1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/bootmem.h> 39 #include <linux/dma-direct.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 #define XEN_SWIOTLB_ERROR_CODE (~(dma_addr_t)0x0) 57 58 static char *xen_io_tlb_start, *xen_io_tlb_end; 59 static unsigned long xen_io_tlb_nslabs; 60 /* 61 * Quick lookup value of the bus address of the IOTLB. 62 */ 63 64 static u64 start_dma_addr; 65 66 /* 67 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 68 * can be 32bit when dma_addr_t is 64bit leading to a loss in 69 * information if the shift is done before casting to 64bit. 70 */ 71 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 72 { 73 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 74 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 75 76 dma |= paddr & ~XEN_PAGE_MASK; 77 78 return dma; 79 } 80 81 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 82 { 83 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 84 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 85 phys_addr_t paddr = dma; 86 87 paddr |= baddr & ~XEN_PAGE_MASK; 88 89 return paddr; 90 } 91 92 static inline dma_addr_t xen_virt_to_bus(void *address) 93 { 94 return xen_phys_to_bus(virt_to_phys(address)); 95 } 96 97 static int check_pages_physically_contiguous(unsigned long xen_pfn, 98 unsigned int offset, 99 size_t length) 100 { 101 unsigned long next_bfn; 102 int i; 103 int nr_pages; 104 105 next_bfn = pfn_to_bfn(xen_pfn); 106 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 107 108 for (i = 1; i < nr_pages; i++) { 109 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 110 return 0; 111 } 112 return 1; 113 } 114 115 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 116 { 117 unsigned long xen_pfn = XEN_PFN_DOWN(p); 118 unsigned int offset = p & ~XEN_PAGE_MASK; 119 120 if (offset + size <= XEN_PAGE_SIZE) 121 return 0; 122 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 123 return 0; 124 return 1; 125 } 126 127 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 128 { 129 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 130 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 131 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 132 133 /* If the address is outside our domain, it CAN 134 * have the same virtual address as another address 135 * in our domain. Therefore _only_ check address within our domain. 136 */ 137 if (pfn_valid(PFN_DOWN(paddr))) { 138 return paddr >= virt_to_phys(xen_io_tlb_start) && 139 paddr < virt_to_phys(xen_io_tlb_end); 140 } 141 return 0; 142 } 143 144 static int max_dma_bits = 32; 145 146 static int 147 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 148 { 149 int i, rc; 150 int dma_bits; 151 dma_addr_t dma_handle; 152 phys_addr_t p = virt_to_phys(buf); 153 154 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 155 156 i = 0; 157 do { 158 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 159 160 do { 161 rc = xen_create_contiguous_region( 162 p + (i << IO_TLB_SHIFT), 163 get_order(slabs << IO_TLB_SHIFT), 164 dma_bits, &dma_handle); 165 } while (rc && dma_bits++ < max_dma_bits); 166 if (rc) 167 return rc; 168 169 i += slabs; 170 } while (i < nslabs); 171 return 0; 172 } 173 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 174 { 175 if (!nr_tbl) { 176 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 177 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 178 } else 179 xen_io_tlb_nslabs = nr_tbl; 180 181 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 182 } 183 184 enum xen_swiotlb_err { 185 XEN_SWIOTLB_UNKNOWN = 0, 186 XEN_SWIOTLB_ENOMEM, 187 XEN_SWIOTLB_EFIXUP 188 }; 189 190 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 191 { 192 switch (err) { 193 case XEN_SWIOTLB_ENOMEM: 194 return "Cannot allocate Xen-SWIOTLB buffer\n"; 195 case XEN_SWIOTLB_EFIXUP: 196 return "Failed to get contiguous memory for DMA from Xen!\n"\ 197 "You either: don't have the permissions, do not have"\ 198 " enough free memory under 4GB, or the hypervisor memory"\ 199 " is too fragmented!"; 200 default: 201 break; 202 } 203 return ""; 204 } 205 int __ref xen_swiotlb_init(int verbose, bool early) 206 { 207 unsigned long bytes, order; 208 int rc = -ENOMEM; 209 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 210 unsigned int repeat = 3; 211 212 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 213 retry: 214 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 215 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 216 /* 217 * Get IO TLB memory from any location. 218 */ 219 if (early) 220 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 221 else { 222 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 223 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 224 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 225 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 226 if (xen_io_tlb_start) 227 break; 228 order--; 229 } 230 if (order != get_order(bytes)) { 231 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 232 (PAGE_SIZE << order) >> 20); 233 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 234 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 235 } 236 } 237 if (!xen_io_tlb_start) { 238 m_ret = XEN_SWIOTLB_ENOMEM; 239 goto error; 240 } 241 xen_io_tlb_end = xen_io_tlb_start + bytes; 242 /* 243 * And replace that memory with pages under 4GB. 244 */ 245 rc = xen_swiotlb_fixup(xen_io_tlb_start, 246 bytes, 247 xen_io_tlb_nslabs); 248 if (rc) { 249 if (early) 250 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 251 else { 252 free_pages((unsigned long)xen_io_tlb_start, order); 253 xen_io_tlb_start = NULL; 254 } 255 m_ret = XEN_SWIOTLB_EFIXUP; 256 goto error; 257 } 258 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 259 if (early) { 260 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 261 verbose)) 262 panic("Cannot allocate SWIOTLB buffer"); 263 rc = 0; 264 } else 265 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 266 267 if (!rc) 268 swiotlb_set_max_segment(PAGE_SIZE); 269 270 return rc; 271 error: 272 if (repeat--) { 273 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 274 (xen_io_tlb_nslabs >> 1)); 275 pr_info("Lowering to %luMB\n", 276 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 277 goto retry; 278 } 279 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 280 if (early) 281 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 282 else 283 free_pages((unsigned long)xen_io_tlb_start, order); 284 return rc; 285 } 286 287 static void * 288 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 289 dma_addr_t *dma_handle, gfp_t flags, 290 unsigned long attrs) 291 { 292 void *ret; 293 int order = get_order(size); 294 u64 dma_mask = DMA_BIT_MASK(32); 295 phys_addr_t phys; 296 dma_addr_t dev_addr; 297 298 /* 299 * Ignore region specifiers - the kernel's ideas of 300 * pseudo-phys memory layout has nothing to do with the 301 * machine physical layout. We can't allocate highmem 302 * because we can't return a pointer to it. 303 */ 304 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 305 306 /* Convert the size to actually allocated. */ 307 size = 1UL << (order + XEN_PAGE_SHIFT); 308 309 /* On ARM this function returns an ioremap'ped virtual address for 310 * which virt_to_phys doesn't return the corresponding physical 311 * address. In fact on ARM virt_to_phys only works for kernel direct 312 * mapped RAM memory. Also see comment below. 313 */ 314 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 315 316 if (!ret) 317 return ret; 318 319 if (hwdev && hwdev->coherent_dma_mask) 320 dma_mask = hwdev->coherent_dma_mask; 321 322 /* At this point dma_handle is the physical address, next we are 323 * going to set it to the machine address. 324 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 325 * to *dma_handle. */ 326 phys = *dma_handle; 327 dev_addr = xen_phys_to_bus(phys); 328 if (((dev_addr + size - 1 <= dma_mask)) && 329 !range_straddles_page_boundary(phys, size)) 330 *dma_handle = dev_addr; 331 else { 332 if (xen_create_contiguous_region(phys, order, 333 fls64(dma_mask), dma_handle) != 0) { 334 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 335 return NULL; 336 } 337 } 338 memset(ret, 0, size); 339 return ret; 340 } 341 342 static void 343 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 344 dma_addr_t dev_addr, unsigned long attrs) 345 { 346 int order = get_order(size); 347 phys_addr_t phys; 348 u64 dma_mask = DMA_BIT_MASK(32); 349 350 if (hwdev && hwdev->coherent_dma_mask) 351 dma_mask = hwdev->coherent_dma_mask; 352 353 /* do not use virt_to_phys because on ARM it doesn't return you the 354 * physical address */ 355 phys = xen_bus_to_phys(dev_addr); 356 357 /* Convert the size to actually allocated. */ 358 size = 1UL << (order + XEN_PAGE_SHIFT); 359 360 if (((dev_addr + size - 1 <= dma_mask)) || 361 range_straddles_page_boundary(phys, size)) 362 xen_destroy_contiguous_region(phys, order); 363 364 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 365 } 366 367 /* 368 * Map a single buffer of the indicated size for DMA in streaming mode. The 369 * physical address to use is returned. 370 * 371 * Once the device is given the dma address, the device owns this memory until 372 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 373 */ 374 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 375 unsigned long offset, size_t size, 376 enum dma_data_direction dir, 377 unsigned long attrs) 378 { 379 phys_addr_t map, phys = page_to_phys(page) + offset; 380 dma_addr_t dev_addr = xen_phys_to_bus(phys); 381 382 BUG_ON(dir == DMA_NONE); 383 /* 384 * If the address happens to be in the device's DMA window, 385 * we can safely return the device addr and not worry about bounce 386 * buffering it. 387 */ 388 if (dma_capable(dev, dev_addr, size) && 389 !range_straddles_page_boundary(phys, size) && 390 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 391 (swiotlb_force != SWIOTLB_FORCE)) { 392 /* we are not interested in the dma_addr returned by 393 * xen_dma_map_page, only in the potential cache flushes executed 394 * by the function. */ 395 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 396 return dev_addr; 397 } 398 399 /* 400 * Oh well, have to allocate and map a bounce buffer. 401 */ 402 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 403 404 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir, 405 attrs); 406 if (map == SWIOTLB_MAP_ERROR) 407 return XEN_SWIOTLB_ERROR_CODE; 408 409 dev_addr = xen_phys_to_bus(map); 410 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 411 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 412 413 /* 414 * Ensure that the address returned is DMA'ble 415 */ 416 if (dma_capable(dev, dev_addr, size)) 417 return dev_addr; 418 419 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 420 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); 421 422 return XEN_SWIOTLB_ERROR_CODE; 423 } 424 425 /* 426 * Unmap a single streaming mode DMA translation. The dma_addr and size must 427 * match what was provided for in a previous xen_swiotlb_map_page call. All 428 * other usages are undefined. 429 * 430 * After this call, reads by the cpu to the buffer are guaranteed to see 431 * whatever the device wrote there. 432 */ 433 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 434 size_t size, enum dma_data_direction dir, 435 unsigned long attrs) 436 { 437 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 438 439 BUG_ON(dir == DMA_NONE); 440 441 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 442 443 /* NOTE: We use dev_addr here, not paddr! */ 444 if (is_xen_swiotlb_buffer(dev_addr)) { 445 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 446 return; 447 } 448 449 if (dir != DMA_FROM_DEVICE) 450 return; 451 452 /* 453 * phys_to_virt doesn't work with hihgmem page but we could 454 * call dma_mark_clean() with hihgmem page here. However, we 455 * are fine since dma_mark_clean() is null on POWERPC. We can 456 * make dma_mark_clean() take a physical address if necessary. 457 */ 458 dma_mark_clean(phys_to_virt(paddr), size); 459 } 460 461 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 462 size_t size, enum dma_data_direction dir, 463 unsigned long attrs) 464 { 465 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 466 } 467 468 /* 469 * Make physical memory consistent for a single streaming mode DMA translation 470 * after a transfer. 471 * 472 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 473 * using the cpu, yet do not wish to teardown the dma mapping, you must 474 * call this function before doing so. At the next point you give the dma 475 * address back to the card, you must first perform a 476 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 477 */ 478 static void 479 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 480 size_t size, enum dma_data_direction dir, 481 enum dma_sync_target target) 482 { 483 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 484 485 BUG_ON(dir == DMA_NONE); 486 487 if (target == SYNC_FOR_CPU) 488 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 489 490 /* NOTE: We use dev_addr here, not paddr! */ 491 if (is_xen_swiotlb_buffer(dev_addr)) 492 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 493 494 if (target == SYNC_FOR_DEVICE) 495 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 496 497 if (dir != DMA_FROM_DEVICE) 498 return; 499 500 dma_mark_clean(phys_to_virt(paddr), size); 501 } 502 503 void 504 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 505 size_t size, enum dma_data_direction dir) 506 { 507 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 508 } 509 510 void 511 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 512 size_t size, enum dma_data_direction dir) 513 { 514 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 515 } 516 517 /* 518 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 519 * concerning calls here are the same as for swiotlb_unmap_page() above. 520 */ 521 static void 522 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 523 int nelems, enum dma_data_direction dir, 524 unsigned long attrs) 525 { 526 struct scatterlist *sg; 527 int i; 528 529 BUG_ON(dir == DMA_NONE); 530 531 for_each_sg(sgl, sg, nelems, i) 532 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 533 534 } 535 536 /* 537 * Map a set of buffers described by scatterlist in streaming mode for DMA. 538 * This is the scatter-gather version of the above xen_swiotlb_map_page 539 * interface. Here the scatter gather list elements are each tagged with the 540 * appropriate dma address and length. They are obtained via 541 * sg_dma_{address,length}(SG). 542 * 543 * NOTE: An implementation may be able to use a smaller number of 544 * DMA address/length pairs than there are SG table elements. 545 * (for example via virtual mapping capabilities) 546 * The routine returns the number of addr/length pairs actually 547 * used, at most nents. 548 * 549 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 550 * same here. 551 */ 552 static int 553 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 554 int nelems, enum dma_data_direction dir, 555 unsigned long attrs) 556 { 557 struct scatterlist *sg; 558 int i; 559 560 BUG_ON(dir == DMA_NONE); 561 562 for_each_sg(sgl, sg, nelems, i) { 563 phys_addr_t paddr = sg_phys(sg); 564 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 565 566 if (swiotlb_force == SWIOTLB_FORCE || 567 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) || 568 !dma_capable(hwdev, dev_addr, sg->length) || 569 range_straddles_page_boundary(paddr, sg->length)) { 570 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 571 start_dma_addr, 572 sg_phys(sg), 573 sg->length, 574 dir, attrs); 575 if (map == SWIOTLB_MAP_ERROR) { 576 dev_warn(hwdev, "swiotlb buffer is full\n"); 577 /* Don't panic here, we expect map_sg users 578 to do proper error handling. */ 579 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 580 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 581 attrs); 582 sg_dma_len(sgl) = 0; 583 return 0; 584 } 585 dev_addr = xen_phys_to_bus(map); 586 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 587 dev_addr, 588 map & ~PAGE_MASK, 589 sg->length, 590 dir, 591 attrs); 592 sg->dma_address = dev_addr; 593 } else { 594 /* we are not interested in the dma_addr returned by 595 * xen_dma_map_page, only in the potential cache flushes executed 596 * by the function. */ 597 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 598 dev_addr, 599 paddr & ~PAGE_MASK, 600 sg->length, 601 dir, 602 attrs); 603 sg->dma_address = dev_addr; 604 } 605 sg_dma_len(sg) = sg->length; 606 } 607 return nelems; 608 } 609 610 /* 611 * Make physical memory consistent for a set of streaming mode DMA translations 612 * after a transfer. 613 * 614 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 615 * and usage. 616 */ 617 static void 618 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 619 int nelems, enum dma_data_direction dir, 620 enum dma_sync_target target) 621 { 622 struct scatterlist *sg; 623 int i; 624 625 for_each_sg(sgl, sg, nelems, i) 626 xen_swiotlb_sync_single(hwdev, sg->dma_address, 627 sg_dma_len(sg), dir, target); 628 } 629 630 static void 631 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 632 int nelems, enum dma_data_direction dir) 633 { 634 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 635 } 636 637 static void 638 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 639 int nelems, enum dma_data_direction dir) 640 { 641 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 642 } 643 644 /* 645 * Return whether the given device DMA address mask can be supported 646 * properly. For example, if your device can only drive the low 24-bits 647 * during bus mastering, then you would pass 0x00ffffff as the mask to 648 * this function. 649 */ 650 static int 651 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 652 { 653 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 654 } 655 656 /* 657 * Create userspace mapping for the DMA-coherent memory. 658 * This function should be called with the pages from the current domain only, 659 * passing pages mapped from other domains would lead to memory corruption. 660 */ 661 static int 662 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma, 663 void *cpu_addr, dma_addr_t dma_addr, size_t size, 664 unsigned long attrs) 665 { 666 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 667 if (xen_get_dma_ops(dev)->mmap) 668 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr, 669 dma_addr, size, attrs); 670 #endif 671 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 672 } 673 674 /* 675 * This function should be called with the pages from the current domain only, 676 * passing pages mapped from other domains would lead to memory corruption. 677 */ 678 static int 679 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 680 void *cpu_addr, dma_addr_t handle, size_t size, 681 unsigned long attrs) 682 { 683 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 684 if (xen_get_dma_ops(dev)->get_sgtable) { 685 #if 0 686 /* 687 * This check verifies that the page belongs to the current domain and 688 * is not one mapped from another domain. 689 * This check is for debug only, and should not go to production build 690 */ 691 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle)); 692 BUG_ON (!page_is_ram(bfn)); 693 #endif 694 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr, 695 handle, size, attrs); 696 } 697 #endif 698 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs); 699 } 700 701 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr) 702 { 703 return dma_addr == XEN_SWIOTLB_ERROR_CODE; 704 } 705 706 const struct dma_map_ops xen_swiotlb_dma_ops = { 707 .alloc = xen_swiotlb_alloc_coherent, 708 .free = xen_swiotlb_free_coherent, 709 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 710 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 711 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 712 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 713 .map_sg = xen_swiotlb_map_sg_attrs, 714 .unmap_sg = xen_swiotlb_unmap_sg_attrs, 715 .map_page = xen_swiotlb_map_page, 716 .unmap_page = xen_swiotlb_unmap_page, 717 .dma_supported = xen_swiotlb_dma_supported, 718 .mmap = xen_swiotlb_dma_mmap, 719 .get_sgtable = xen_swiotlb_get_sgtable, 720 .mapping_error = xen_swiotlb_mapping_error, 721 }; 722