xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-noncoherent.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40 
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 static u64 start_dma_addr;
56 
57 /*
58  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
59  * can be 32bit when dma_addr_t is 64bit leading to a loss in
60  * information if the shift is done before casting to 64bit.
61  */
62 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
63 {
64 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
65 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
66 
67 	dma |= paddr & ~XEN_PAGE_MASK;
68 
69 	return dma;
70 }
71 
72 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
73 {
74 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
75 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
76 	phys_addr_t paddr = dma;
77 
78 	paddr |= baddr & ~XEN_PAGE_MASK;
79 
80 	return paddr;
81 }
82 
83 static inline dma_addr_t xen_virt_to_bus(void *address)
84 {
85 	return xen_phys_to_bus(virt_to_phys(address));
86 }
87 
88 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
89 {
90 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
91 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
92 
93 	next_bfn = pfn_to_bfn(xen_pfn);
94 
95 	for (i = 1; i < nr_pages; i++)
96 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
97 			return 1;
98 
99 	return 0;
100 }
101 
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
105 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
106 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
107 
108 	/* If the address is outside our domain, it CAN
109 	 * have the same virtual address as another address
110 	 * in our domain. Therefore _only_ check address within our domain.
111 	 */
112 	if (pfn_valid(PFN_DOWN(paddr))) {
113 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
114 		       paddr < virt_to_phys(xen_io_tlb_end);
115 	}
116 	return 0;
117 }
118 
119 static int
120 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
121 {
122 	int i, rc;
123 	int dma_bits;
124 	dma_addr_t dma_handle;
125 	phys_addr_t p = virt_to_phys(buf);
126 
127 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
128 
129 	i = 0;
130 	do {
131 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
132 
133 		do {
134 			rc = xen_create_contiguous_region(
135 				p + (i << IO_TLB_SHIFT),
136 				get_order(slabs << IO_TLB_SHIFT),
137 				dma_bits, &dma_handle);
138 		} while (rc && dma_bits++ < MAX_DMA_BITS);
139 		if (rc)
140 			return rc;
141 
142 		i += slabs;
143 	} while (i < nslabs);
144 	return 0;
145 }
146 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
147 {
148 	if (!nr_tbl) {
149 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
150 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
151 	} else
152 		xen_io_tlb_nslabs = nr_tbl;
153 
154 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
155 }
156 
157 enum xen_swiotlb_err {
158 	XEN_SWIOTLB_UNKNOWN = 0,
159 	XEN_SWIOTLB_ENOMEM,
160 	XEN_SWIOTLB_EFIXUP
161 };
162 
163 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
164 {
165 	switch (err) {
166 	case XEN_SWIOTLB_ENOMEM:
167 		return "Cannot allocate Xen-SWIOTLB buffer\n";
168 	case XEN_SWIOTLB_EFIXUP:
169 		return "Failed to get contiguous memory for DMA from Xen!\n"\
170 		    "You either: don't have the permissions, do not have"\
171 		    " enough free memory under 4GB, or the hypervisor memory"\
172 		    " is too fragmented!";
173 	default:
174 		break;
175 	}
176 	return "";
177 }
178 int __ref xen_swiotlb_init(int verbose, bool early)
179 {
180 	unsigned long bytes, order;
181 	int rc = -ENOMEM;
182 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
183 	unsigned int repeat = 3;
184 
185 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
186 retry:
187 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
188 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
189 
190 	/*
191 	 * IO TLB memory already allocated. Just use it.
192 	 */
193 	if (io_tlb_start != 0) {
194 		xen_io_tlb_start = phys_to_virt(io_tlb_start);
195 		goto end;
196 	}
197 
198 	/*
199 	 * Get IO TLB memory from any location.
200 	 */
201 	if (early) {
202 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
203 						  PAGE_SIZE);
204 		if (!xen_io_tlb_start)
205 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
206 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
207 	} else {
208 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
209 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
210 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
211 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
212 			if (xen_io_tlb_start)
213 				break;
214 			order--;
215 		}
216 		if (order != get_order(bytes)) {
217 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
218 				(PAGE_SIZE << order) >> 20);
219 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
220 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
221 		}
222 	}
223 	if (!xen_io_tlb_start) {
224 		m_ret = XEN_SWIOTLB_ENOMEM;
225 		goto error;
226 	}
227 	/*
228 	 * And replace that memory with pages under 4GB.
229 	 */
230 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
231 			       bytes,
232 			       xen_io_tlb_nslabs);
233 	if (rc) {
234 		if (early)
235 			memblock_free(__pa(xen_io_tlb_start),
236 				      PAGE_ALIGN(bytes));
237 		else {
238 			free_pages((unsigned long)xen_io_tlb_start, order);
239 			xen_io_tlb_start = NULL;
240 		}
241 		m_ret = XEN_SWIOTLB_EFIXUP;
242 		goto error;
243 	}
244 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
245 	if (early) {
246 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
247 			 verbose))
248 			panic("Cannot allocate SWIOTLB buffer");
249 		rc = 0;
250 	} else
251 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
252 
253 end:
254 	xen_io_tlb_end = xen_io_tlb_start + bytes;
255 	if (!rc)
256 		swiotlb_set_max_segment(PAGE_SIZE);
257 
258 	return rc;
259 error:
260 	if (repeat--) {
261 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
262 					(xen_io_tlb_nslabs >> 1));
263 		pr_info("Lowering to %luMB\n",
264 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
265 		goto retry;
266 	}
267 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
268 	if (early)
269 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
270 	else
271 		free_pages((unsigned long)xen_io_tlb_start, order);
272 	return rc;
273 }
274 
275 static void *
276 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
277 			   dma_addr_t *dma_handle, gfp_t flags,
278 			   unsigned long attrs)
279 {
280 	void *ret;
281 	int order = get_order(size);
282 	u64 dma_mask = DMA_BIT_MASK(32);
283 	phys_addr_t phys;
284 	dma_addr_t dev_addr;
285 
286 	/*
287 	* Ignore region specifiers - the kernel's ideas of
288 	* pseudo-phys memory layout has nothing to do with the
289 	* machine physical layout.  We can't allocate highmem
290 	* because we can't return a pointer to it.
291 	*/
292 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
293 
294 	/* Convert the size to actually allocated. */
295 	size = 1UL << (order + XEN_PAGE_SHIFT);
296 
297 	/* On ARM this function returns an ioremap'ped virtual address for
298 	 * which virt_to_phys doesn't return the corresponding physical
299 	 * address. In fact on ARM virt_to_phys only works for kernel direct
300 	 * mapped RAM memory. Also see comment below.
301 	 */
302 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
303 
304 	if (!ret)
305 		return ret;
306 
307 	if (hwdev && hwdev->coherent_dma_mask)
308 		dma_mask = hwdev->coherent_dma_mask;
309 
310 	/* At this point dma_handle is the physical address, next we are
311 	 * going to set it to the machine address.
312 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
313 	 * to *dma_handle. */
314 	phys = *dma_handle;
315 	dev_addr = xen_phys_to_bus(phys);
316 	if (((dev_addr + size - 1 <= dma_mask)) &&
317 	    !range_straddles_page_boundary(phys, size))
318 		*dma_handle = dev_addr;
319 	else {
320 		if (xen_create_contiguous_region(phys, order,
321 						 fls64(dma_mask), dma_handle) != 0) {
322 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
323 			return NULL;
324 		}
325 		SetPageXenRemapped(virt_to_page(ret));
326 	}
327 	memset(ret, 0, size);
328 	return ret;
329 }
330 
331 static void
332 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
333 			  dma_addr_t dev_addr, unsigned long attrs)
334 {
335 	int order = get_order(size);
336 	phys_addr_t phys;
337 	u64 dma_mask = DMA_BIT_MASK(32);
338 
339 	if (hwdev && hwdev->coherent_dma_mask)
340 		dma_mask = hwdev->coherent_dma_mask;
341 
342 	/* do not use virt_to_phys because on ARM it doesn't return you the
343 	 * physical address */
344 	phys = xen_bus_to_phys(dev_addr);
345 
346 	/* Convert the size to actually allocated. */
347 	size = 1UL << (order + XEN_PAGE_SHIFT);
348 
349 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
350 		     range_straddles_page_boundary(phys, size)) &&
351 	    TestClearPageXenRemapped(virt_to_page(vaddr)))
352 		xen_destroy_contiguous_region(phys, order);
353 
354 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
355 }
356 
357 /*
358  * Map a single buffer of the indicated size for DMA in streaming mode.  The
359  * physical address to use is returned.
360  *
361  * Once the device is given the dma address, the device owns this memory until
362  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
363  */
364 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
365 				unsigned long offset, size_t size,
366 				enum dma_data_direction dir,
367 				unsigned long attrs)
368 {
369 	phys_addr_t map, phys = page_to_phys(page) + offset;
370 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
371 
372 	BUG_ON(dir == DMA_NONE);
373 	/*
374 	 * If the address happens to be in the device's DMA window,
375 	 * we can safely return the device addr and not worry about bounce
376 	 * buffering it.
377 	 */
378 	if (dma_capable(dev, dev_addr, size) &&
379 	    !range_straddles_page_boundary(phys, size) &&
380 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
381 		swiotlb_force != SWIOTLB_FORCE)
382 		goto done;
383 
384 	/*
385 	 * Oh well, have to allocate and map a bounce buffer.
386 	 */
387 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
388 
389 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys,
390 				     size, size, dir, attrs);
391 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
392 		return DMA_MAPPING_ERROR;
393 
394 	phys = map;
395 	dev_addr = xen_phys_to_bus(map);
396 
397 	/*
398 	 * Ensure that the address returned is DMA'ble
399 	 */
400 	if (unlikely(!dma_capable(dev, dev_addr, size))) {
401 		swiotlb_tbl_unmap_single(dev, map, size, size, dir,
402 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
403 		return DMA_MAPPING_ERROR;
404 	}
405 
406 done:
407 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
408 		xen_dma_sync_for_device(dev, dev_addr, phys, size, dir);
409 	return dev_addr;
410 }
411 
412 /*
413  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
414  * match what was provided for in a previous xen_swiotlb_map_page call.  All
415  * other usages are undefined.
416  *
417  * After this call, reads by the cpu to the buffer are guaranteed to see
418  * whatever the device wrote there.
419  */
420 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
421 		size_t size, enum dma_data_direction dir, unsigned long attrs)
422 {
423 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
424 
425 	BUG_ON(dir == DMA_NONE);
426 
427 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
428 		xen_dma_sync_for_cpu(hwdev, dev_addr, paddr, size, dir);
429 
430 	/* NOTE: We use dev_addr here, not paddr! */
431 	if (is_xen_swiotlb_buffer(dev_addr))
432 		swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
433 }
434 
435 static void
436 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
437 		size_t size, enum dma_data_direction dir)
438 {
439 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
440 
441 	if (!dev_is_dma_coherent(dev))
442 		xen_dma_sync_for_cpu(dev, dma_addr, paddr, size, dir);
443 
444 	if (is_xen_swiotlb_buffer(dma_addr))
445 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
446 }
447 
448 static void
449 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
450 		size_t size, enum dma_data_direction dir)
451 {
452 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
453 
454 	if (is_xen_swiotlb_buffer(dma_addr))
455 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
456 
457 	if (!dev_is_dma_coherent(dev))
458 		xen_dma_sync_for_device(dev, dma_addr, paddr, size, dir);
459 }
460 
461 /*
462  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
463  * concerning calls here are the same as for swiotlb_unmap_page() above.
464  */
465 static void
466 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
467 		enum dma_data_direction dir, unsigned long attrs)
468 {
469 	struct scatterlist *sg;
470 	int i;
471 
472 	BUG_ON(dir == DMA_NONE);
473 
474 	for_each_sg(sgl, sg, nelems, i)
475 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
476 				dir, attrs);
477 
478 }
479 
480 static int
481 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
482 		enum dma_data_direction dir, unsigned long attrs)
483 {
484 	struct scatterlist *sg;
485 	int i;
486 
487 	BUG_ON(dir == DMA_NONE);
488 
489 	for_each_sg(sgl, sg, nelems, i) {
490 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
491 				sg->offset, sg->length, dir, attrs);
492 		if (sg->dma_address == DMA_MAPPING_ERROR)
493 			goto out_unmap;
494 		sg_dma_len(sg) = sg->length;
495 	}
496 
497 	return nelems;
498 out_unmap:
499 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
500 	sg_dma_len(sgl) = 0;
501 	return 0;
502 }
503 
504 static void
505 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
506 			    int nelems, enum dma_data_direction dir)
507 {
508 	struct scatterlist *sg;
509 	int i;
510 
511 	for_each_sg(sgl, sg, nelems, i) {
512 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
513 				sg->length, dir);
514 	}
515 }
516 
517 static void
518 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
519 			       int nelems, enum dma_data_direction dir)
520 {
521 	struct scatterlist *sg;
522 	int i;
523 
524 	for_each_sg(sgl, sg, nelems, i) {
525 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
526 				sg->length, dir);
527 	}
528 }
529 
530 /*
531  * Return whether the given device DMA address mask can be supported
532  * properly.  For example, if your device can only drive the low 24-bits
533  * during bus mastering, then you would pass 0x00ffffff as the mask to
534  * this function.
535  */
536 static int
537 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
538 {
539 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
540 }
541 
542 const struct dma_map_ops xen_swiotlb_dma_ops = {
543 	.alloc = xen_swiotlb_alloc_coherent,
544 	.free = xen_swiotlb_free_coherent,
545 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
546 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
547 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
548 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
549 	.map_sg = xen_swiotlb_map_sg,
550 	.unmap_sg = xen_swiotlb_unmap_sg,
551 	.map_page = xen_swiotlb_map_page,
552 	.unmap_page = xen_swiotlb_unmap_page,
553 	.dma_supported = xen_swiotlb_dma_supported,
554 	.mmap = dma_common_mmap,
555 	.get_sgtable = dma_common_get_sgtable,
556 };
557