xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 39b6f3aa)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 static u64 start_dma_addr;
56 
57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58 {
59 	return phys_to_machine(XPADDR(paddr)).maddr;
60 }
61 
62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63 {
64 	return machine_to_phys(XMADDR(baddr)).paddr;
65 }
66 
67 static dma_addr_t xen_virt_to_bus(void *address)
68 {
69 	return xen_phys_to_bus(virt_to_phys(address));
70 }
71 
72 static int check_pages_physically_contiguous(unsigned long pfn,
73 					     unsigned int offset,
74 					     size_t length)
75 {
76 	unsigned long next_mfn;
77 	int i;
78 	int nr_pages;
79 
80 	next_mfn = pfn_to_mfn(pfn);
81 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82 
83 	for (i = 1; i < nr_pages; i++) {
84 		if (pfn_to_mfn(++pfn) != ++next_mfn)
85 			return 0;
86 	}
87 	return 1;
88 }
89 
90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92 	unsigned long pfn = PFN_DOWN(p);
93 	unsigned int offset = p & ~PAGE_MASK;
94 
95 	if (offset + size <= PAGE_SIZE)
96 		return 0;
97 	if (check_pages_physically_contiguous(pfn, offset, size))
98 		return 0;
99 	return 1;
100 }
101 
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104 	unsigned long mfn = PFN_DOWN(dma_addr);
105 	unsigned long pfn = mfn_to_local_pfn(mfn);
106 	phys_addr_t paddr;
107 
108 	/* If the address is outside our domain, it CAN
109 	 * have the same virtual address as another address
110 	 * in our domain. Therefore _only_ check address within our domain.
111 	 */
112 	if (pfn_valid(pfn)) {
113 		paddr = PFN_PHYS(pfn);
114 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 		       paddr < virt_to_phys(xen_io_tlb_end);
116 	}
117 	return 0;
118 }
119 
120 static int max_dma_bits = 32;
121 
122 static int
123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124 {
125 	int i, rc;
126 	int dma_bits;
127 
128 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129 
130 	i = 0;
131 	do {
132 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134 		do {
135 			rc = xen_create_contiguous_region(
136 				(unsigned long)buf + (i << IO_TLB_SHIFT),
137 				get_order(slabs << IO_TLB_SHIFT),
138 				dma_bits);
139 		} while (rc && dma_bits++ < max_dma_bits);
140 		if (rc)
141 			return rc;
142 
143 		i += slabs;
144 	} while (i < nslabs);
145 	return 0;
146 }
147 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
148 {
149 	if (!nr_tbl) {
150 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
151 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
152 	} else
153 		xen_io_tlb_nslabs = nr_tbl;
154 
155 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
156 }
157 
158 enum xen_swiotlb_err {
159 	XEN_SWIOTLB_UNKNOWN = 0,
160 	XEN_SWIOTLB_ENOMEM,
161 	XEN_SWIOTLB_EFIXUP
162 };
163 
164 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
165 {
166 	switch (err) {
167 	case XEN_SWIOTLB_ENOMEM:
168 		return "Cannot allocate Xen-SWIOTLB buffer\n";
169 	case XEN_SWIOTLB_EFIXUP:
170 		return "Failed to get contiguous memory for DMA from Xen!\n"\
171 		    "You either: don't have the permissions, do not have"\
172 		    " enough free memory under 4GB, or the hypervisor memory"\
173 		    " is too fragmented!";
174 	default:
175 		break;
176 	}
177 	return "";
178 }
179 int __ref xen_swiotlb_init(int verbose, bool early)
180 {
181 	unsigned long bytes, order;
182 	int rc = -ENOMEM;
183 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
184 	unsigned int repeat = 3;
185 
186 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
187 retry:
188 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
189 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
190 	/*
191 	 * Get IO TLB memory from any location.
192 	 */
193 	if (early)
194 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
195 	else {
196 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
197 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
198 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
199 			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
200 			if (xen_io_tlb_start)
201 				break;
202 			order--;
203 		}
204 		if (order != get_order(bytes)) {
205 			pr_warn("Warning: only able to allocate %ld MB "
206 				"for software IO TLB\n", (PAGE_SIZE << order) >> 20);
207 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
208 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
209 		}
210 	}
211 	if (!xen_io_tlb_start) {
212 		m_ret = XEN_SWIOTLB_ENOMEM;
213 		goto error;
214 	}
215 	xen_io_tlb_end = xen_io_tlb_start + bytes;
216 	/*
217 	 * And replace that memory with pages under 4GB.
218 	 */
219 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
220 			       bytes,
221 			       xen_io_tlb_nslabs);
222 	if (rc) {
223 		if (early)
224 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
225 		else {
226 			free_pages((unsigned long)xen_io_tlb_start, order);
227 			xen_io_tlb_start = NULL;
228 		}
229 		m_ret = XEN_SWIOTLB_EFIXUP;
230 		goto error;
231 	}
232 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
233 	if (early) {
234 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
235 			 verbose))
236 			panic("Cannot allocate SWIOTLB buffer");
237 		rc = 0;
238 	} else
239 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
240 	return rc;
241 error:
242 	if (repeat--) {
243 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
244 					(xen_io_tlb_nslabs >> 1));
245 		printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
246 		      (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
247 		goto retry;
248 	}
249 	pr_err("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
250 	if (early)
251 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
252 	else
253 		free_pages((unsigned long)xen_io_tlb_start, order);
254 	return rc;
255 }
256 void *
257 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
258 			   dma_addr_t *dma_handle, gfp_t flags,
259 			   struct dma_attrs *attrs)
260 {
261 	void *ret;
262 	int order = get_order(size);
263 	u64 dma_mask = DMA_BIT_MASK(32);
264 	unsigned long vstart;
265 	phys_addr_t phys;
266 	dma_addr_t dev_addr;
267 
268 	/*
269 	* Ignore region specifiers - the kernel's ideas of
270 	* pseudo-phys memory layout has nothing to do with the
271 	* machine physical layout.  We can't allocate highmem
272 	* because we can't return a pointer to it.
273 	*/
274 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
275 
276 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
277 		return ret;
278 
279 	vstart = __get_free_pages(flags, order);
280 	ret = (void *)vstart;
281 
282 	if (!ret)
283 		return ret;
284 
285 	if (hwdev && hwdev->coherent_dma_mask)
286 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
287 
288 	phys = virt_to_phys(ret);
289 	dev_addr = xen_phys_to_bus(phys);
290 	if (((dev_addr + size - 1 <= dma_mask)) &&
291 	    !range_straddles_page_boundary(phys, size))
292 		*dma_handle = dev_addr;
293 	else {
294 		if (xen_create_contiguous_region(vstart, order,
295 						 fls64(dma_mask)) != 0) {
296 			free_pages(vstart, order);
297 			return NULL;
298 		}
299 		*dma_handle = virt_to_machine(ret).maddr;
300 	}
301 	memset(ret, 0, size);
302 	return ret;
303 }
304 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
305 
306 void
307 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
308 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
309 {
310 	int order = get_order(size);
311 	phys_addr_t phys;
312 	u64 dma_mask = DMA_BIT_MASK(32);
313 
314 	if (dma_release_from_coherent(hwdev, order, vaddr))
315 		return;
316 
317 	if (hwdev && hwdev->coherent_dma_mask)
318 		dma_mask = hwdev->coherent_dma_mask;
319 
320 	phys = virt_to_phys(vaddr);
321 
322 	if (((dev_addr + size - 1 > dma_mask)) ||
323 	    range_straddles_page_boundary(phys, size))
324 		xen_destroy_contiguous_region((unsigned long)vaddr, order);
325 
326 	free_pages((unsigned long)vaddr, order);
327 }
328 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
329 
330 
331 /*
332  * Map a single buffer of the indicated size for DMA in streaming mode.  The
333  * physical address to use is returned.
334  *
335  * Once the device is given the dma address, the device owns this memory until
336  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
337  */
338 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
339 				unsigned long offset, size_t size,
340 				enum dma_data_direction dir,
341 				struct dma_attrs *attrs)
342 {
343 	phys_addr_t map, phys = page_to_phys(page) + offset;
344 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
345 
346 	BUG_ON(dir == DMA_NONE);
347 	/*
348 	 * If the address happens to be in the device's DMA window,
349 	 * we can safely return the device addr and not worry about bounce
350 	 * buffering it.
351 	 */
352 	if (dma_capable(dev, dev_addr, size) &&
353 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
354 		return dev_addr;
355 
356 	/*
357 	 * Oh well, have to allocate and map a bounce buffer.
358 	 */
359 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
360 	if (map == SWIOTLB_MAP_ERROR)
361 		return DMA_ERROR_CODE;
362 
363 	dev_addr = xen_phys_to_bus(map);
364 
365 	/*
366 	 * Ensure that the address returned is DMA'ble
367 	 */
368 	if (!dma_capable(dev, dev_addr, size)) {
369 		swiotlb_tbl_unmap_single(dev, map, size, dir);
370 		dev_addr = 0;
371 	}
372 	return dev_addr;
373 }
374 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
375 
376 /*
377  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
378  * match what was provided for in a previous xen_swiotlb_map_page call.  All
379  * other usages are undefined.
380  *
381  * After this call, reads by the cpu to the buffer are guaranteed to see
382  * whatever the device wrote there.
383  */
384 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
385 			     size_t size, enum dma_data_direction dir)
386 {
387 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
388 
389 	BUG_ON(dir == DMA_NONE);
390 
391 	/* NOTE: We use dev_addr here, not paddr! */
392 	if (is_xen_swiotlb_buffer(dev_addr)) {
393 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
394 		return;
395 	}
396 
397 	if (dir != DMA_FROM_DEVICE)
398 		return;
399 
400 	/*
401 	 * phys_to_virt doesn't work with hihgmem page but we could
402 	 * call dma_mark_clean() with hihgmem page here. However, we
403 	 * are fine since dma_mark_clean() is null on POWERPC. We can
404 	 * make dma_mark_clean() take a physical address if necessary.
405 	 */
406 	dma_mark_clean(phys_to_virt(paddr), size);
407 }
408 
409 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
410 			    size_t size, enum dma_data_direction dir,
411 			    struct dma_attrs *attrs)
412 {
413 	xen_unmap_single(hwdev, dev_addr, size, dir);
414 }
415 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
416 
417 /*
418  * Make physical memory consistent for a single streaming mode DMA translation
419  * after a transfer.
420  *
421  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
422  * using the cpu, yet do not wish to teardown the dma mapping, you must
423  * call this function before doing so.  At the next point you give the dma
424  * address back to the card, you must first perform a
425  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
426  */
427 static void
428 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
429 			size_t size, enum dma_data_direction dir,
430 			enum dma_sync_target target)
431 {
432 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
433 
434 	BUG_ON(dir == DMA_NONE);
435 
436 	/* NOTE: We use dev_addr here, not paddr! */
437 	if (is_xen_swiotlb_buffer(dev_addr)) {
438 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
439 		return;
440 	}
441 
442 	if (dir != DMA_FROM_DEVICE)
443 		return;
444 
445 	dma_mark_clean(phys_to_virt(paddr), size);
446 }
447 
448 void
449 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
450 				size_t size, enum dma_data_direction dir)
451 {
452 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
453 }
454 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
455 
456 void
457 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
458 				   size_t size, enum dma_data_direction dir)
459 {
460 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
461 }
462 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
463 
464 /*
465  * Map a set of buffers described by scatterlist in streaming mode for DMA.
466  * This is the scatter-gather version of the above xen_swiotlb_map_page
467  * interface.  Here the scatter gather list elements are each tagged with the
468  * appropriate dma address and length.  They are obtained via
469  * sg_dma_{address,length}(SG).
470  *
471  * NOTE: An implementation may be able to use a smaller number of
472  *       DMA address/length pairs than there are SG table elements.
473  *       (for example via virtual mapping capabilities)
474  *       The routine returns the number of addr/length pairs actually
475  *       used, at most nents.
476  *
477  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
478  * same here.
479  */
480 int
481 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
482 			 int nelems, enum dma_data_direction dir,
483 			 struct dma_attrs *attrs)
484 {
485 	struct scatterlist *sg;
486 	int i;
487 
488 	BUG_ON(dir == DMA_NONE);
489 
490 	for_each_sg(sgl, sg, nelems, i) {
491 		phys_addr_t paddr = sg_phys(sg);
492 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
493 
494 		if (swiotlb_force ||
495 		    !dma_capable(hwdev, dev_addr, sg->length) ||
496 		    range_straddles_page_boundary(paddr, sg->length)) {
497 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
498 								 start_dma_addr,
499 								 sg_phys(sg),
500 								 sg->length,
501 								 dir);
502 			if (map == SWIOTLB_MAP_ERROR) {
503 				/* Don't panic here, we expect map_sg users
504 				   to do proper error handling. */
505 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
506 							   attrs);
507 				sgl[0].dma_length = 0;
508 				return DMA_ERROR_CODE;
509 			}
510 			sg->dma_address = xen_phys_to_bus(map);
511 		} else
512 			sg->dma_address = dev_addr;
513 		sg->dma_length = sg->length;
514 	}
515 	return nelems;
516 }
517 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
518 
519 /*
520  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
521  * concerning calls here are the same as for swiotlb_unmap_page() above.
522  */
523 void
524 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
525 			   int nelems, enum dma_data_direction dir,
526 			   struct dma_attrs *attrs)
527 {
528 	struct scatterlist *sg;
529 	int i;
530 
531 	BUG_ON(dir == DMA_NONE);
532 
533 	for_each_sg(sgl, sg, nelems, i)
534 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
535 
536 }
537 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
538 
539 /*
540  * Make physical memory consistent for a set of streaming mode DMA translations
541  * after a transfer.
542  *
543  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
544  * and usage.
545  */
546 static void
547 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
548 		    int nelems, enum dma_data_direction dir,
549 		    enum dma_sync_target target)
550 {
551 	struct scatterlist *sg;
552 	int i;
553 
554 	for_each_sg(sgl, sg, nelems, i)
555 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
556 					sg->dma_length, dir, target);
557 }
558 
559 void
560 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
561 			    int nelems, enum dma_data_direction dir)
562 {
563 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
564 }
565 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
566 
567 void
568 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
569 			       int nelems, enum dma_data_direction dir)
570 {
571 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
572 }
573 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
574 
575 int
576 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
577 {
578 	return !dma_addr;
579 }
580 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
581 
582 /*
583  * Return whether the given device DMA address mask can be supported
584  * properly.  For example, if your device can only drive the low 24-bits
585  * during bus mastering, then you would pass 0x00ffffff as the mask to
586  * this function.
587  */
588 int
589 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
590 {
591 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
592 }
593 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
594