1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/memblock.h> 39 #include <linux/dma-direct.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 static char *xen_io_tlb_start, *xen_io_tlb_end; 57 static unsigned long xen_io_tlb_nslabs; 58 /* 59 * Quick lookup value of the bus address of the IOTLB. 60 */ 61 62 static u64 start_dma_addr; 63 64 /* 65 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 66 * can be 32bit when dma_addr_t is 64bit leading to a loss in 67 * information if the shift is done before casting to 64bit. 68 */ 69 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 70 { 71 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 72 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 73 74 dma |= paddr & ~XEN_PAGE_MASK; 75 76 return dma; 77 } 78 79 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 80 { 81 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 82 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 83 phys_addr_t paddr = dma; 84 85 paddr |= baddr & ~XEN_PAGE_MASK; 86 87 return paddr; 88 } 89 90 static inline dma_addr_t xen_virt_to_bus(void *address) 91 { 92 return xen_phys_to_bus(virt_to_phys(address)); 93 } 94 95 static int check_pages_physically_contiguous(unsigned long xen_pfn, 96 unsigned int offset, 97 size_t length) 98 { 99 unsigned long next_bfn; 100 int i; 101 int nr_pages; 102 103 next_bfn = pfn_to_bfn(xen_pfn); 104 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 105 106 for (i = 1; i < nr_pages; i++) { 107 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 108 return 0; 109 } 110 return 1; 111 } 112 113 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 114 { 115 unsigned long xen_pfn = XEN_PFN_DOWN(p); 116 unsigned int offset = p & ~XEN_PAGE_MASK; 117 118 if (offset + size <= XEN_PAGE_SIZE) 119 return 0; 120 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 121 return 0; 122 return 1; 123 } 124 125 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 126 { 127 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 128 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 129 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 130 131 /* If the address is outside our domain, it CAN 132 * have the same virtual address as another address 133 * in our domain. Therefore _only_ check address within our domain. 134 */ 135 if (pfn_valid(PFN_DOWN(paddr))) { 136 return paddr >= virt_to_phys(xen_io_tlb_start) && 137 paddr < virt_to_phys(xen_io_tlb_end); 138 } 139 return 0; 140 } 141 142 static int max_dma_bits = 32; 143 144 static int 145 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 146 { 147 int i, rc; 148 int dma_bits; 149 dma_addr_t dma_handle; 150 phys_addr_t p = virt_to_phys(buf); 151 152 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 153 154 i = 0; 155 do { 156 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 157 158 do { 159 rc = xen_create_contiguous_region( 160 p + (i << IO_TLB_SHIFT), 161 get_order(slabs << IO_TLB_SHIFT), 162 dma_bits, &dma_handle); 163 } while (rc && dma_bits++ < max_dma_bits); 164 if (rc) 165 return rc; 166 167 i += slabs; 168 } while (i < nslabs); 169 return 0; 170 } 171 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 172 { 173 if (!nr_tbl) { 174 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 175 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 176 } else 177 xen_io_tlb_nslabs = nr_tbl; 178 179 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 180 } 181 182 enum xen_swiotlb_err { 183 XEN_SWIOTLB_UNKNOWN = 0, 184 XEN_SWIOTLB_ENOMEM, 185 XEN_SWIOTLB_EFIXUP 186 }; 187 188 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 189 { 190 switch (err) { 191 case XEN_SWIOTLB_ENOMEM: 192 return "Cannot allocate Xen-SWIOTLB buffer\n"; 193 case XEN_SWIOTLB_EFIXUP: 194 return "Failed to get contiguous memory for DMA from Xen!\n"\ 195 "You either: don't have the permissions, do not have"\ 196 " enough free memory under 4GB, or the hypervisor memory"\ 197 " is too fragmented!"; 198 default: 199 break; 200 } 201 return ""; 202 } 203 int __ref xen_swiotlb_init(int verbose, bool early) 204 { 205 unsigned long bytes, order; 206 int rc = -ENOMEM; 207 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 208 unsigned int repeat = 3; 209 210 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 211 retry: 212 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 213 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 214 /* 215 * Get IO TLB memory from any location. 216 */ 217 if (early) { 218 xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes), 219 PAGE_SIZE); 220 if (!xen_io_tlb_start) 221 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 222 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 223 } else { 224 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 225 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 226 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 227 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 228 if (xen_io_tlb_start) 229 break; 230 order--; 231 } 232 if (order != get_order(bytes)) { 233 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 234 (PAGE_SIZE << order) >> 20); 235 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 236 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 237 } 238 } 239 if (!xen_io_tlb_start) { 240 m_ret = XEN_SWIOTLB_ENOMEM; 241 goto error; 242 } 243 xen_io_tlb_end = xen_io_tlb_start + bytes; 244 /* 245 * And replace that memory with pages under 4GB. 246 */ 247 rc = xen_swiotlb_fixup(xen_io_tlb_start, 248 bytes, 249 xen_io_tlb_nslabs); 250 if (rc) { 251 if (early) 252 memblock_free(__pa(xen_io_tlb_start), 253 PAGE_ALIGN(bytes)); 254 else { 255 free_pages((unsigned long)xen_io_tlb_start, order); 256 xen_io_tlb_start = NULL; 257 } 258 m_ret = XEN_SWIOTLB_EFIXUP; 259 goto error; 260 } 261 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 262 if (early) { 263 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 264 verbose)) 265 panic("Cannot allocate SWIOTLB buffer"); 266 rc = 0; 267 } else 268 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 269 270 if (!rc) 271 swiotlb_set_max_segment(PAGE_SIZE); 272 273 return rc; 274 error: 275 if (repeat--) { 276 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 277 (xen_io_tlb_nslabs >> 1)); 278 pr_info("Lowering to %luMB\n", 279 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 280 goto retry; 281 } 282 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 283 if (early) 284 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 285 else 286 free_pages((unsigned long)xen_io_tlb_start, order); 287 return rc; 288 } 289 290 static void * 291 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 292 dma_addr_t *dma_handle, gfp_t flags, 293 unsigned long attrs) 294 { 295 void *ret; 296 int order = get_order(size); 297 u64 dma_mask = DMA_BIT_MASK(32); 298 phys_addr_t phys; 299 dma_addr_t dev_addr; 300 301 /* 302 * Ignore region specifiers - the kernel's ideas of 303 * pseudo-phys memory layout has nothing to do with the 304 * machine physical layout. We can't allocate highmem 305 * because we can't return a pointer to it. 306 */ 307 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 308 309 /* Convert the size to actually allocated. */ 310 size = 1UL << (order + XEN_PAGE_SHIFT); 311 312 /* On ARM this function returns an ioremap'ped virtual address for 313 * which virt_to_phys doesn't return the corresponding physical 314 * address. In fact on ARM virt_to_phys only works for kernel direct 315 * mapped RAM memory. Also see comment below. 316 */ 317 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 318 319 if (!ret) 320 return ret; 321 322 if (hwdev && hwdev->coherent_dma_mask) 323 dma_mask = hwdev->coherent_dma_mask; 324 325 /* At this point dma_handle is the physical address, next we are 326 * going to set it to the machine address. 327 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 328 * to *dma_handle. */ 329 phys = *dma_handle; 330 dev_addr = xen_phys_to_bus(phys); 331 if (((dev_addr + size - 1 <= dma_mask)) && 332 !range_straddles_page_boundary(phys, size)) 333 *dma_handle = dev_addr; 334 else { 335 if (xen_create_contiguous_region(phys, order, 336 fls64(dma_mask), dma_handle) != 0) { 337 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 338 return NULL; 339 } 340 } 341 memset(ret, 0, size); 342 return ret; 343 } 344 345 static void 346 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 347 dma_addr_t dev_addr, unsigned long attrs) 348 { 349 int order = get_order(size); 350 phys_addr_t phys; 351 u64 dma_mask = DMA_BIT_MASK(32); 352 353 if (hwdev && hwdev->coherent_dma_mask) 354 dma_mask = hwdev->coherent_dma_mask; 355 356 /* do not use virt_to_phys because on ARM it doesn't return you the 357 * physical address */ 358 phys = xen_bus_to_phys(dev_addr); 359 360 /* Convert the size to actually allocated. */ 361 size = 1UL << (order + XEN_PAGE_SHIFT); 362 363 if (((dev_addr + size - 1 <= dma_mask)) || 364 range_straddles_page_boundary(phys, size)) 365 xen_destroy_contiguous_region(phys, order); 366 367 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 368 } 369 370 /* 371 * Map a single buffer of the indicated size for DMA in streaming mode. The 372 * physical address to use is returned. 373 * 374 * Once the device is given the dma address, the device owns this memory until 375 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 376 */ 377 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 378 unsigned long offset, size_t size, 379 enum dma_data_direction dir, 380 unsigned long attrs) 381 { 382 phys_addr_t map, phys = page_to_phys(page) + offset; 383 dma_addr_t dev_addr = xen_phys_to_bus(phys); 384 385 BUG_ON(dir == DMA_NONE); 386 /* 387 * If the address happens to be in the device's DMA window, 388 * we can safely return the device addr and not worry about bounce 389 * buffering it. 390 */ 391 if (dma_capable(dev, dev_addr, size) && 392 !range_straddles_page_boundary(phys, size) && 393 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 394 swiotlb_force != SWIOTLB_FORCE) 395 goto done; 396 397 /* 398 * Oh well, have to allocate and map a bounce buffer. 399 */ 400 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 401 402 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir, 403 attrs); 404 if (map == DMA_MAPPING_ERROR) 405 return DMA_MAPPING_ERROR; 406 407 dev_addr = xen_phys_to_bus(map); 408 409 /* 410 * Ensure that the address returned is DMA'ble 411 */ 412 if (unlikely(!dma_capable(dev, dev_addr, size))) { 413 swiotlb_tbl_unmap_single(dev, map, size, dir, 414 attrs | DMA_ATTR_SKIP_CPU_SYNC); 415 return DMA_MAPPING_ERROR; 416 } 417 418 page = pfn_to_page(map >> PAGE_SHIFT); 419 offset = map & ~PAGE_MASK; 420 done: 421 /* 422 * we are not interested in the dma_addr returned by xen_dma_map_page, 423 * only in the potential cache flushes executed by the function. 424 */ 425 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 426 return dev_addr; 427 } 428 429 /* 430 * Unmap a single streaming mode DMA translation. The dma_addr and size must 431 * match what was provided for in a previous xen_swiotlb_map_page call. All 432 * other usages are undefined. 433 * 434 * After this call, reads by the cpu to the buffer are guaranteed to see 435 * whatever the device wrote there. 436 */ 437 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 438 size_t size, enum dma_data_direction dir, 439 unsigned long attrs) 440 { 441 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 442 443 BUG_ON(dir == DMA_NONE); 444 445 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 446 447 /* NOTE: We use dev_addr here, not paddr! */ 448 if (is_xen_swiotlb_buffer(dev_addr)) 449 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 450 } 451 452 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 453 size_t size, enum dma_data_direction dir, 454 unsigned long attrs) 455 { 456 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 457 } 458 459 static void 460 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 461 size_t size, enum dma_data_direction dir) 462 { 463 phys_addr_t paddr = xen_bus_to_phys(dma_addr); 464 465 xen_dma_sync_single_for_cpu(dev, dma_addr, size, dir); 466 467 if (is_xen_swiotlb_buffer(dma_addr)) 468 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); 469 } 470 471 static void 472 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 473 size_t size, enum dma_data_direction dir) 474 { 475 phys_addr_t paddr = xen_bus_to_phys(dma_addr); 476 477 if (is_xen_swiotlb_buffer(dma_addr)) 478 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); 479 480 xen_dma_sync_single_for_device(dev, dma_addr, size, dir); 481 } 482 483 /* 484 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 485 * concerning calls here are the same as for swiotlb_unmap_page() above. 486 */ 487 static void 488 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 489 enum dma_data_direction dir, unsigned long attrs) 490 { 491 struct scatterlist *sg; 492 int i; 493 494 BUG_ON(dir == DMA_NONE); 495 496 for_each_sg(sgl, sg, nelems, i) 497 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 498 499 } 500 501 static int 502 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 503 enum dma_data_direction dir, unsigned long attrs) 504 { 505 struct scatterlist *sg; 506 int i; 507 508 BUG_ON(dir == DMA_NONE); 509 510 for_each_sg(sgl, sg, nelems, i) { 511 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 512 sg->offset, sg->length, dir, attrs); 513 if (sg->dma_address == DMA_MAPPING_ERROR) 514 goto out_unmap; 515 sg_dma_len(sg) = sg->length; 516 } 517 518 return nelems; 519 out_unmap: 520 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 521 sg_dma_len(sgl) = 0; 522 return 0; 523 } 524 525 static void 526 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 527 int nelems, enum dma_data_direction dir) 528 { 529 struct scatterlist *sg; 530 int i; 531 532 for_each_sg(sgl, sg, nelems, i) { 533 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 534 sg->length, dir); 535 } 536 } 537 538 static void 539 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 540 int nelems, enum dma_data_direction dir) 541 { 542 struct scatterlist *sg; 543 int i; 544 545 for_each_sg(sgl, sg, nelems, i) { 546 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 547 sg->length, dir); 548 } 549 } 550 551 /* 552 * Return whether the given device DMA address mask can be supported 553 * properly. For example, if your device can only drive the low 24-bits 554 * during bus mastering, then you would pass 0x00ffffff as the mask to 555 * this function. 556 */ 557 static int 558 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 559 { 560 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 561 } 562 563 /* 564 * Create userspace mapping for the DMA-coherent memory. 565 * This function should be called with the pages from the current domain only, 566 * passing pages mapped from other domains would lead to memory corruption. 567 */ 568 static int 569 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma, 570 void *cpu_addr, dma_addr_t dma_addr, size_t size, 571 unsigned long attrs) 572 { 573 #ifdef CONFIG_ARM 574 if (xen_get_dma_ops(dev)->mmap) 575 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr, 576 dma_addr, size, attrs); 577 #endif 578 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 579 } 580 581 /* 582 * This function should be called with the pages from the current domain only, 583 * passing pages mapped from other domains would lead to memory corruption. 584 */ 585 static int 586 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 587 void *cpu_addr, dma_addr_t handle, size_t size, 588 unsigned long attrs) 589 { 590 #ifdef CONFIG_ARM 591 if (xen_get_dma_ops(dev)->get_sgtable) { 592 #if 0 593 /* 594 * This check verifies that the page belongs to the current domain and 595 * is not one mapped from another domain. 596 * This check is for debug only, and should not go to production build 597 */ 598 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle)); 599 BUG_ON (!page_is_ram(bfn)); 600 #endif 601 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr, 602 handle, size, attrs); 603 } 604 #endif 605 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs); 606 } 607 608 const struct dma_map_ops xen_swiotlb_dma_ops = { 609 .alloc = xen_swiotlb_alloc_coherent, 610 .free = xen_swiotlb_free_coherent, 611 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 612 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 613 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 614 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 615 .map_sg = xen_swiotlb_map_sg, 616 .unmap_sg = xen_swiotlb_unmap_sg, 617 .map_page = xen_swiotlb_map_page, 618 .unmap_page = xen_swiotlb_unmap_page, 619 .dma_supported = xen_swiotlb_dma_supported, 620 .mmap = xen_swiotlb_dma_mmap, 621 .get_sgtable = xen_swiotlb_get_sgtable, 622 }; 623