xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 4bf3bd0f)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/memblock.h>
39 #include <linux/dma-direct.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #define XEN_SWIOTLB_ERROR_CODE	(~(dma_addr_t)0x0)
57 
58 static char *xen_io_tlb_start, *xen_io_tlb_end;
59 static unsigned long xen_io_tlb_nslabs;
60 /*
61  * Quick lookup value of the bus address of the IOTLB.
62  */
63 
64 static u64 start_dma_addr;
65 
66 /*
67  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
68  * can be 32bit when dma_addr_t is 64bit leading to a loss in
69  * information if the shift is done before casting to 64bit.
70  */
71 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
72 {
73 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
74 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
75 
76 	dma |= paddr & ~XEN_PAGE_MASK;
77 
78 	return dma;
79 }
80 
81 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
82 {
83 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
84 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
85 	phys_addr_t paddr = dma;
86 
87 	paddr |= baddr & ~XEN_PAGE_MASK;
88 
89 	return paddr;
90 }
91 
92 static inline dma_addr_t xen_virt_to_bus(void *address)
93 {
94 	return xen_phys_to_bus(virt_to_phys(address));
95 }
96 
97 static int check_pages_physically_contiguous(unsigned long xen_pfn,
98 					     unsigned int offset,
99 					     size_t length)
100 {
101 	unsigned long next_bfn;
102 	int i;
103 	int nr_pages;
104 
105 	next_bfn = pfn_to_bfn(xen_pfn);
106 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
107 
108 	for (i = 1; i < nr_pages; i++) {
109 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
110 			return 0;
111 	}
112 	return 1;
113 }
114 
115 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
116 {
117 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
118 	unsigned int offset = p & ~XEN_PAGE_MASK;
119 
120 	if (offset + size <= XEN_PAGE_SIZE)
121 		return 0;
122 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
123 		return 0;
124 	return 1;
125 }
126 
127 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
128 {
129 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
130 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
131 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
132 
133 	/* If the address is outside our domain, it CAN
134 	 * have the same virtual address as another address
135 	 * in our domain. Therefore _only_ check address within our domain.
136 	 */
137 	if (pfn_valid(PFN_DOWN(paddr))) {
138 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
139 		       paddr < virt_to_phys(xen_io_tlb_end);
140 	}
141 	return 0;
142 }
143 
144 static int max_dma_bits = 32;
145 
146 static int
147 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
148 {
149 	int i, rc;
150 	int dma_bits;
151 	dma_addr_t dma_handle;
152 	phys_addr_t p = virt_to_phys(buf);
153 
154 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
155 
156 	i = 0;
157 	do {
158 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
159 
160 		do {
161 			rc = xen_create_contiguous_region(
162 				p + (i << IO_TLB_SHIFT),
163 				get_order(slabs << IO_TLB_SHIFT),
164 				dma_bits, &dma_handle);
165 		} while (rc && dma_bits++ < max_dma_bits);
166 		if (rc)
167 			return rc;
168 
169 		i += slabs;
170 	} while (i < nslabs);
171 	return 0;
172 }
173 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
174 {
175 	if (!nr_tbl) {
176 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
177 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
178 	} else
179 		xen_io_tlb_nslabs = nr_tbl;
180 
181 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
182 }
183 
184 enum xen_swiotlb_err {
185 	XEN_SWIOTLB_UNKNOWN = 0,
186 	XEN_SWIOTLB_ENOMEM,
187 	XEN_SWIOTLB_EFIXUP
188 };
189 
190 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
191 {
192 	switch (err) {
193 	case XEN_SWIOTLB_ENOMEM:
194 		return "Cannot allocate Xen-SWIOTLB buffer\n";
195 	case XEN_SWIOTLB_EFIXUP:
196 		return "Failed to get contiguous memory for DMA from Xen!\n"\
197 		    "You either: don't have the permissions, do not have"\
198 		    " enough free memory under 4GB, or the hypervisor memory"\
199 		    " is too fragmented!";
200 	default:
201 		break;
202 	}
203 	return "";
204 }
205 int __ref xen_swiotlb_init(int verbose, bool early)
206 {
207 	unsigned long bytes, order;
208 	int rc = -ENOMEM;
209 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
210 	unsigned int repeat = 3;
211 
212 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
213 retry:
214 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
215 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
216 	/*
217 	 * Get IO TLB memory from any location.
218 	 */
219 	if (early)
220 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
221 						  PAGE_SIZE);
222 	else {
223 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
224 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
225 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
226 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
227 			if (xen_io_tlb_start)
228 				break;
229 			order--;
230 		}
231 		if (order != get_order(bytes)) {
232 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
233 				(PAGE_SIZE << order) >> 20);
234 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
235 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
236 		}
237 	}
238 	if (!xen_io_tlb_start) {
239 		m_ret = XEN_SWIOTLB_ENOMEM;
240 		goto error;
241 	}
242 	xen_io_tlb_end = xen_io_tlb_start + bytes;
243 	/*
244 	 * And replace that memory with pages under 4GB.
245 	 */
246 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
247 			       bytes,
248 			       xen_io_tlb_nslabs);
249 	if (rc) {
250 		if (early)
251 			memblock_free(__pa(xen_io_tlb_start),
252 				      PAGE_ALIGN(bytes));
253 		else {
254 			free_pages((unsigned long)xen_io_tlb_start, order);
255 			xen_io_tlb_start = NULL;
256 		}
257 		m_ret = XEN_SWIOTLB_EFIXUP;
258 		goto error;
259 	}
260 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
261 	if (early) {
262 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
263 			 verbose))
264 			panic("Cannot allocate SWIOTLB buffer");
265 		rc = 0;
266 	} else
267 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
268 
269 	if (!rc)
270 		swiotlb_set_max_segment(PAGE_SIZE);
271 
272 	return rc;
273 error:
274 	if (repeat--) {
275 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
276 					(xen_io_tlb_nslabs >> 1));
277 		pr_info("Lowering to %luMB\n",
278 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
279 		goto retry;
280 	}
281 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
282 	if (early)
283 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
284 	else
285 		free_pages((unsigned long)xen_io_tlb_start, order);
286 	return rc;
287 }
288 
289 static void *
290 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
291 			   dma_addr_t *dma_handle, gfp_t flags,
292 			   unsigned long attrs)
293 {
294 	void *ret;
295 	int order = get_order(size);
296 	u64 dma_mask = DMA_BIT_MASK(32);
297 	phys_addr_t phys;
298 	dma_addr_t dev_addr;
299 
300 	/*
301 	* Ignore region specifiers - the kernel's ideas of
302 	* pseudo-phys memory layout has nothing to do with the
303 	* machine physical layout.  We can't allocate highmem
304 	* because we can't return a pointer to it.
305 	*/
306 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
307 
308 	/* Convert the size to actually allocated. */
309 	size = 1UL << (order + XEN_PAGE_SHIFT);
310 
311 	/* On ARM this function returns an ioremap'ped virtual address for
312 	 * which virt_to_phys doesn't return the corresponding physical
313 	 * address. In fact on ARM virt_to_phys only works for kernel direct
314 	 * mapped RAM memory. Also see comment below.
315 	 */
316 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
317 
318 	if (!ret)
319 		return ret;
320 
321 	if (hwdev && hwdev->coherent_dma_mask)
322 		dma_mask = hwdev->coherent_dma_mask;
323 
324 	/* At this point dma_handle is the physical address, next we are
325 	 * going to set it to the machine address.
326 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
327 	 * to *dma_handle. */
328 	phys = *dma_handle;
329 	dev_addr = xen_phys_to_bus(phys);
330 	if (((dev_addr + size - 1 <= dma_mask)) &&
331 	    !range_straddles_page_boundary(phys, size))
332 		*dma_handle = dev_addr;
333 	else {
334 		if (xen_create_contiguous_region(phys, order,
335 						 fls64(dma_mask), dma_handle) != 0) {
336 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
337 			return NULL;
338 		}
339 	}
340 	memset(ret, 0, size);
341 	return ret;
342 }
343 
344 static void
345 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
346 			  dma_addr_t dev_addr, unsigned long attrs)
347 {
348 	int order = get_order(size);
349 	phys_addr_t phys;
350 	u64 dma_mask = DMA_BIT_MASK(32);
351 
352 	if (hwdev && hwdev->coherent_dma_mask)
353 		dma_mask = hwdev->coherent_dma_mask;
354 
355 	/* do not use virt_to_phys because on ARM it doesn't return you the
356 	 * physical address */
357 	phys = xen_bus_to_phys(dev_addr);
358 
359 	/* Convert the size to actually allocated. */
360 	size = 1UL << (order + XEN_PAGE_SHIFT);
361 
362 	if (((dev_addr + size - 1 <= dma_mask)) ||
363 	    range_straddles_page_boundary(phys, size))
364 		xen_destroy_contiguous_region(phys, order);
365 
366 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
367 }
368 
369 /*
370  * Map a single buffer of the indicated size for DMA in streaming mode.  The
371  * physical address to use is returned.
372  *
373  * Once the device is given the dma address, the device owns this memory until
374  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
375  */
376 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
377 				unsigned long offset, size_t size,
378 				enum dma_data_direction dir,
379 				unsigned long attrs)
380 {
381 	phys_addr_t map, phys = page_to_phys(page) + offset;
382 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
383 
384 	BUG_ON(dir == DMA_NONE);
385 	/*
386 	 * If the address happens to be in the device's DMA window,
387 	 * we can safely return the device addr and not worry about bounce
388 	 * buffering it.
389 	 */
390 	if (dma_capable(dev, dev_addr, size) &&
391 	    !range_straddles_page_boundary(phys, size) &&
392 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
393 		(swiotlb_force != SWIOTLB_FORCE)) {
394 		/* we are not interested in the dma_addr returned by
395 		 * xen_dma_map_page, only in the potential cache flushes executed
396 		 * by the function. */
397 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
398 		return dev_addr;
399 	}
400 
401 	/*
402 	 * Oh well, have to allocate and map a bounce buffer.
403 	 */
404 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
405 
406 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
407 				     attrs);
408 	if (map == SWIOTLB_MAP_ERROR)
409 		return XEN_SWIOTLB_ERROR_CODE;
410 
411 	dev_addr = xen_phys_to_bus(map);
412 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
413 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
414 
415 	/*
416 	 * Ensure that the address returned is DMA'ble
417 	 */
418 	if (dma_capable(dev, dev_addr, size))
419 		return dev_addr;
420 
421 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
422 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
423 
424 	return XEN_SWIOTLB_ERROR_CODE;
425 }
426 
427 /*
428  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
429  * match what was provided for in a previous xen_swiotlb_map_page call.  All
430  * other usages are undefined.
431  *
432  * After this call, reads by the cpu to the buffer are guaranteed to see
433  * whatever the device wrote there.
434  */
435 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
436 			     size_t size, enum dma_data_direction dir,
437 			     unsigned long attrs)
438 {
439 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
440 
441 	BUG_ON(dir == DMA_NONE);
442 
443 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
444 
445 	/* NOTE: We use dev_addr here, not paddr! */
446 	if (is_xen_swiotlb_buffer(dev_addr)) {
447 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
448 		return;
449 	}
450 
451 	if (dir != DMA_FROM_DEVICE)
452 		return;
453 
454 	/*
455 	 * phys_to_virt doesn't work with hihgmem page but we could
456 	 * call dma_mark_clean() with hihgmem page here. However, we
457 	 * are fine since dma_mark_clean() is null on POWERPC. We can
458 	 * make dma_mark_clean() take a physical address if necessary.
459 	 */
460 	dma_mark_clean(phys_to_virt(paddr), size);
461 }
462 
463 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
464 			    size_t size, enum dma_data_direction dir,
465 			    unsigned long attrs)
466 {
467 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
468 }
469 
470 /*
471  * Make physical memory consistent for a single streaming mode DMA translation
472  * after a transfer.
473  *
474  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
475  * using the cpu, yet do not wish to teardown the dma mapping, you must
476  * call this function before doing so.  At the next point you give the dma
477  * address back to the card, you must first perform a
478  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
479  */
480 static void
481 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
482 			size_t size, enum dma_data_direction dir,
483 			enum dma_sync_target target)
484 {
485 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
486 
487 	BUG_ON(dir == DMA_NONE);
488 
489 	if (target == SYNC_FOR_CPU)
490 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
491 
492 	/* NOTE: We use dev_addr here, not paddr! */
493 	if (is_xen_swiotlb_buffer(dev_addr))
494 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
495 
496 	if (target == SYNC_FOR_DEVICE)
497 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
498 
499 	if (dir != DMA_FROM_DEVICE)
500 		return;
501 
502 	dma_mark_clean(phys_to_virt(paddr), size);
503 }
504 
505 void
506 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
507 				size_t size, enum dma_data_direction dir)
508 {
509 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
510 }
511 
512 void
513 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
514 				   size_t size, enum dma_data_direction dir)
515 {
516 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
517 }
518 
519 /*
520  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
521  * concerning calls here are the same as for swiotlb_unmap_page() above.
522  */
523 static void
524 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
525 			   int nelems, enum dma_data_direction dir,
526 			   unsigned long attrs)
527 {
528 	struct scatterlist *sg;
529 	int i;
530 
531 	BUG_ON(dir == DMA_NONE);
532 
533 	for_each_sg(sgl, sg, nelems, i)
534 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
535 
536 }
537 
538 /*
539  * Map a set of buffers described by scatterlist in streaming mode for DMA.
540  * This is the scatter-gather version of the above xen_swiotlb_map_page
541  * interface.  Here the scatter gather list elements are each tagged with the
542  * appropriate dma address and length.  They are obtained via
543  * sg_dma_{address,length}(SG).
544  *
545  * NOTE: An implementation may be able to use a smaller number of
546  *       DMA address/length pairs than there are SG table elements.
547  *       (for example via virtual mapping capabilities)
548  *       The routine returns the number of addr/length pairs actually
549  *       used, at most nents.
550  *
551  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
552  * same here.
553  */
554 static int
555 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
556 			 int nelems, enum dma_data_direction dir,
557 			 unsigned long attrs)
558 {
559 	struct scatterlist *sg;
560 	int i;
561 
562 	BUG_ON(dir == DMA_NONE);
563 
564 	for_each_sg(sgl, sg, nelems, i) {
565 		phys_addr_t paddr = sg_phys(sg);
566 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
567 
568 		if (swiotlb_force == SWIOTLB_FORCE ||
569 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
570 		    !dma_capable(hwdev, dev_addr, sg->length) ||
571 		    range_straddles_page_boundary(paddr, sg->length)) {
572 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
573 								 start_dma_addr,
574 								 sg_phys(sg),
575 								 sg->length,
576 								 dir, attrs);
577 			if (map == SWIOTLB_MAP_ERROR) {
578 				dev_warn(hwdev, "swiotlb buffer is full\n");
579 				/* Don't panic here, we expect map_sg users
580 				   to do proper error handling. */
581 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
582 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
583 							   attrs);
584 				sg_dma_len(sgl) = 0;
585 				return 0;
586 			}
587 			dev_addr = xen_phys_to_bus(map);
588 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
589 						dev_addr,
590 						map & ~PAGE_MASK,
591 						sg->length,
592 						dir,
593 						attrs);
594 			sg->dma_address = dev_addr;
595 		} else {
596 			/* we are not interested in the dma_addr returned by
597 			 * xen_dma_map_page, only in the potential cache flushes executed
598 			 * by the function. */
599 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
600 						dev_addr,
601 						paddr & ~PAGE_MASK,
602 						sg->length,
603 						dir,
604 						attrs);
605 			sg->dma_address = dev_addr;
606 		}
607 		sg_dma_len(sg) = sg->length;
608 	}
609 	return nelems;
610 }
611 
612 /*
613  * Make physical memory consistent for a set of streaming mode DMA translations
614  * after a transfer.
615  *
616  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
617  * and usage.
618  */
619 static void
620 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
621 		    int nelems, enum dma_data_direction dir,
622 		    enum dma_sync_target target)
623 {
624 	struct scatterlist *sg;
625 	int i;
626 
627 	for_each_sg(sgl, sg, nelems, i)
628 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
629 					sg_dma_len(sg), dir, target);
630 }
631 
632 static void
633 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
634 			    int nelems, enum dma_data_direction dir)
635 {
636 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
637 }
638 
639 static void
640 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
641 			       int nelems, enum dma_data_direction dir)
642 {
643 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
644 }
645 
646 /*
647  * Return whether the given device DMA address mask can be supported
648  * properly.  For example, if your device can only drive the low 24-bits
649  * during bus mastering, then you would pass 0x00ffffff as the mask to
650  * this function.
651  */
652 static int
653 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
654 {
655 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
656 }
657 
658 /*
659  * Create userspace mapping for the DMA-coherent memory.
660  * This function should be called with the pages from the current domain only,
661  * passing pages mapped from other domains would lead to memory corruption.
662  */
663 static int
664 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
665 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
666 		     unsigned long attrs)
667 {
668 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
669 	if (xen_get_dma_ops(dev)->mmap)
670 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
671 						    dma_addr, size, attrs);
672 #endif
673 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
674 }
675 
676 /*
677  * This function should be called with the pages from the current domain only,
678  * passing pages mapped from other domains would lead to memory corruption.
679  */
680 static int
681 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
682 			void *cpu_addr, dma_addr_t handle, size_t size,
683 			unsigned long attrs)
684 {
685 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
686 	if (xen_get_dma_ops(dev)->get_sgtable) {
687 #if 0
688 	/*
689 	 * This check verifies that the page belongs to the current domain and
690 	 * is not one mapped from another domain.
691 	 * This check is for debug only, and should not go to production build
692 	 */
693 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
694 		BUG_ON (!page_is_ram(bfn));
695 #endif
696 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
697 							   handle, size, attrs);
698 	}
699 #endif
700 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
701 }
702 
703 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr)
704 {
705 	return dma_addr == XEN_SWIOTLB_ERROR_CODE;
706 }
707 
708 const struct dma_map_ops xen_swiotlb_dma_ops = {
709 	.alloc = xen_swiotlb_alloc_coherent,
710 	.free = xen_swiotlb_free_coherent,
711 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
712 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
713 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
714 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
715 	.map_sg = xen_swiotlb_map_sg_attrs,
716 	.unmap_sg = xen_swiotlb_unmap_sg_attrs,
717 	.map_page = xen_swiotlb_map_page,
718 	.unmap_page = xen_swiotlb_unmap_page,
719 	.dma_supported = xen_swiotlb_dma_supported,
720 	.mmap = xen_swiotlb_dma_mmap,
721 	.get_sgtable = xen_swiotlb_get_sgtable,
722 	.mapping_error	= xen_swiotlb_mapping_error,
723 };
724