1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #include <linux/bootmem.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/export.h> 39 #include <xen/swiotlb-xen.h> 40 #include <xen/page.h> 41 #include <xen/xen-ops.h> 42 #include <xen/hvc-console.h> 43 /* 44 * Used to do a quick range check in swiotlb_tbl_unmap_single and 45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 46 * API. 47 */ 48 49 static char *xen_io_tlb_start, *xen_io_tlb_end; 50 static unsigned long xen_io_tlb_nslabs; 51 /* 52 * Quick lookup value of the bus address of the IOTLB. 53 */ 54 55 u64 start_dma_addr; 56 57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 58 { 59 return phys_to_machine(XPADDR(paddr)).maddr; 60 } 61 62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 63 { 64 return machine_to_phys(XMADDR(baddr)).paddr; 65 } 66 67 static dma_addr_t xen_virt_to_bus(void *address) 68 { 69 return xen_phys_to_bus(virt_to_phys(address)); 70 } 71 72 static int check_pages_physically_contiguous(unsigned long pfn, 73 unsigned int offset, 74 size_t length) 75 { 76 unsigned long next_mfn; 77 int i; 78 int nr_pages; 79 80 next_mfn = pfn_to_mfn(pfn); 81 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 82 83 for (i = 1; i < nr_pages; i++) { 84 if (pfn_to_mfn(++pfn) != ++next_mfn) 85 return 0; 86 } 87 return 1; 88 } 89 90 static int range_straddles_page_boundary(phys_addr_t p, size_t size) 91 { 92 unsigned long pfn = PFN_DOWN(p); 93 unsigned int offset = p & ~PAGE_MASK; 94 95 if (offset + size <= PAGE_SIZE) 96 return 0; 97 if (check_pages_physically_contiguous(pfn, offset, size)) 98 return 0; 99 return 1; 100 } 101 102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 103 { 104 unsigned long mfn = PFN_DOWN(dma_addr); 105 unsigned long pfn = mfn_to_local_pfn(mfn); 106 phys_addr_t paddr; 107 108 /* If the address is outside our domain, it CAN 109 * have the same virtual address as another address 110 * in our domain. Therefore _only_ check address within our domain. 111 */ 112 if (pfn_valid(pfn)) { 113 paddr = PFN_PHYS(pfn); 114 return paddr >= virt_to_phys(xen_io_tlb_start) && 115 paddr < virt_to_phys(xen_io_tlb_end); 116 } 117 return 0; 118 } 119 120 static int max_dma_bits = 32; 121 122 static int 123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 124 { 125 int i, rc; 126 int dma_bits; 127 128 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 129 130 i = 0; 131 do { 132 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 133 134 do { 135 rc = xen_create_contiguous_region( 136 (unsigned long)buf + (i << IO_TLB_SHIFT), 137 get_order(slabs << IO_TLB_SHIFT), 138 dma_bits); 139 } while (rc && dma_bits++ < max_dma_bits); 140 if (rc) 141 return rc; 142 143 i += slabs; 144 } while (i < nslabs); 145 return 0; 146 } 147 148 void __init xen_swiotlb_init(int verbose) 149 { 150 unsigned long bytes; 151 int rc = -ENOMEM; 152 unsigned long nr_tbl; 153 char *m = NULL; 154 unsigned int repeat = 3; 155 156 nr_tbl = swiotlb_nr_tbl(); 157 if (nr_tbl) 158 xen_io_tlb_nslabs = nr_tbl; 159 else { 160 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 161 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 162 } 163 retry: 164 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 165 166 /* 167 * Get IO TLB memory from any location. 168 */ 169 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 170 if (!xen_io_tlb_start) { 171 m = "Cannot allocate Xen-SWIOTLB buffer!\n"; 172 goto error; 173 } 174 xen_io_tlb_end = xen_io_tlb_start + bytes; 175 /* 176 * And replace that memory with pages under 4GB. 177 */ 178 rc = xen_swiotlb_fixup(xen_io_tlb_start, 179 bytes, 180 xen_io_tlb_nslabs); 181 if (rc) { 182 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 183 m = "Failed to get contiguous memory for DMA from Xen!\n"\ 184 "You either: don't have the permissions, do not have"\ 185 " enough free memory under 4GB, or the hypervisor memory"\ 186 "is too fragmented!"; 187 goto error; 188 } 189 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 190 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); 191 192 return; 193 error: 194 if (repeat--) { 195 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 196 (xen_io_tlb_nslabs >> 1)); 197 printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n", 198 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 199 goto retry; 200 } 201 xen_raw_printk("%s (rc:%d)", m, rc); 202 panic("%s (rc:%d)", m, rc); 203 } 204 205 void * 206 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 207 dma_addr_t *dma_handle, gfp_t flags, 208 struct dma_attrs *attrs) 209 { 210 void *ret; 211 int order = get_order(size); 212 u64 dma_mask = DMA_BIT_MASK(32); 213 unsigned long vstart; 214 phys_addr_t phys; 215 dma_addr_t dev_addr; 216 217 /* 218 * Ignore region specifiers - the kernel's ideas of 219 * pseudo-phys memory layout has nothing to do with the 220 * machine physical layout. We can't allocate highmem 221 * because we can't return a pointer to it. 222 */ 223 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 224 225 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 226 return ret; 227 228 vstart = __get_free_pages(flags, order); 229 ret = (void *)vstart; 230 231 if (!ret) 232 return ret; 233 234 if (hwdev && hwdev->coherent_dma_mask) 235 dma_mask = hwdev->coherent_dma_mask; 236 237 phys = virt_to_phys(ret); 238 dev_addr = xen_phys_to_bus(phys); 239 if (((dev_addr + size - 1 <= dma_mask)) && 240 !range_straddles_page_boundary(phys, size)) 241 *dma_handle = dev_addr; 242 else { 243 if (xen_create_contiguous_region(vstart, order, 244 fls64(dma_mask)) != 0) { 245 free_pages(vstart, order); 246 return NULL; 247 } 248 *dma_handle = virt_to_machine(ret).maddr; 249 } 250 memset(ret, 0, size); 251 return ret; 252 } 253 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 254 255 void 256 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 257 dma_addr_t dev_addr, struct dma_attrs *attrs) 258 { 259 int order = get_order(size); 260 phys_addr_t phys; 261 u64 dma_mask = DMA_BIT_MASK(32); 262 263 if (dma_release_from_coherent(hwdev, order, vaddr)) 264 return; 265 266 if (hwdev && hwdev->coherent_dma_mask) 267 dma_mask = hwdev->coherent_dma_mask; 268 269 phys = virt_to_phys(vaddr); 270 271 if (((dev_addr + size - 1 > dma_mask)) || 272 range_straddles_page_boundary(phys, size)) 273 xen_destroy_contiguous_region((unsigned long)vaddr, order); 274 275 free_pages((unsigned long)vaddr, order); 276 } 277 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 278 279 280 /* 281 * Map a single buffer of the indicated size for DMA in streaming mode. The 282 * physical address to use is returned. 283 * 284 * Once the device is given the dma address, the device owns this memory until 285 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 286 */ 287 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 288 unsigned long offset, size_t size, 289 enum dma_data_direction dir, 290 struct dma_attrs *attrs) 291 { 292 phys_addr_t phys = page_to_phys(page) + offset; 293 dma_addr_t dev_addr = xen_phys_to_bus(phys); 294 void *map; 295 296 BUG_ON(dir == DMA_NONE); 297 /* 298 * If the address happens to be in the device's DMA window, 299 * we can safely return the device addr and not worry about bounce 300 * buffering it. 301 */ 302 if (dma_capable(dev, dev_addr, size) && 303 !range_straddles_page_boundary(phys, size) && !swiotlb_force) 304 return dev_addr; 305 306 /* 307 * Oh well, have to allocate and map a bounce buffer. 308 */ 309 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 310 if (!map) 311 return DMA_ERROR_CODE; 312 313 dev_addr = xen_virt_to_bus(map); 314 315 /* 316 * Ensure that the address returned is DMA'ble 317 */ 318 if (!dma_capable(dev, dev_addr, size)) { 319 swiotlb_tbl_unmap_single(dev, map, size, dir); 320 dev_addr = 0; 321 } 322 return dev_addr; 323 } 324 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 325 326 /* 327 * Unmap a single streaming mode DMA translation. The dma_addr and size must 328 * match what was provided for in a previous xen_swiotlb_map_page call. All 329 * other usages are undefined. 330 * 331 * After this call, reads by the cpu to the buffer are guaranteed to see 332 * whatever the device wrote there. 333 */ 334 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 335 size_t size, enum dma_data_direction dir) 336 { 337 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 338 339 BUG_ON(dir == DMA_NONE); 340 341 /* NOTE: We use dev_addr here, not paddr! */ 342 if (is_xen_swiotlb_buffer(dev_addr)) { 343 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); 344 return; 345 } 346 347 if (dir != DMA_FROM_DEVICE) 348 return; 349 350 /* 351 * phys_to_virt doesn't work with hihgmem page but we could 352 * call dma_mark_clean() with hihgmem page here. However, we 353 * are fine since dma_mark_clean() is null on POWERPC. We can 354 * make dma_mark_clean() take a physical address if necessary. 355 */ 356 dma_mark_clean(phys_to_virt(paddr), size); 357 } 358 359 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 360 size_t size, enum dma_data_direction dir, 361 struct dma_attrs *attrs) 362 { 363 xen_unmap_single(hwdev, dev_addr, size, dir); 364 } 365 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 366 367 /* 368 * Make physical memory consistent for a single streaming mode DMA translation 369 * after a transfer. 370 * 371 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 372 * using the cpu, yet do not wish to teardown the dma mapping, you must 373 * call this function before doing so. At the next point you give the dma 374 * address back to the card, you must first perform a 375 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 376 */ 377 static void 378 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 379 size_t size, enum dma_data_direction dir, 380 enum dma_sync_target target) 381 { 382 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 383 384 BUG_ON(dir == DMA_NONE); 385 386 /* NOTE: We use dev_addr here, not paddr! */ 387 if (is_xen_swiotlb_buffer(dev_addr)) { 388 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, 389 target); 390 return; 391 } 392 393 if (dir != DMA_FROM_DEVICE) 394 return; 395 396 dma_mark_clean(phys_to_virt(paddr), size); 397 } 398 399 void 400 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 401 size_t size, enum dma_data_direction dir) 402 { 403 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 404 } 405 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 406 407 void 408 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 409 size_t size, enum dma_data_direction dir) 410 { 411 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 412 } 413 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 414 415 /* 416 * Map a set of buffers described by scatterlist in streaming mode for DMA. 417 * This is the scatter-gather version of the above xen_swiotlb_map_page 418 * interface. Here the scatter gather list elements are each tagged with the 419 * appropriate dma address and length. They are obtained via 420 * sg_dma_{address,length}(SG). 421 * 422 * NOTE: An implementation may be able to use a smaller number of 423 * DMA address/length pairs than there are SG table elements. 424 * (for example via virtual mapping capabilities) 425 * The routine returns the number of addr/length pairs actually 426 * used, at most nents. 427 * 428 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 429 * same here. 430 */ 431 int 432 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 433 int nelems, enum dma_data_direction dir, 434 struct dma_attrs *attrs) 435 { 436 struct scatterlist *sg; 437 int i; 438 439 BUG_ON(dir == DMA_NONE); 440 441 for_each_sg(sgl, sg, nelems, i) { 442 phys_addr_t paddr = sg_phys(sg); 443 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 444 445 if (swiotlb_force || 446 !dma_capable(hwdev, dev_addr, sg->length) || 447 range_straddles_page_boundary(paddr, sg->length)) { 448 void *map = swiotlb_tbl_map_single(hwdev, 449 start_dma_addr, 450 sg_phys(sg), 451 sg->length, dir); 452 if (!map) { 453 /* Don't panic here, we expect map_sg users 454 to do proper error handling. */ 455 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 456 attrs); 457 sgl[0].dma_length = 0; 458 return DMA_ERROR_CODE; 459 } 460 sg->dma_address = xen_virt_to_bus(map); 461 } else 462 sg->dma_address = dev_addr; 463 sg->dma_length = sg->length; 464 } 465 return nelems; 466 } 467 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 468 469 int 470 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 471 enum dma_data_direction dir) 472 { 473 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); 474 } 475 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); 476 477 /* 478 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 479 * concerning calls here are the same as for swiotlb_unmap_page() above. 480 */ 481 void 482 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 483 int nelems, enum dma_data_direction dir, 484 struct dma_attrs *attrs) 485 { 486 struct scatterlist *sg; 487 int i; 488 489 BUG_ON(dir == DMA_NONE); 490 491 for_each_sg(sgl, sg, nelems, i) 492 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); 493 494 } 495 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 496 497 void 498 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 499 enum dma_data_direction dir) 500 { 501 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); 502 } 503 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); 504 505 /* 506 * Make physical memory consistent for a set of streaming mode DMA translations 507 * after a transfer. 508 * 509 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 510 * and usage. 511 */ 512 static void 513 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 514 int nelems, enum dma_data_direction dir, 515 enum dma_sync_target target) 516 { 517 struct scatterlist *sg; 518 int i; 519 520 for_each_sg(sgl, sg, nelems, i) 521 xen_swiotlb_sync_single(hwdev, sg->dma_address, 522 sg->dma_length, dir, target); 523 } 524 525 void 526 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 527 int nelems, enum dma_data_direction dir) 528 { 529 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 530 } 531 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 532 533 void 534 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 535 int nelems, enum dma_data_direction dir) 536 { 537 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 538 } 539 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 540 541 int 542 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 543 { 544 return !dma_addr; 545 } 546 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 547 548 /* 549 * Return whether the given device DMA address mask can be supported 550 * properly. For example, if your device can only drive the low 24-bits 551 * during bus mastering, then you would pass 0x00ffffff as the mask to 552 * this function. 553 */ 554 int 555 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 556 { 557 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 558 } 559 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 560