1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #include <linux/bootmem.h> 37 #include <linux/dma-mapping.h> 38 #include <xen/swiotlb-xen.h> 39 #include <xen/page.h> 40 #include <xen/xen-ops.h> 41 /* 42 * Used to do a quick range check in swiotlb_tbl_unmap_single and 43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 44 * API. 45 */ 46 47 static char *xen_io_tlb_start, *xen_io_tlb_end; 48 static unsigned long xen_io_tlb_nslabs; 49 /* 50 * Quick lookup value of the bus address of the IOTLB. 51 */ 52 53 u64 start_dma_addr; 54 55 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 56 { 57 return phys_to_machine(XPADDR(paddr)).maddr; 58 } 59 60 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 61 { 62 return machine_to_phys(XMADDR(baddr)).paddr; 63 } 64 65 static dma_addr_t xen_virt_to_bus(void *address) 66 { 67 return xen_phys_to_bus(virt_to_phys(address)); 68 } 69 70 static int check_pages_physically_contiguous(unsigned long pfn, 71 unsigned int offset, 72 size_t length) 73 { 74 unsigned long next_mfn; 75 int i; 76 int nr_pages; 77 78 next_mfn = pfn_to_mfn(pfn); 79 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 80 81 for (i = 1; i < nr_pages; i++) { 82 if (pfn_to_mfn(++pfn) != ++next_mfn) 83 return 0; 84 } 85 return 1; 86 } 87 88 static int range_straddles_page_boundary(phys_addr_t p, size_t size) 89 { 90 unsigned long pfn = PFN_DOWN(p); 91 unsigned int offset = p & ~PAGE_MASK; 92 93 if (offset + size <= PAGE_SIZE) 94 return 0; 95 if (check_pages_physically_contiguous(pfn, offset, size)) 96 return 0; 97 return 1; 98 } 99 100 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 101 { 102 unsigned long mfn = PFN_DOWN(dma_addr); 103 unsigned long pfn = mfn_to_local_pfn(mfn); 104 phys_addr_t paddr; 105 106 /* If the address is outside our domain, it CAN 107 * have the same virtual address as another address 108 * in our domain. Therefore _only_ check address within our domain. 109 */ 110 if (pfn_valid(pfn)) { 111 paddr = PFN_PHYS(pfn); 112 return paddr >= virt_to_phys(xen_io_tlb_start) && 113 paddr < virt_to_phys(xen_io_tlb_end); 114 } 115 return 0; 116 } 117 118 static int max_dma_bits = 32; 119 120 static int 121 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 122 { 123 int i, rc; 124 int dma_bits; 125 126 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 127 128 i = 0; 129 do { 130 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 131 132 do { 133 rc = xen_create_contiguous_region( 134 (unsigned long)buf + (i << IO_TLB_SHIFT), 135 get_order(slabs << IO_TLB_SHIFT), 136 dma_bits); 137 } while (rc && dma_bits++ < max_dma_bits); 138 if (rc) 139 return rc; 140 141 i += slabs; 142 } while (i < nslabs); 143 return 0; 144 } 145 146 void __init xen_swiotlb_init(int verbose) 147 { 148 unsigned long bytes; 149 int rc; 150 unsigned long nr_tbl; 151 152 nr_tbl = swioltb_nr_tbl(); 153 if (nr_tbl) 154 xen_io_tlb_nslabs = nr_tbl; 155 else { 156 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 157 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 158 } 159 160 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 161 162 /* 163 * Get IO TLB memory from any location. 164 */ 165 xen_io_tlb_start = alloc_bootmem(bytes); 166 if (!xen_io_tlb_start) 167 panic("Cannot allocate SWIOTLB buffer"); 168 169 xen_io_tlb_end = xen_io_tlb_start + bytes; 170 /* 171 * And replace that memory with pages under 4GB. 172 */ 173 rc = xen_swiotlb_fixup(xen_io_tlb_start, 174 bytes, 175 xen_io_tlb_nslabs); 176 if (rc) 177 goto error; 178 179 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 180 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); 181 182 return; 183 error: 184 panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\ 185 "We either don't have the permission or you do not have enough"\ 186 "free memory under 4GB!\n", rc); 187 } 188 189 void * 190 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 191 dma_addr_t *dma_handle, gfp_t flags) 192 { 193 void *ret; 194 int order = get_order(size); 195 u64 dma_mask = DMA_BIT_MASK(32); 196 unsigned long vstart; 197 198 /* 199 * Ignore region specifiers - the kernel's ideas of 200 * pseudo-phys memory layout has nothing to do with the 201 * machine physical layout. We can't allocate highmem 202 * because we can't return a pointer to it. 203 */ 204 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 205 206 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 207 return ret; 208 209 vstart = __get_free_pages(flags, order); 210 ret = (void *)vstart; 211 212 if (hwdev && hwdev->coherent_dma_mask) 213 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 214 215 if (ret) { 216 if (xen_create_contiguous_region(vstart, order, 217 fls64(dma_mask)) != 0) { 218 free_pages(vstart, order); 219 return NULL; 220 } 221 memset(ret, 0, size); 222 *dma_handle = virt_to_machine(ret).maddr; 223 } 224 return ret; 225 } 226 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 227 228 void 229 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 230 dma_addr_t dev_addr) 231 { 232 int order = get_order(size); 233 234 if (dma_release_from_coherent(hwdev, order, vaddr)) 235 return; 236 237 xen_destroy_contiguous_region((unsigned long)vaddr, order); 238 free_pages((unsigned long)vaddr, order); 239 } 240 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 241 242 243 /* 244 * Map a single buffer of the indicated size for DMA in streaming mode. The 245 * physical address to use is returned. 246 * 247 * Once the device is given the dma address, the device owns this memory until 248 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 249 */ 250 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 251 unsigned long offset, size_t size, 252 enum dma_data_direction dir, 253 struct dma_attrs *attrs) 254 { 255 phys_addr_t phys = page_to_phys(page) + offset; 256 dma_addr_t dev_addr = xen_phys_to_bus(phys); 257 void *map; 258 259 BUG_ON(dir == DMA_NONE); 260 /* 261 * If the address happens to be in the device's DMA window, 262 * we can safely return the device addr and not worry about bounce 263 * buffering it. 264 */ 265 if (dma_capable(dev, dev_addr, size) && 266 !range_straddles_page_boundary(phys, size) && !swiotlb_force) 267 return dev_addr; 268 269 /* 270 * Oh well, have to allocate and map a bounce buffer. 271 */ 272 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 273 if (!map) 274 return DMA_ERROR_CODE; 275 276 dev_addr = xen_virt_to_bus(map); 277 278 /* 279 * Ensure that the address returned is DMA'ble 280 */ 281 if (!dma_capable(dev, dev_addr, size)) 282 panic("map_single: bounce buffer is not DMA'ble"); 283 284 return dev_addr; 285 } 286 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 287 288 /* 289 * Unmap a single streaming mode DMA translation. The dma_addr and size must 290 * match what was provided for in a previous xen_swiotlb_map_page call. All 291 * other usages are undefined. 292 * 293 * After this call, reads by the cpu to the buffer are guaranteed to see 294 * whatever the device wrote there. 295 */ 296 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 297 size_t size, enum dma_data_direction dir) 298 { 299 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 300 301 BUG_ON(dir == DMA_NONE); 302 303 /* NOTE: We use dev_addr here, not paddr! */ 304 if (is_xen_swiotlb_buffer(dev_addr)) { 305 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); 306 return; 307 } 308 309 if (dir != DMA_FROM_DEVICE) 310 return; 311 312 /* 313 * phys_to_virt doesn't work with hihgmem page but we could 314 * call dma_mark_clean() with hihgmem page here. However, we 315 * are fine since dma_mark_clean() is null on POWERPC. We can 316 * make dma_mark_clean() take a physical address if necessary. 317 */ 318 dma_mark_clean(phys_to_virt(paddr), size); 319 } 320 321 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 322 size_t size, enum dma_data_direction dir, 323 struct dma_attrs *attrs) 324 { 325 xen_unmap_single(hwdev, dev_addr, size, dir); 326 } 327 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 328 329 /* 330 * Make physical memory consistent for a single streaming mode DMA translation 331 * after a transfer. 332 * 333 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 334 * using the cpu, yet do not wish to teardown the dma mapping, you must 335 * call this function before doing so. At the next point you give the dma 336 * address back to the card, you must first perform a 337 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 338 */ 339 static void 340 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 341 size_t size, enum dma_data_direction dir, 342 enum dma_sync_target target) 343 { 344 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 345 346 BUG_ON(dir == DMA_NONE); 347 348 /* NOTE: We use dev_addr here, not paddr! */ 349 if (is_xen_swiotlb_buffer(dev_addr)) { 350 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, 351 target); 352 return; 353 } 354 355 if (dir != DMA_FROM_DEVICE) 356 return; 357 358 dma_mark_clean(phys_to_virt(paddr), size); 359 } 360 361 void 362 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 363 size_t size, enum dma_data_direction dir) 364 { 365 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 366 } 367 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 368 369 void 370 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 371 size_t size, enum dma_data_direction dir) 372 { 373 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 374 } 375 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 376 377 /* 378 * Map a set of buffers described by scatterlist in streaming mode for DMA. 379 * This is the scatter-gather version of the above xen_swiotlb_map_page 380 * interface. Here the scatter gather list elements are each tagged with the 381 * appropriate dma address and length. They are obtained via 382 * sg_dma_{address,length}(SG). 383 * 384 * NOTE: An implementation may be able to use a smaller number of 385 * DMA address/length pairs than there are SG table elements. 386 * (for example via virtual mapping capabilities) 387 * The routine returns the number of addr/length pairs actually 388 * used, at most nents. 389 * 390 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 391 * same here. 392 */ 393 int 394 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 395 int nelems, enum dma_data_direction dir, 396 struct dma_attrs *attrs) 397 { 398 struct scatterlist *sg; 399 int i; 400 401 BUG_ON(dir == DMA_NONE); 402 403 for_each_sg(sgl, sg, nelems, i) { 404 phys_addr_t paddr = sg_phys(sg); 405 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 406 407 if (swiotlb_force || 408 !dma_capable(hwdev, dev_addr, sg->length) || 409 range_straddles_page_boundary(paddr, sg->length)) { 410 void *map = swiotlb_tbl_map_single(hwdev, 411 start_dma_addr, 412 sg_phys(sg), 413 sg->length, dir); 414 if (!map) { 415 /* Don't panic here, we expect map_sg users 416 to do proper error handling. */ 417 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 418 attrs); 419 sgl[0].dma_length = 0; 420 return DMA_ERROR_CODE; 421 } 422 sg->dma_address = xen_virt_to_bus(map); 423 } else 424 sg->dma_address = dev_addr; 425 sg->dma_length = sg->length; 426 } 427 return nelems; 428 } 429 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 430 431 int 432 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 433 enum dma_data_direction dir) 434 { 435 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); 436 } 437 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); 438 439 /* 440 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 441 * concerning calls here are the same as for swiotlb_unmap_page() above. 442 */ 443 void 444 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 445 int nelems, enum dma_data_direction dir, 446 struct dma_attrs *attrs) 447 { 448 struct scatterlist *sg; 449 int i; 450 451 BUG_ON(dir == DMA_NONE); 452 453 for_each_sg(sgl, sg, nelems, i) 454 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); 455 456 } 457 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 458 459 void 460 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 461 enum dma_data_direction dir) 462 { 463 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); 464 } 465 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); 466 467 /* 468 * Make physical memory consistent for a set of streaming mode DMA translations 469 * after a transfer. 470 * 471 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 472 * and usage. 473 */ 474 static void 475 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 476 int nelems, enum dma_data_direction dir, 477 enum dma_sync_target target) 478 { 479 struct scatterlist *sg; 480 int i; 481 482 for_each_sg(sgl, sg, nelems, i) 483 xen_swiotlb_sync_single(hwdev, sg->dma_address, 484 sg->dma_length, dir, target); 485 } 486 487 void 488 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 489 int nelems, enum dma_data_direction dir) 490 { 491 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 492 } 493 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 494 495 void 496 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 497 int nelems, enum dma_data_direction dir) 498 { 499 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 500 } 501 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 502 503 int 504 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 505 { 506 return !dma_addr; 507 } 508 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 509 510 /* 511 * Return whether the given device DMA address mask can be supported 512 * properly. For example, if your device can only drive the low 24-bits 513 * during bus mastering, then you would pass 0x00ffffff as the mask to 514 * this function. 515 */ 516 int 517 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 518 { 519 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 520 } 521 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 522