xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 6279eb3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-noncoherent.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40 
41 #include <trace/events/swiotlb.h>
42 /*
43  * Used to do a quick range check in swiotlb_tbl_unmap_single and
44  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
45  * API.
46  */
47 
48 static char *xen_io_tlb_start, *xen_io_tlb_end;
49 static unsigned long xen_io_tlb_nslabs;
50 /*
51  * Quick lookup value of the bus address of the IOTLB.
52  */
53 
54 static u64 start_dma_addr;
55 
56 /*
57  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
58  * can be 32bit when dma_addr_t is 64bit leading to a loss in
59  * information if the shift is done before casting to 64bit.
60  */
61 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
62 {
63 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
64 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
65 
66 	dma |= paddr & ~XEN_PAGE_MASK;
67 
68 	return dma;
69 }
70 
71 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
72 {
73 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
74 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
75 	phys_addr_t paddr = dma;
76 
77 	paddr |= baddr & ~XEN_PAGE_MASK;
78 
79 	return paddr;
80 }
81 
82 static inline dma_addr_t xen_virt_to_bus(void *address)
83 {
84 	return xen_phys_to_bus(virt_to_phys(address));
85 }
86 
87 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
88 {
89 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
90 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
91 
92 	next_bfn = pfn_to_bfn(xen_pfn);
93 
94 	for (i = 1; i < nr_pages; i++)
95 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
96 			return 1;
97 
98 	return 0;
99 }
100 
101 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
102 {
103 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
104 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
105 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
106 
107 	/* If the address is outside our domain, it CAN
108 	 * have the same virtual address as another address
109 	 * in our domain. Therefore _only_ check address within our domain.
110 	 */
111 	if (pfn_valid(PFN_DOWN(paddr))) {
112 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
113 		       paddr < virt_to_phys(xen_io_tlb_end);
114 	}
115 	return 0;
116 }
117 
118 static int max_dma_bits = 32;
119 
120 static int
121 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
122 {
123 	int i, rc;
124 	int dma_bits;
125 	dma_addr_t dma_handle;
126 	phys_addr_t p = virt_to_phys(buf);
127 
128 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129 
130 	i = 0;
131 	do {
132 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134 		do {
135 			rc = xen_create_contiguous_region(
136 				p + (i << IO_TLB_SHIFT),
137 				get_order(slabs << IO_TLB_SHIFT),
138 				dma_bits, &dma_handle);
139 		} while (rc && dma_bits++ < max_dma_bits);
140 		if (rc)
141 			return rc;
142 
143 		i += slabs;
144 	} while (i < nslabs);
145 	return 0;
146 }
147 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
148 {
149 	if (!nr_tbl) {
150 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
151 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
152 	} else
153 		xen_io_tlb_nslabs = nr_tbl;
154 
155 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
156 }
157 
158 enum xen_swiotlb_err {
159 	XEN_SWIOTLB_UNKNOWN = 0,
160 	XEN_SWIOTLB_ENOMEM,
161 	XEN_SWIOTLB_EFIXUP
162 };
163 
164 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
165 {
166 	switch (err) {
167 	case XEN_SWIOTLB_ENOMEM:
168 		return "Cannot allocate Xen-SWIOTLB buffer\n";
169 	case XEN_SWIOTLB_EFIXUP:
170 		return "Failed to get contiguous memory for DMA from Xen!\n"\
171 		    "You either: don't have the permissions, do not have"\
172 		    " enough free memory under 4GB, or the hypervisor memory"\
173 		    " is too fragmented!";
174 	default:
175 		break;
176 	}
177 	return "";
178 }
179 int __ref xen_swiotlb_init(int verbose, bool early)
180 {
181 	unsigned long bytes, order;
182 	int rc = -ENOMEM;
183 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
184 	unsigned int repeat = 3;
185 
186 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
187 retry:
188 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
189 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
190 
191 	/*
192 	 * IO TLB memory already allocated. Just use it.
193 	 */
194 	if (io_tlb_start != 0) {
195 		xen_io_tlb_start = phys_to_virt(io_tlb_start);
196 		goto end;
197 	}
198 
199 	/*
200 	 * Get IO TLB memory from any location.
201 	 */
202 	if (early) {
203 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
204 						  PAGE_SIZE);
205 		if (!xen_io_tlb_start)
206 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
207 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
208 	} else {
209 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
210 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
211 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
212 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
213 			if (xen_io_tlb_start)
214 				break;
215 			order--;
216 		}
217 		if (order != get_order(bytes)) {
218 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
219 				(PAGE_SIZE << order) >> 20);
220 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
221 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
222 		}
223 	}
224 	if (!xen_io_tlb_start) {
225 		m_ret = XEN_SWIOTLB_ENOMEM;
226 		goto error;
227 	}
228 	/*
229 	 * And replace that memory with pages under 4GB.
230 	 */
231 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
232 			       bytes,
233 			       xen_io_tlb_nslabs);
234 	if (rc) {
235 		if (early)
236 			memblock_free(__pa(xen_io_tlb_start),
237 				      PAGE_ALIGN(bytes));
238 		else {
239 			free_pages((unsigned long)xen_io_tlb_start, order);
240 			xen_io_tlb_start = NULL;
241 		}
242 		m_ret = XEN_SWIOTLB_EFIXUP;
243 		goto error;
244 	}
245 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
246 	if (early) {
247 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
248 			 verbose))
249 			panic("Cannot allocate SWIOTLB buffer");
250 		rc = 0;
251 	} else
252 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
253 
254 end:
255 	xen_io_tlb_end = xen_io_tlb_start + bytes;
256 	if (!rc)
257 		swiotlb_set_max_segment(PAGE_SIZE);
258 
259 	return rc;
260 error:
261 	if (repeat--) {
262 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
263 					(xen_io_tlb_nslabs >> 1));
264 		pr_info("Lowering to %luMB\n",
265 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
266 		goto retry;
267 	}
268 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
269 	if (early)
270 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
271 	else
272 		free_pages((unsigned long)xen_io_tlb_start, order);
273 	return rc;
274 }
275 
276 static void *
277 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
278 			   dma_addr_t *dma_handle, gfp_t flags,
279 			   unsigned long attrs)
280 {
281 	void *ret;
282 	int order = get_order(size);
283 	u64 dma_mask = DMA_BIT_MASK(32);
284 	phys_addr_t phys;
285 	dma_addr_t dev_addr;
286 
287 	/*
288 	* Ignore region specifiers - the kernel's ideas of
289 	* pseudo-phys memory layout has nothing to do with the
290 	* machine physical layout.  We can't allocate highmem
291 	* because we can't return a pointer to it.
292 	*/
293 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
294 
295 	/* Convert the size to actually allocated. */
296 	size = 1UL << (order + XEN_PAGE_SHIFT);
297 
298 	/* On ARM this function returns an ioremap'ped virtual address for
299 	 * which virt_to_phys doesn't return the corresponding physical
300 	 * address. In fact on ARM virt_to_phys only works for kernel direct
301 	 * mapped RAM memory. Also see comment below.
302 	 */
303 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
304 
305 	if (!ret)
306 		return ret;
307 
308 	if (hwdev && hwdev->coherent_dma_mask)
309 		dma_mask = hwdev->coherent_dma_mask;
310 
311 	/* At this point dma_handle is the physical address, next we are
312 	 * going to set it to the machine address.
313 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
314 	 * to *dma_handle. */
315 	phys = *dma_handle;
316 	dev_addr = xen_phys_to_bus(phys);
317 	if (((dev_addr + size - 1 <= dma_mask)) &&
318 	    !range_straddles_page_boundary(phys, size))
319 		*dma_handle = dev_addr;
320 	else {
321 		if (xen_create_contiguous_region(phys, order,
322 						 fls64(dma_mask), dma_handle) != 0) {
323 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
324 			return NULL;
325 		}
326 		SetPageXenRemapped(virt_to_page(ret));
327 	}
328 	memset(ret, 0, size);
329 	return ret;
330 }
331 
332 static void
333 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
334 			  dma_addr_t dev_addr, unsigned long attrs)
335 {
336 	int order = get_order(size);
337 	phys_addr_t phys;
338 	u64 dma_mask = DMA_BIT_MASK(32);
339 
340 	if (hwdev && hwdev->coherent_dma_mask)
341 		dma_mask = hwdev->coherent_dma_mask;
342 
343 	/* do not use virt_to_phys because on ARM it doesn't return you the
344 	 * physical address */
345 	phys = xen_bus_to_phys(dev_addr);
346 
347 	/* Convert the size to actually allocated. */
348 	size = 1UL << (order + XEN_PAGE_SHIFT);
349 
350 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
351 		     range_straddles_page_boundary(phys, size)) &&
352 	    TestClearPageXenRemapped(virt_to_page(vaddr)))
353 		xen_destroy_contiguous_region(phys, order);
354 
355 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
356 }
357 
358 /*
359  * Map a single buffer of the indicated size for DMA in streaming mode.  The
360  * physical address to use is returned.
361  *
362  * Once the device is given the dma address, the device owns this memory until
363  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
364  */
365 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
366 				unsigned long offset, size_t size,
367 				enum dma_data_direction dir,
368 				unsigned long attrs)
369 {
370 	phys_addr_t map, phys = page_to_phys(page) + offset;
371 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
372 
373 	BUG_ON(dir == DMA_NONE);
374 	/*
375 	 * If the address happens to be in the device's DMA window,
376 	 * we can safely return the device addr and not worry about bounce
377 	 * buffering it.
378 	 */
379 	if (dma_capable(dev, dev_addr, size) &&
380 	    !range_straddles_page_boundary(phys, size) &&
381 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
382 		swiotlb_force != SWIOTLB_FORCE)
383 		goto done;
384 
385 	/*
386 	 * Oh well, have to allocate and map a bounce buffer.
387 	 */
388 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
389 
390 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys,
391 				     size, size, dir, attrs);
392 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
393 		return DMA_MAPPING_ERROR;
394 
395 	phys = map;
396 	dev_addr = xen_phys_to_bus(map);
397 
398 	/*
399 	 * Ensure that the address returned is DMA'ble
400 	 */
401 	if (unlikely(!dma_capable(dev, dev_addr, size))) {
402 		swiotlb_tbl_unmap_single(dev, map, size, size, dir,
403 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
404 		return DMA_MAPPING_ERROR;
405 	}
406 
407 done:
408 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
409 		xen_dma_sync_for_device(dev, dev_addr, phys, size, dir);
410 	return dev_addr;
411 }
412 
413 /*
414  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
415  * match what was provided for in a previous xen_swiotlb_map_page call.  All
416  * other usages are undefined.
417  *
418  * After this call, reads by the cpu to the buffer are guaranteed to see
419  * whatever the device wrote there.
420  */
421 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
422 		size_t size, enum dma_data_direction dir, unsigned long attrs)
423 {
424 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
425 
426 	BUG_ON(dir == DMA_NONE);
427 
428 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
429 		xen_dma_sync_for_cpu(hwdev, dev_addr, paddr, size, dir);
430 
431 	/* NOTE: We use dev_addr here, not paddr! */
432 	if (is_xen_swiotlb_buffer(dev_addr))
433 		swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
434 }
435 
436 static void
437 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
438 		size_t size, enum dma_data_direction dir)
439 {
440 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
441 
442 	if (!dev_is_dma_coherent(dev))
443 		xen_dma_sync_for_cpu(dev, dma_addr, paddr, size, dir);
444 
445 	if (is_xen_swiotlb_buffer(dma_addr))
446 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
447 }
448 
449 static void
450 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
451 		size_t size, enum dma_data_direction dir)
452 {
453 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
454 
455 	if (is_xen_swiotlb_buffer(dma_addr))
456 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
457 
458 	if (!dev_is_dma_coherent(dev))
459 		xen_dma_sync_for_device(dev, dma_addr, paddr, size, dir);
460 }
461 
462 /*
463  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
464  * concerning calls here are the same as for swiotlb_unmap_page() above.
465  */
466 static void
467 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
468 		enum dma_data_direction dir, unsigned long attrs)
469 {
470 	struct scatterlist *sg;
471 	int i;
472 
473 	BUG_ON(dir == DMA_NONE);
474 
475 	for_each_sg(sgl, sg, nelems, i)
476 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
477 				dir, attrs);
478 
479 }
480 
481 static int
482 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
483 		enum dma_data_direction dir, unsigned long attrs)
484 {
485 	struct scatterlist *sg;
486 	int i;
487 
488 	BUG_ON(dir == DMA_NONE);
489 
490 	for_each_sg(sgl, sg, nelems, i) {
491 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
492 				sg->offset, sg->length, dir, attrs);
493 		if (sg->dma_address == DMA_MAPPING_ERROR)
494 			goto out_unmap;
495 		sg_dma_len(sg) = sg->length;
496 	}
497 
498 	return nelems;
499 out_unmap:
500 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
501 	sg_dma_len(sgl) = 0;
502 	return 0;
503 }
504 
505 static void
506 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
507 			    int nelems, enum dma_data_direction dir)
508 {
509 	struct scatterlist *sg;
510 	int i;
511 
512 	for_each_sg(sgl, sg, nelems, i) {
513 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
514 				sg->length, dir);
515 	}
516 }
517 
518 static void
519 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
520 			       int nelems, enum dma_data_direction dir)
521 {
522 	struct scatterlist *sg;
523 	int i;
524 
525 	for_each_sg(sgl, sg, nelems, i) {
526 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
527 				sg->length, dir);
528 	}
529 }
530 
531 /*
532  * Return whether the given device DMA address mask can be supported
533  * properly.  For example, if your device can only drive the low 24-bits
534  * during bus mastering, then you would pass 0x00ffffff as the mask to
535  * this function.
536  */
537 static int
538 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
539 {
540 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
541 }
542 
543 const struct dma_map_ops xen_swiotlb_dma_ops = {
544 	.alloc = xen_swiotlb_alloc_coherent,
545 	.free = xen_swiotlb_free_coherent,
546 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
547 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
548 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
549 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
550 	.map_sg = xen_swiotlb_map_sg,
551 	.unmap_sg = xen_swiotlb_unmap_sg,
552 	.map_page = xen_swiotlb_map_page,
553 	.unmap_page = xen_swiotlb_unmap_page,
554 	.dma_supported = xen_swiotlb_dma_supported,
555 	.mmap = dma_common_mmap,
556 	.get_sgtable = dma_common_get_sgtable,
557 };
558