xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 297e77e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-noncoherent.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40 
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
56 {
57 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
58 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
59 
60 	baddr |= paddr & ~XEN_PAGE_MASK;
61 	return baddr;
62 }
63 
64 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
65 {
66 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
67 }
68 
69 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
70 					  phys_addr_t baddr)
71 {
72 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
73 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
74 			    (baddr & ~XEN_PAGE_MASK);
75 
76 	return paddr;
77 }
78 
79 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
80 					  dma_addr_t dma_addr)
81 {
82 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
83 }
84 
85 static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address)
86 {
87 	return xen_phys_to_dma(dev, virt_to_phys(address));
88 }
89 
90 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
93 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
94 
95 	next_bfn = pfn_to_bfn(xen_pfn);
96 
97 	for (i = 1; i < nr_pages; i++)
98 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
99 			return 1;
100 
101 	return 0;
102 }
103 
104 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
105 {
106 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
107 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
108 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
109 
110 	/* If the address is outside our domain, it CAN
111 	 * have the same virtual address as another address
112 	 * in our domain. Therefore _only_ check address within our domain.
113 	 */
114 	if (pfn_valid(PFN_DOWN(paddr))) {
115 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
116 		       paddr < virt_to_phys(xen_io_tlb_end);
117 	}
118 	return 0;
119 }
120 
121 static int
122 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
123 {
124 	int i, rc;
125 	int dma_bits;
126 	dma_addr_t dma_handle;
127 	phys_addr_t p = virt_to_phys(buf);
128 
129 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
130 
131 	i = 0;
132 	do {
133 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
134 
135 		do {
136 			rc = xen_create_contiguous_region(
137 				p + (i << IO_TLB_SHIFT),
138 				get_order(slabs << IO_TLB_SHIFT),
139 				dma_bits, &dma_handle);
140 		} while (rc && dma_bits++ < MAX_DMA_BITS);
141 		if (rc)
142 			return rc;
143 
144 		i += slabs;
145 	} while (i < nslabs);
146 	return 0;
147 }
148 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
149 {
150 	if (!nr_tbl) {
151 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
152 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
153 	} else
154 		xen_io_tlb_nslabs = nr_tbl;
155 
156 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
157 }
158 
159 enum xen_swiotlb_err {
160 	XEN_SWIOTLB_UNKNOWN = 0,
161 	XEN_SWIOTLB_ENOMEM,
162 	XEN_SWIOTLB_EFIXUP
163 };
164 
165 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
166 {
167 	switch (err) {
168 	case XEN_SWIOTLB_ENOMEM:
169 		return "Cannot allocate Xen-SWIOTLB buffer\n";
170 	case XEN_SWIOTLB_EFIXUP:
171 		return "Failed to get contiguous memory for DMA from Xen!\n"\
172 		    "You either: don't have the permissions, do not have"\
173 		    " enough free memory under 4GB, or the hypervisor memory"\
174 		    " is too fragmented!";
175 	default:
176 		break;
177 	}
178 	return "";
179 }
180 int __ref xen_swiotlb_init(int verbose, bool early)
181 {
182 	unsigned long bytes, order;
183 	int rc = -ENOMEM;
184 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
185 	unsigned int repeat = 3;
186 
187 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
188 retry:
189 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
190 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
191 
192 	/*
193 	 * IO TLB memory already allocated. Just use it.
194 	 */
195 	if (io_tlb_start != 0) {
196 		xen_io_tlb_start = phys_to_virt(io_tlb_start);
197 		goto end;
198 	}
199 
200 	/*
201 	 * Get IO TLB memory from any location.
202 	 */
203 	if (early) {
204 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
205 						  PAGE_SIZE);
206 		if (!xen_io_tlb_start)
207 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
209 	} else {
210 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
211 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
212 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
213 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
214 			if (xen_io_tlb_start)
215 				break;
216 			order--;
217 		}
218 		if (order != get_order(bytes)) {
219 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
220 				(PAGE_SIZE << order) >> 20);
221 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
222 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
223 		}
224 	}
225 	if (!xen_io_tlb_start) {
226 		m_ret = XEN_SWIOTLB_ENOMEM;
227 		goto error;
228 	}
229 	/*
230 	 * And replace that memory with pages under 4GB.
231 	 */
232 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
233 			       bytes,
234 			       xen_io_tlb_nslabs);
235 	if (rc) {
236 		if (early)
237 			memblock_free(__pa(xen_io_tlb_start),
238 				      PAGE_ALIGN(bytes));
239 		else {
240 			free_pages((unsigned long)xen_io_tlb_start, order);
241 			xen_io_tlb_start = NULL;
242 		}
243 		m_ret = XEN_SWIOTLB_EFIXUP;
244 		goto error;
245 	}
246 	if (early) {
247 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
248 			 verbose))
249 			panic("Cannot allocate SWIOTLB buffer");
250 		rc = 0;
251 	} else
252 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
253 
254 end:
255 	xen_io_tlb_end = xen_io_tlb_start + bytes;
256 	if (!rc)
257 		swiotlb_set_max_segment(PAGE_SIZE);
258 
259 	return rc;
260 error:
261 	if (repeat--) {
262 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
263 					(xen_io_tlb_nslabs >> 1));
264 		pr_info("Lowering to %luMB\n",
265 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
266 		goto retry;
267 	}
268 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
269 	if (early)
270 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
271 	else
272 		free_pages((unsigned long)xen_io_tlb_start, order);
273 	return rc;
274 }
275 
276 static void *
277 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
278 			   dma_addr_t *dma_handle, gfp_t flags,
279 			   unsigned long attrs)
280 {
281 	void *ret;
282 	int order = get_order(size);
283 	u64 dma_mask = DMA_BIT_MASK(32);
284 	phys_addr_t phys;
285 	dma_addr_t dev_addr;
286 
287 	/*
288 	* Ignore region specifiers - the kernel's ideas of
289 	* pseudo-phys memory layout has nothing to do with the
290 	* machine physical layout.  We can't allocate highmem
291 	* because we can't return a pointer to it.
292 	*/
293 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
294 
295 	/* Convert the size to actually allocated. */
296 	size = 1UL << (order + XEN_PAGE_SHIFT);
297 
298 	/* On ARM this function returns an ioremap'ped virtual address for
299 	 * which virt_to_phys doesn't return the corresponding physical
300 	 * address. In fact on ARM virt_to_phys only works for kernel direct
301 	 * mapped RAM memory. Also see comment below.
302 	 */
303 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
304 
305 	if (!ret)
306 		return ret;
307 
308 	if (hwdev && hwdev->coherent_dma_mask)
309 		dma_mask = hwdev->coherent_dma_mask;
310 
311 	/* At this point dma_handle is the dma address, next we are
312 	 * going to set it to the machine address.
313 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
314 	 * to *dma_handle. */
315 	phys = dma_to_phys(hwdev, *dma_handle);
316 	dev_addr = xen_phys_to_dma(hwdev, phys);
317 	if (((dev_addr + size - 1 <= dma_mask)) &&
318 	    !range_straddles_page_boundary(phys, size))
319 		*dma_handle = dev_addr;
320 	else {
321 		if (xen_create_contiguous_region(phys, order,
322 						 fls64(dma_mask), dma_handle) != 0) {
323 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
324 			return NULL;
325 		}
326 		*dma_handle = phys_to_dma(hwdev, *dma_handle);
327 		SetPageXenRemapped(virt_to_page(ret));
328 	}
329 	memset(ret, 0, size);
330 	return ret;
331 }
332 
333 static void
334 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
335 			  dma_addr_t dev_addr, unsigned long attrs)
336 {
337 	int order = get_order(size);
338 	phys_addr_t phys;
339 	u64 dma_mask = DMA_BIT_MASK(32);
340 	struct page *page;
341 
342 	if (hwdev && hwdev->coherent_dma_mask)
343 		dma_mask = hwdev->coherent_dma_mask;
344 
345 	/* do not use virt_to_phys because on ARM it doesn't return you the
346 	 * physical address */
347 	phys = xen_dma_to_phys(hwdev, dev_addr);
348 
349 	/* Convert the size to actually allocated. */
350 	size = 1UL << (order + XEN_PAGE_SHIFT);
351 
352 	if (is_vmalloc_addr(vaddr))
353 		page = vmalloc_to_page(vaddr);
354 	else
355 		page = virt_to_page(vaddr);
356 
357 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
358 		     range_straddles_page_boundary(phys, size)) &&
359 	    TestClearPageXenRemapped(page))
360 		xen_destroy_contiguous_region(phys, order);
361 
362 	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
363 				attrs);
364 }
365 
366 /*
367  * Map a single buffer of the indicated size for DMA in streaming mode.  The
368  * physical address to use is returned.
369  *
370  * Once the device is given the dma address, the device owns this memory until
371  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
372  */
373 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
374 				unsigned long offset, size_t size,
375 				enum dma_data_direction dir,
376 				unsigned long attrs)
377 {
378 	phys_addr_t map, phys = page_to_phys(page) + offset;
379 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
380 
381 	BUG_ON(dir == DMA_NONE);
382 	/*
383 	 * If the address happens to be in the device's DMA window,
384 	 * we can safely return the device addr and not worry about bounce
385 	 * buffering it.
386 	 */
387 	if (dma_capable(dev, dev_addr, size, true) &&
388 	    !range_straddles_page_boundary(phys, size) &&
389 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
390 		swiotlb_force != SWIOTLB_FORCE)
391 		goto done;
392 
393 	/*
394 	 * Oh well, have to allocate and map a bounce buffer.
395 	 */
396 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
397 
398 	map = swiotlb_tbl_map_single(dev, virt_to_phys(xen_io_tlb_start),
399 				     phys, size, size, dir, attrs);
400 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
401 		return DMA_MAPPING_ERROR;
402 
403 	phys = map;
404 	dev_addr = xen_phys_to_dma(dev, map);
405 
406 	/*
407 	 * Ensure that the address returned is DMA'ble
408 	 */
409 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
410 		swiotlb_tbl_unmap_single(dev, map, size, size, dir,
411 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
412 		return DMA_MAPPING_ERROR;
413 	}
414 
415 done:
416 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
417 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
418 			arch_sync_dma_for_device(phys, size, dir);
419 		else
420 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
421 	}
422 	return dev_addr;
423 }
424 
425 /*
426  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
427  * match what was provided for in a previous xen_swiotlb_map_page call.  All
428  * other usages are undefined.
429  *
430  * After this call, reads by the cpu to the buffer are guaranteed to see
431  * whatever the device wrote there.
432  */
433 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
434 		size_t size, enum dma_data_direction dir, unsigned long attrs)
435 {
436 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
437 
438 	BUG_ON(dir == DMA_NONE);
439 
440 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
441 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
442 			arch_sync_dma_for_cpu(paddr, size, dir);
443 		else
444 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
445 	}
446 
447 	/* NOTE: We use dev_addr here, not paddr! */
448 	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
449 		swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
450 }
451 
452 static void
453 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
454 		size_t size, enum dma_data_direction dir)
455 {
456 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
457 
458 	if (!dev_is_dma_coherent(dev)) {
459 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
460 			arch_sync_dma_for_cpu(paddr, size, dir);
461 		else
462 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
463 	}
464 
465 	if (is_xen_swiotlb_buffer(dev, dma_addr))
466 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
467 }
468 
469 static void
470 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
471 		size_t size, enum dma_data_direction dir)
472 {
473 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
474 
475 	if (is_xen_swiotlb_buffer(dev, dma_addr))
476 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
477 
478 	if (!dev_is_dma_coherent(dev)) {
479 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
480 			arch_sync_dma_for_device(paddr, size, dir);
481 		else
482 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
483 	}
484 }
485 
486 /*
487  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
488  * concerning calls here are the same as for swiotlb_unmap_page() above.
489  */
490 static void
491 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
492 		enum dma_data_direction dir, unsigned long attrs)
493 {
494 	struct scatterlist *sg;
495 	int i;
496 
497 	BUG_ON(dir == DMA_NONE);
498 
499 	for_each_sg(sgl, sg, nelems, i)
500 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
501 				dir, attrs);
502 
503 }
504 
505 static int
506 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
507 		enum dma_data_direction dir, unsigned long attrs)
508 {
509 	struct scatterlist *sg;
510 	int i;
511 
512 	BUG_ON(dir == DMA_NONE);
513 
514 	for_each_sg(sgl, sg, nelems, i) {
515 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
516 				sg->offset, sg->length, dir, attrs);
517 		if (sg->dma_address == DMA_MAPPING_ERROR)
518 			goto out_unmap;
519 		sg_dma_len(sg) = sg->length;
520 	}
521 
522 	return nelems;
523 out_unmap:
524 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
525 	sg_dma_len(sgl) = 0;
526 	return 0;
527 }
528 
529 static void
530 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
531 			    int nelems, enum dma_data_direction dir)
532 {
533 	struct scatterlist *sg;
534 	int i;
535 
536 	for_each_sg(sgl, sg, nelems, i) {
537 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
538 				sg->length, dir);
539 	}
540 }
541 
542 static void
543 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
544 			       int nelems, enum dma_data_direction dir)
545 {
546 	struct scatterlist *sg;
547 	int i;
548 
549 	for_each_sg(sgl, sg, nelems, i) {
550 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
551 				sg->length, dir);
552 	}
553 }
554 
555 /*
556  * Return whether the given device DMA address mask can be supported
557  * properly.  For example, if your device can only drive the low 24-bits
558  * during bus mastering, then you would pass 0x00ffffff as the mask to
559  * this function.
560  */
561 static int
562 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
563 {
564 	return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask;
565 }
566 
567 const struct dma_map_ops xen_swiotlb_dma_ops = {
568 	.alloc = xen_swiotlb_alloc_coherent,
569 	.free = xen_swiotlb_free_coherent,
570 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
571 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
572 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
573 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
574 	.map_sg = xen_swiotlb_map_sg,
575 	.unmap_sg = xen_swiotlb_unmap_sg,
576 	.map_page = xen_swiotlb_map_page,
577 	.unmap_page = xen_swiotlb_unmap_page,
578 	.dma_supported = xen_swiotlb_dma_supported,
579 	.mmap = dma_common_mmap,
580 	.get_sgtable = dma_common_get_sgtable,
581 };
582