_dma_mask;
63 	if (!dma_mask)
64 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65 
66 	return dma_mask;
67 }
68 #endif
69 
70 static char *xen_io_tlb_start, *xen_io_tlb_end;
71 static unsigned long xen_io_tlb_nslabs;
72 /*
73  * Quick lookup value of the bus address of the IOTLB.
74  */
75 
76 static u64 start_dma_addr;
77 
78 /*
79  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
80  * can be 32bit when dma_addr_t is 64bit leading to a loss in
81  * information if the shift is done before casting to 64bit.
82  */
83 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84 {
85 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
86 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
87 
88 	dma |= paddr & ~XEN_PAGE_MASK;
89 
90 	return dma;
91 }
92 
93 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94 {
95 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
96 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 	phys_addr_t paddr = dma;
98 
99 	paddr |= baddr & ~XEN_PAGE_MASK;
100 
101 	return paddr;
102 }
103 
104 static inline dma_addr_t xen_virt_to_bus(void *address)
105 {
106 	return xen_phys_to_bus(virt_to_phys(address));
107 }
108 
109 static int check_pages_physically_contiguous(unsigned long xen_pfn,
110 					     unsigned int offset,
111 					     size_t length)
112 {
113 	unsigned long next_bfn;
114 	int i;
115 	int nr_pages;
116 
117 	next_bfn = pfn_to_bfn(xen_pfn);
118 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119 
120 	for (i = 1; i < nr_pages; i++) {
121 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122 			return 0;
123 	}
124 	return 1;
125 }
126 
127 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128 {
129 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
130 	unsigned int offset = p & ~XEN_PAGE_MASK;
131 
132 	if (offset + size <= XEN_PAGE_SIZE)
133 		return 0;
134 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135 		return 0;
136 	return 1;
137 }
138 
139 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
140 {
141 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
142 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
143 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144 
145 	/* If the address is outside our domain, it CAN
146 	 * have the same virtual address as another address
147 	 * in our domain. Therefore _only_ check address within our domain.
148 	 */
149 	if (pfn_valid(PFN_DOWN(paddr))) {
150 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
151 		       paddr < virt_to_phys(xen_io_tlb_end);
152 	}
153 	return 0;
154 }
155 
156 static int max_dma_bits = 32;
157 
158 static int
159 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
160 {
161 	int i, rc;
162 	int dma_bits;
163 	dma_addr_t dma_handle;
164 	phys_addr_t p = virt_to_phys(buf);
165 
166 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
167 
168 	i = 0;
169 	do {
170 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
171 
172 		do {
173 			rc = xen_create_contiguous_region(
174 				p + (i << IO_TLB_SHIFT),
175 				get_order(slabs << IO_TLB_SHIFT),
176 				dma_bits, &dma_handle);
177 		} while (rc && dma_bits++ < max_dma_bits);
178 		if (rc)
179 			return rc;
180 
181 		i += slabs;
182 	} while (i < nslabs);
183 	return 0;
184 }
185 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
186 {
187 	if (!nr_tbl) {
188 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
189 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
190 	} else
191 		xen_io_tlb_nslabs = nr_tbl;
192 
193 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
194 }
195 
196 enum xen_swiotlb_err {
197 	XEN_SWIOTLB_UNKNOWN = 0,
198 	XEN_SWIOTLB_ENOMEM,
199 	XEN_SWIOTLB_EFIXUP
200 };
201 
202 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
203 {
204 	switch (err) {
205 	case XEN_SWIOTLB_ENOMEM:
206 		return "Cannot allocate Xen-SWIOTLB buffer\n";
207 	case XEN_SWIOTLB_EFIXUP:
208 		return "Failed to get contiguous memory for DMA from Xen!\n"\
209 		    "You either: don't have the permissions, do not have"\
210 		    " enough free memory under 4GB, or the hypervisor memory"\
211 		    " is too fragmented!";
212 	default:
213 		break;
214 	}
215 	return "";
216 }
217 int __ref xen_swiotlb_init(int verbose, bool early)
218 {
219 	unsigned long bytes, order;
220 	int rc = -ENOMEM;
221 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222 	unsigned int repeat = 3;
223 
224 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225 retry:
226 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
228 	/*
229 	 * Get IO TLB memory from any location.
230 	 */
231 	if (early)
232 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
233 	else {
234 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
235 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
236 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238 			if (xen_io_tlb_start)
239 				break;
240 			order--;
241 		}
242 		if (order != get_order(bytes)) {
243 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
244 				(PAGE_SIZE << order) >> 20);
245 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
246 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
247 		}
248 	}
249 	if (!xen_io_tlb_start) {
250 		m_ret = XEN_SWIOTLB_ENOMEM;
251 		goto error;
252 	}
253 	xen_io_tlb_end = xen_io_tlb_start + bytes;
254 	/*
255 	 * And replace that memory with pages under 4GB.
256 	 */
257 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
258 			       bytes,
259 			       xen_io_tlb_nslabs);
260 	if (rc) {
261 		if (early)
262 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
263 		else {
264 			free_pages((unsigned long)xen_io_tlb_start, order);
265 			xen_io_tlb_start = NULL;
266 		}
267 		m_ret = XEN_SWIOTLB_EFIXUP;
268 		goto error;
269 	}
270 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271 	if (early) {
272 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
273 			 verbose))
274 			panic("Cannot allocate SWIOTLB buffer");
275 		rc = 0;
276 	} else
277 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
278 
279 	if (!rc)
280 		swiotlb_set_max_segment(PAGE_SIZE);
281 
282 	return rc;
283 error:
284 	if (repeat--) {
285 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
286 					(xen_io_tlb_nslabs >> 1));
287 		pr_info("Lowering to %luMB\n",
288 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
289 		goto retry;
290 	}
291 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
292 	if (early)
293 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
294 	else
295 		free_pages((unsigned long)xen_io_tlb_start, order);
296 	return rc;
297 }
298 void *
299 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
300 			   dma_addr_t *dma_handle, gfp_t flags,
301 			   unsigned long attrs)
302 {
303 	void *ret;
304 	int order = get_order(size);
305 	u64 dma_mask = DMA_BIT_MASK(32);
306 	phys_addr_t phys;
307 	dma_addr_t dev_addr;
308 
309 	/*
310 	* Ignore region specifiers - the kernel's ideas of
311 	* pseudo-phys memory layout has nothing to do with the
312 	* machine physical layout.  We can't allocate highmem
313 	* because we can't return a pointer to it.
314 	*/
315 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
316 
317 	/* On ARM this function returns an ioremap'ped virtual address for
318 	 * which virt_to_phys doesn't return the corresponding physical
319 	 * address. In fact on ARM virt_to_phys only works for kernel direct
320 	 * mapped RAM memory. Also see comment below.
321 	 */
322 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
323 
324 	if (!ret)
325 		return ret;
326 
327 	if (hwdev && hwdev->coherent_dma_mask)
328 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
329 
330 	/* At this point dma_handle is the physical address, next we are
331 	 * going to set it to the machine address.
332 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
333 	 * to *dma_handle. */
334 	phys = *dma_handle;
335 	dev_addr = xen_phys_to_bus(phys);
336 	if (((dev_addr + size - 1 <= dma_mask)) &&
337 	    !range_straddles_page_boundary(phys, size))
338 		*dma_handle = dev_addr;
339 	else {
340 		if (xen_create_contiguous_region(phys, order,
341 						 fls64(dma_mask), dma_handle) != 0) {
342 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
343 			return NULL;
344 		}
345 	}
346 	memset(ret, 0, size);
347 	return ret;
348 }
349 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
350 
351 void
352 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
353 			  dma_addr_t dev_addr, unsigned long attrs)
354 {
355 	int order = get_order(size);
356 	phys_addr_t phys;
357 	u64 dma_mask = DMA_BIT_MASK(32);
358 
359 	if (hwdev && hwdev->coherent_dma_mask)
360 		dma_mask = hwdev->coherent_dma_mask;
361 
362 	/* do not use virt_to_phys because on ARM it doesn't return you the
363 	 * physical address */
364 	phys = xen_bus_to_phys(dev_addr);
365 
366 	if (((dev_addr + size - 1 > dma_mask)) ||
367 	    range_straddles_page_boundary(phys, size))
368 		xen_destroy_contiguous_region(phys, order);
369 
370 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
371 }
372 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
373 
374 
375 /*
376  * Map a single buffer of the indicated size for DMA in streaming mode.  The
377  * physical address to use is returned.
378  *
379  * Once the device is given the dma address, the device owns this memory until
380  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
381  */
382 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
383 				unsigned long offset, size_t size,
384 				enum dma_data_direction dir,
385 				unsigned long attrs)
386 {
387 	phys_addr_t map, phys = page_to_phys(page) + offset;
388 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
389 
390 	BUG_ON(dir == DMA_NONE);
391 	/*
392 	 * If the address happens to be in the device's DMA window,
393 	 * we can safely return the device addr and not worry about bounce
394 	 * buffering it.
395 	 */
396 	if (dma_capable(dev, dev_addr, size) &&
397 	    !range_straddles_page_boundary(phys, size) &&
398 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
399 		(swiotlb_force != SWIOTLB_FORCE)) {
400 		/* we are not interested in the dma_addr returned by
401 		 * xen_dma_map_page, only in the potential cache flushes executed
402 		 * by the function. */
403 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
404 		return dev_addr;
405 	}
406 
407 	/*
408 	 * Oh well, have to allocate and map a bounce buffer.
409 	 */
410 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
411 
412 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
413 				     attrs);
414 	if (map == SWIOTLB_MAP_ERROR)
415 		return DMA_ERROR_CODE;
416 
417 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
418 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
419 	dev_addr = xen_phys_to_bus(map);
420 
421 	/*
422 	 * Ensure that the address returned is DMA'ble
423 	 */
424 	if (dma_capable(dev, dev_addr, size))
425 		return dev_addr;
426 
427 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
428 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
429 
430 	return DMA_ERROR_CODE;
431 }
432 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
433 
434 /*
435  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
436  * match what was provided for in a previous xen_swiotlb_map_page call.  All
437  * other usages are undefined.
438  *
439  * After this call, reads by the cpu to the buffer are guaranteed to see
440  * whatever the device wrote there.
441  */
442 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
443 			     size_t size, enum dma_data_direction dir,
444 			     unsigned long attrs)
445 {
446 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
447 
448 	BUG_ON(dir == DMA_NONE);
449 
450 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
451 
452 	/* NOTE: We use dev_addr here, not paddr! */
453 	if (is_xen_swiotlb_buffer(dev_addr)) {
454 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
455 		return;
456 	}
457 
458 	if (dir != DMA_FROM_DEVICE)
459 		return;
460 
461 	/*
462 	 * phys_to_virt doesn't work with hihgmem page but we could
463 	 * call dma_mark_clean() with hihgmem page here. However, we
464 	 * are fine since dma_mark_clean() is null on POWERPC. We can
465 	 * make dma_mark_clean() take a physical address if necessary.
466 	 */
467 	dma_mark_clean(phys_to_virt(paddr), size);
468 }
469 
470 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
471 			    size_t size, enum dma_data_direction dir,
472 			    unsigned long attrs)
473 {
474 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
475 }
476 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
477 
478 /*
479  * Make physical memory consistent for a single streaming mode DMA translation
480  * after a transfer.
481  *
482  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
483  * using the cpu, yet do not wish to teardown the dma mapping, you must
484  * call this function before doing so.  At the next point you give the dma
485  * address back to the card, you must first perform a
486  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
487  */
488 static void
489 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
490 			size_t size, enum dma_data_direction dir,
491 			enum dma_sync_target target)
492 {
493 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
494 
495 	BUG_ON(dir == DMA_NONE);
496 
497 	if (target == SYNC_FOR_CPU)
498 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
499 
500 	/* NOTE: We use dev_addr here, not paddr! */
501 	if (is_xen_swiotlb_buffer(dev_addr))
502 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
503 
504 	if (target == SYNC_FOR_DEVICE)
505 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
506 
507 	if (dir != DMA_FROM_DEVICE)
508 		return;
509 
510 	dma_mark_clean(phys_to_virt(paddr), size);
511 }
512 
513 void
514 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
515 				size_t size, enum dma_data_direction dir)
516 {
517 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
518 }
519 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
520 
521 void
522 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
523 				   size_t size, enum dma_data_direction dir)
524 {
525 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
526 }
527 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
528 
529 /*
530  * Map a set of buffers described by scatterlist in streaming mode for DMA.
531  * This is the scatter-gather version of the above xen_swiotlb_map_page
532  * interface.  Here the scatter gather list elements are each tagged with the
533  * appropriate dma address and length.  They are obtained via
534  * sg_dma_{address,length}(SG).
535  *
536  * NOTE: An implementation may be able to use a smaller number of
537  *       DMA address/length pairs than there are SG table elements.
538  *       (for example via virtual mapping capabilities)
539  *       The routine returns the number of addr/length pairs actually
540  *       used, at most nents.
541  *
542  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
543  * same here.
544  */
545 int
546 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
547 			 int nelems, enum dma_data_direction dir,
548 			 unsigned long attrs)
549 {
550 	struct scatterlist *sg;
551 	int i;
552 
553 	BUG_ON(dir == DMA_NONE);
554 
555 	for_each_sg(sgl, sg, nelems, i) {
556 		phys_addr_t paddr = sg_phys(sg);
557 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
558 
559 		if (swiotlb_force == SWIOTLB_FORCE ||
560 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
561 		    !dma_capable(hwdev, dev_addr, sg->length) ||
562 		    range_straddles_page_boundary(paddr, sg->length)) {
563 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
564 								 start_dma_addr,
565 								 sg_phys(sg),
566 								 sg->length,
567 								 dir, attrs);
568 			if (map == SWIOTLB_MAP_ERROR) {
569 				dev_warn(hwdev, "swiotlb buffer is full\n");
570 				/* Don't panic here, we expect map_sg users
571 				   to do proper error handling. */
572 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
573 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
574 							   attrs);
575 				sg_dma_len(sgl) = 0;
576 				return 0;
577 			}
578 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
579 						dev_addr,
580 						map & ~PAGE_MASK,
581 						sg->length,
582 						dir,
583 						attrs);
584 			sg->dma_address = xen_phys_to_bus(map);
585 		} else {
586 			/* we are not interested in the dma_addr returned by
587 			 * xen_dma_map_page, only in the potential cache flushes executed
588 			 * by the function. */
589 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
590 						dev_addr,
591 						paddr & ~PAGE_MASK,
592 						sg->length,
593 						dir,
594 						attrs);
595 			sg->dma_address = dev_addr;
596 		}
597 		sg_dma_len(sg) = sg->length;
598 	}
599 	return nelems;
600 }
601 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
602 
603 /*
604  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
605  * concerning calls here are the same as for swiotlb_unmap_page() above.
606  */
607 void
608 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
609 			   int nelems, enum dma_data_direction dir,
610 			   unsigned long attrs)
611 {
612 	struct scatterlist *sg;
613 	int i;
614 
615 	BUG_ON(dir == DMA_NONE);
616 
617 	for_each_sg(sgl, sg, nelems, i)
618 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
619 
620 }
621 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
622 
623 /*
624  * Make physical memory consistent for a set of streaming mode DMA translations
625  * after a transfer.
626  *
627  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
628  * and usage.
629  */
630 static void
631 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
632 		    int nelems, enum dma_data_direction dir,
633 		    enum dma_sync_target target)
634 {
635 	struct scatterlist *sg;
636 	int i;
637 
638 	for_each_sg(sgl, sg, nelems, i)
639 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
640 					sg_dma_len(sg), dir, target);
641 }
642 
643 void
644 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
645 			    int nelems, enum dma_data_direction dir)
646 {
647 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
648 }
649 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
650 
651 void
652 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
653 			       int nelems, enum dma_data_direction dir)
654 {
655 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
656 }
657 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
658 
659 /*
660  * Return whether the given device DMA address mask can be supported
661  * properly.  For example, if your device can only drive the low 24-bits
662  * during bus mastering, then you would pass 0x00ffffff as the mask to
663  * this function.
664  */
665 int
666 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
667 {
668 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
669 }
670 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
671 
672 int
673 xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
674 {
675 	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
676 		return -EIO;
677 
678 	*dev->dma_mask = dma_mask;
679 
680 	return 0;
681 }
682 EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
683