xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 64d85cc9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/export.h>
32 #include <xen/swiotlb-xen.h>
33 #include <xen/page.h>
34 #include <xen/xen-ops.h>
35 #include <xen/hvc-console.h>
36 
37 #include <asm/dma-mapping.h>
38 #include <asm/xen/page-coherent.h>
39 
40 #include <trace/events/swiotlb.h>
41 /*
42  * Used to do a quick range check in swiotlb_tbl_unmap_single and
43  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
44  * API.
45  */
46 
47 static char *xen_io_tlb_start, *xen_io_tlb_end;
48 static unsigned long xen_io_tlb_nslabs;
49 /*
50  * Quick lookup value of the bus address of the IOTLB.
51  */
52 
53 static u64 start_dma_addr;
54 
55 /*
56  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
57  * can be 32bit when dma_addr_t is 64bit leading to a loss in
58  * information if the shift is done before casting to 64bit.
59  */
60 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
61 {
62 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
63 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
64 
65 	dma |= paddr & ~XEN_PAGE_MASK;
66 
67 	return dma;
68 }
69 
70 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
71 {
72 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
73 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
74 	phys_addr_t paddr = dma;
75 
76 	paddr |= baddr & ~XEN_PAGE_MASK;
77 
78 	return paddr;
79 }
80 
81 static inline dma_addr_t xen_virt_to_bus(void *address)
82 {
83 	return xen_phys_to_bus(virt_to_phys(address));
84 }
85 
86 static int check_pages_physically_contiguous(unsigned long xen_pfn,
87 					     unsigned int offset,
88 					     size_t length)
89 {
90 	unsigned long next_bfn;
91 	int i;
92 	int nr_pages;
93 
94 	next_bfn = pfn_to_bfn(xen_pfn);
95 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
96 
97 	for (i = 1; i < nr_pages; i++) {
98 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
99 			return 0;
100 	}
101 	return 1;
102 }
103 
104 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
105 {
106 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
107 	unsigned int offset = p & ~XEN_PAGE_MASK;
108 
109 	if (offset + size <= XEN_PAGE_SIZE)
110 		return 0;
111 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
112 		return 0;
113 	return 1;
114 }
115 
116 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
117 {
118 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
119 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
120 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
121 
122 	/* If the address is outside our domain, it CAN
123 	 * have the same virtual address as another address
124 	 * in our domain. Therefore _only_ check address within our domain.
125 	 */
126 	if (pfn_valid(PFN_DOWN(paddr))) {
127 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
128 		       paddr < virt_to_phys(xen_io_tlb_end);
129 	}
130 	return 0;
131 }
132 
133 static int max_dma_bits = 32;
134 
135 static int
136 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
137 {
138 	int i, rc;
139 	int dma_bits;
140 	dma_addr_t dma_handle;
141 	phys_addr_t p = virt_to_phys(buf);
142 
143 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
144 
145 	i = 0;
146 	do {
147 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
148 
149 		do {
150 			rc = xen_create_contiguous_region(
151 				p + (i << IO_TLB_SHIFT),
152 				get_order(slabs << IO_TLB_SHIFT),
153 				dma_bits, &dma_handle);
154 		} while (rc && dma_bits++ < max_dma_bits);
155 		if (rc)
156 			return rc;
157 
158 		i += slabs;
159 	} while (i < nslabs);
160 	return 0;
161 }
162 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
163 {
164 	if (!nr_tbl) {
165 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
166 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
167 	} else
168 		xen_io_tlb_nslabs = nr_tbl;
169 
170 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
171 }
172 
173 enum xen_swiotlb_err {
174 	XEN_SWIOTLB_UNKNOWN = 0,
175 	XEN_SWIOTLB_ENOMEM,
176 	XEN_SWIOTLB_EFIXUP
177 };
178 
179 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
180 {
181 	switch (err) {
182 	case XEN_SWIOTLB_ENOMEM:
183 		return "Cannot allocate Xen-SWIOTLB buffer\n";
184 	case XEN_SWIOTLB_EFIXUP:
185 		return "Failed to get contiguous memory for DMA from Xen!\n"\
186 		    "You either: don't have the permissions, do not have"\
187 		    " enough free memory under 4GB, or the hypervisor memory"\
188 		    " is too fragmented!";
189 	default:
190 		break;
191 	}
192 	return "";
193 }
194 int __ref xen_swiotlb_init(int verbose, bool early)
195 {
196 	unsigned long bytes, order;
197 	int rc = -ENOMEM;
198 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
199 	unsigned int repeat = 3;
200 
201 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
202 retry:
203 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
204 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
205 	/*
206 	 * Get IO TLB memory from any location.
207 	 */
208 	if (early) {
209 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
210 						  PAGE_SIZE);
211 		if (!xen_io_tlb_start)
212 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
213 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
214 	} else {
215 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
216 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
217 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
218 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
219 			if (xen_io_tlb_start)
220 				break;
221 			order--;
222 		}
223 		if (order != get_order(bytes)) {
224 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
225 				(PAGE_SIZE << order) >> 20);
226 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
227 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
228 		}
229 	}
230 	if (!xen_io_tlb_start) {
231 		m_ret = XEN_SWIOTLB_ENOMEM;
232 		goto error;
233 	}
234 	xen_io_tlb_end = xen_io_tlb_start + bytes;
235 	/*
236 	 * And replace that memory with pages under 4GB.
237 	 */
238 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
239 			       bytes,
240 			       xen_io_tlb_nslabs);
241 	if (rc) {
242 		if (early)
243 			memblock_free(__pa(xen_io_tlb_start),
244 				      PAGE_ALIGN(bytes));
245 		else {
246 			free_pages((unsigned long)xen_io_tlb_start, order);
247 			xen_io_tlb_start = NULL;
248 		}
249 		m_ret = XEN_SWIOTLB_EFIXUP;
250 		goto error;
251 	}
252 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
253 	if (early) {
254 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
255 			 verbose))
256 			panic("Cannot allocate SWIOTLB buffer");
257 		rc = 0;
258 	} else
259 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
260 
261 	if (!rc)
262 		swiotlb_set_max_segment(PAGE_SIZE);
263 
264 	return rc;
265 error:
266 	if (repeat--) {
267 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
268 					(xen_io_tlb_nslabs >> 1));
269 		pr_info("Lowering to %luMB\n",
270 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
271 		goto retry;
272 	}
273 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
274 	if (early)
275 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
276 	else
277 		free_pages((unsigned long)xen_io_tlb_start, order);
278 	return rc;
279 }
280 
281 static void *
282 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
283 			   dma_addr_t *dma_handle, gfp_t flags,
284 			   unsigned long attrs)
285 {
286 	void *ret;
287 	int order = get_order(size);
288 	u64 dma_mask = DMA_BIT_MASK(32);
289 	phys_addr_t phys;
290 	dma_addr_t dev_addr;
291 
292 	/*
293 	* Ignore region specifiers - the kernel's ideas of
294 	* pseudo-phys memory layout has nothing to do with the
295 	* machine physical layout.  We can't allocate highmem
296 	* because we can't return a pointer to it.
297 	*/
298 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
299 
300 	/* Convert the size to actually allocated. */
301 	size = 1UL << (order + XEN_PAGE_SHIFT);
302 
303 	/* On ARM this function returns an ioremap'ped virtual address for
304 	 * which virt_to_phys doesn't return the corresponding physical
305 	 * address. In fact on ARM virt_to_phys only works for kernel direct
306 	 * mapped RAM memory. Also see comment below.
307 	 */
308 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
309 
310 	if (!ret)
311 		return ret;
312 
313 	if (hwdev && hwdev->coherent_dma_mask)
314 		dma_mask = hwdev->coherent_dma_mask;
315 
316 	/* At this point dma_handle is the physical address, next we are
317 	 * going to set it to the machine address.
318 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
319 	 * to *dma_handle. */
320 	phys = *dma_handle;
321 	dev_addr = xen_phys_to_bus(phys);
322 	if (((dev_addr + size - 1 <= dma_mask)) &&
323 	    !range_straddles_page_boundary(phys, size))
324 		*dma_handle = dev_addr;
325 	else {
326 		if (xen_create_contiguous_region(phys, order,
327 						 fls64(dma_mask), dma_handle) != 0) {
328 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
329 			return NULL;
330 		}
331 	}
332 	memset(ret, 0, size);
333 	return ret;
334 }
335 
336 static void
337 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
338 			  dma_addr_t dev_addr, unsigned long attrs)
339 {
340 	int order = get_order(size);
341 	phys_addr_t phys;
342 	u64 dma_mask = DMA_BIT_MASK(32);
343 
344 	if (hwdev && hwdev->coherent_dma_mask)
345 		dma_mask = hwdev->coherent_dma_mask;
346 
347 	/* do not use virt_to_phys because on ARM it doesn't return you the
348 	 * physical address */
349 	phys = xen_bus_to_phys(dev_addr);
350 
351 	/* Convert the size to actually allocated. */
352 	size = 1UL << (order + XEN_PAGE_SHIFT);
353 
354 	if (((dev_addr + size - 1 <= dma_mask)) ||
355 	    range_straddles_page_boundary(phys, size))
356 		xen_destroy_contiguous_region(phys, order);
357 
358 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
359 }
360 
361 /*
362  * Map a single buffer of the indicated size for DMA in streaming mode.  The
363  * physical address to use is returned.
364  *
365  * Once the device is given the dma address, the device owns this memory until
366  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
367  */
368 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
369 				unsigned long offset, size_t size,
370 				enum dma_data_direction dir,
371 				unsigned long attrs)
372 {
373 	phys_addr_t map, phys = page_to_phys(page) + offset;
374 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
375 
376 	BUG_ON(dir == DMA_NONE);
377 	/*
378 	 * If the address happens to be in the device's DMA window,
379 	 * we can safely return the device addr and not worry about bounce
380 	 * buffering it.
381 	 */
382 	if (dma_capable(dev, dev_addr, size) &&
383 	    !range_straddles_page_boundary(phys, size) &&
384 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
385 		swiotlb_force != SWIOTLB_FORCE)
386 		goto done;
387 
388 	/*
389 	 * Oh well, have to allocate and map a bounce buffer.
390 	 */
391 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
392 
393 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
394 				     attrs);
395 	if (map == DMA_MAPPING_ERROR)
396 		return DMA_MAPPING_ERROR;
397 
398 	dev_addr = xen_phys_to_bus(map);
399 
400 	/*
401 	 * Ensure that the address returned is DMA'ble
402 	 */
403 	if (unlikely(!dma_capable(dev, dev_addr, size))) {
404 		swiotlb_tbl_unmap_single(dev, map, size, dir,
405 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
406 		return DMA_MAPPING_ERROR;
407 	}
408 
409 	page = pfn_to_page(map >> PAGE_SHIFT);
410 	offset = map & ~PAGE_MASK;
411 done:
412 	/*
413 	 * we are not interested in the dma_addr returned by xen_dma_map_page,
414 	 * only in the potential cache flushes executed by the function.
415 	 */
416 	xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
417 	return dev_addr;
418 }
419 
420 /*
421  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
422  * match what was provided for in a previous xen_swiotlb_map_page call.  All
423  * other usages are undefined.
424  *
425  * After this call, reads by the cpu to the buffer are guaranteed to see
426  * whatever the device wrote there.
427  */
428 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
429 			     size_t size, enum dma_data_direction dir,
430 			     unsigned long attrs)
431 {
432 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
433 
434 	BUG_ON(dir == DMA_NONE);
435 
436 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
437 
438 	/* NOTE: We use dev_addr here, not paddr! */
439 	if (is_xen_swiotlb_buffer(dev_addr))
440 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
441 }
442 
443 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
444 			    size_t size, enum dma_data_direction dir,
445 			    unsigned long attrs)
446 {
447 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
448 }
449 
450 static void
451 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
452 		size_t size, enum dma_data_direction dir)
453 {
454 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
455 
456 	xen_dma_sync_single_for_cpu(dev, dma_addr, size, dir);
457 
458 	if (is_xen_swiotlb_buffer(dma_addr))
459 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
460 }
461 
462 static void
463 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
464 		size_t size, enum dma_data_direction dir)
465 {
466 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
467 
468 	if (is_xen_swiotlb_buffer(dma_addr))
469 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
470 
471 	xen_dma_sync_single_for_device(dev, dma_addr, size, dir);
472 }
473 
474 /*
475  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
476  * concerning calls here are the same as for swiotlb_unmap_page() above.
477  */
478 static void
479 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
480 		enum dma_data_direction dir, unsigned long attrs)
481 {
482 	struct scatterlist *sg;
483 	int i;
484 
485 	BUG_ON(dir == DMA_NONE);
486 
487 	for_each_sg(sgl, sg, nelems, i)
488 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
489 
490 }
491 
492 static int
493 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
494 		enum dma_data_direction dir, unsigned long attrs)
495 {
496 	struct scatterlist *sg;
497 	int i;
498 
499 	BUG_ON(dir == DMA_NONE);
500 
501 	for_each_sg(sgl, sg, nelems, i) {
502 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
503 				sg->offset, sg->length, dir, attrs);
504 		if (sg->dma_address == DMA_MAPPING_ERROR)
505 			goto out_unmap;
506 		sg_dma_len(sg) = sg->length;
507 	}
508 
509 	return nelems;
510 out_unmap:
511 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
512 	sg_dma_len(sgl) = 0;
513 	return 0;
514 }
515 
516 static void
517 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
518 			    int nelems, enum dma_data_direction dir)
519 {
520 	struct scatterlist *sg;
521 	int i;
522 
523 	for_each_sg(sgl, sg, nelems, i) {
524 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
525 				sg->length, dir);
526 	}
527 }
528 
529 static void
530 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
531 			       int nelems, enum dma_data_direction dir)
532 {
533 	struct scatterlist *sg;
534 	int i;
535 
536 	for_each_sg(sgl, sg, nelems, i) {
537 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
538 				sg->length, dir);
539 	}
540 }
541 
542 /*
543  * Return whether the given device DMA address mask can be supported
544  * properly.  For example, if your device can only drive the low 24-bits
545  * during bus mastering, then you would pass 0x00ffffff as the mask to
546  * this function.
547  */
548 static int
549 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
550 {
551 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
552 }
553 
554 /*
555  * Create userspace mapping for the DMA-coherent memory.
556  * This function should be called with the pages from the current domain only,
557  * passing pages mapped from other domains would lead to memory corruption.
558  */
559 static int
560 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
561 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
562 		     unsigned long attrs)
563 {
564 #ifdef CONFIG_ARM
565 	if (xen_get_dma_ops(dev)->mmap)
566 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
567 						    dma_addr, size, attrs);
568 #endif
569 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
570 }
571 
572 /*
573  * This function should be called with the pages from the current domain only,
574  * passing pages mapped from other domains would lead to memory corruption.
575  */
576 static int
577 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
578 			void *cpu_addr, dma_addr_t handle, size_t size,
579 			unsigned long attrs)
580 {
581 #ifdef CONFIG_ARM
582 	if (xen_get_dma_ops(dev)->get_sgtable) {
583 #if 0
584 	/*
585 	 * This check verifies that the page belongs to the current domain and
586 	 * is not one mapped from another domain.
587 	 * This check is for debug only, and should not go to production build
588 	 */
589 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
590 		BUG_ON (!page_is_ram(bfn));
591 #endif
592 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
593 							   handle, size, attrs);
594 	}
595 #endif
596 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
597 }
598 
599 const struct dma_map_ops xen_swiotlb_dma_ops = {
600 	.alloc = xen_swiotlb_alloc_coherent,
601 	.free = xen_swiotlb_free_coherent,
602 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
603 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
604 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
605 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
606 	.map_sg = xen_swiotlb_map_sg,
607 	.unmap_sg = xen_swiotlb_unmap_sg,
608 	.map_page = xen_swiotlb_map_page,
609 	.unmap_page = xen_swiotlb_unmap_page,
610 	.dma_supported = xen_swiotlb_dma_supported,
611 	.mmap = xen_swiotlb_dma_mmap,
612 	.get_sgtable = xen_swiotlb_get_sgtable,
613 };
614