1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2010 4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 5 * 6 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 7 * 8 * PV guests under Xen are running in an non-contiguous memory architecture. 9 * 10 * When PCI pass-through is utilized, this necessitates an IOMMU for 11 * translating bus (DMA) to virtual and vice-versa and also providing a 12 * mechanism to have contiguous pages for device drivers operations (say DMA 13 * operations). 14 * 15 * Specifically, under Xen the Linux idea of pages is an illusion. It 16 * assumes that pages start at zero and go up to the available memory. To 17 * help with that, the Linux Xen MMU provides a lookup mechanism to 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 20 * memory is not contiguous. Xen hypervisor stitches memory for guests 21 * from different pools, which means there is no guarantee that PFN==MFN 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 23 * allocated in descending order (high to low), meaning the guest might 24 * never get any MFN's under the 4GB mark. 25 */ 26 27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 28 29 #include <linux/memblock.h> 30 #include <linux/dma-direct.h> 31 #include <linux/dma-map-ops.h> 32 #include <linux/export.h> 33 #include <xen/swiotlb-xen.h> 34 #include <xen/page.h> 35 #include <xen/xen-ops.h> 36 #include <xen/hvc-console.h> 37 38 #include <asm/dma-mapping.h> 39 #include <asm/xen/page-coherent.h> 40 41 #include <trace/events/swiotlb.h> 42 #define MAX_DMA_BITS 32 43 44 /* 45 * Quick lookup value of the bus address of the IOTLB. 46 */ 47 48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr) 49 { 50 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 51 phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT; 52 53 baddr |= paddr & ~XEN_PAGE_MASK; 54 return baddr; 55 } 56 57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr) 58 { 59 return phys_to_dma(dev, xen_phys_to_bus(dev, paddr)); 60 } 61 62 static inline phys_addr_t xen_bus_to_phys(struct device *dev, 63 phys_addr_t baddr) 64 { 65 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 66 phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) | 67 (baddr & ~XEN_PAGE_MASK); 68 69 return paddr; 70 } 71 72 static inline phys_addr_t xen_dma_to_phys(struct device *dev, 73 dma_addr_t dma_addr) 74 { 75 return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr)); 76 } 77 78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 79 { 80 unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p); 81 unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size); 82 83 next_bfn = pfn_to_bfn(xen_pfn); 84 85 for (i = 1; i < nr_pages; i++) 86 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 87 return 1; 88 89 return 0; 90 } 91 92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr) 93 { 94 unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr)); 95 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 96 phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT; 97 98 /* If the address is outside our domain, it CAN 99 * have the same virtual address as another address 100 * in our domain. Therefore _only_ check address within our domain. 101 */ 102 if (pfn_valid(PFN_DOWN(paddr))) 103 return is_swiotlb_buffer(dev, paddr); 104 return 0; 105 } 106 107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs) 108 { 109 int rc; 110 unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT); 111 unsigned int i, dma_bits = order + PAGE_SHIFT; 112 dma_addr_t dma_handle; 113 phys_addr_t p = virt_to_phys(buf); 114 115 BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1)); 116 BUG_ON(nslabs % IO_TLB_SEGSIZE); 117 118 i = 0; 119 do { 120 do { 121 rc = xen_create_contiguous_region( 122 p + (i << IO_TLB_SHIFT), order, 123 dma_bits, &dma_handle); 124 } while (rc && dma_bits++ < MAX_DMA_BITS); 125 if (rc) 126 return rc; 127 128 i += IO_TLB_SEGSIZE; 129 } while (i < nslabs); 130 return 0; 131 } 132 133 enum xen_swiotlb_err { 134 XEN_SWIOTLB_UNKNOWN = 0, 135 XEN_SWIOTLB_ENOMEM, 136 XEN_SWIOTLB_EFIXUP 137 }; 138 139 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 140 { 141 switch (err) { 142 case XEN_SWIOTLB_ENOMEM: 143 return "Cannot allocate Xen-SWIOTLB buffer\n"; 144 case XEN_SWIOTLB_EFIXUP: 145 return "Failed to get contiguous memory for DMA from Xen!\n"\ 146 "You either: don't have the permissions, do not have"\ 147 " enough free memory under 4GB, or the hypervisor memory"\ 148 " is too fragmented!"; 149 default: 150 break; 151 } 152 return ""; 153 } 154 155 int xen_swiotlb_init(void) 156 { 157 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 158 unsigned long bytes = swiotlb_size_or_default(); 159 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 160 unsigned int order, repeat = 3; 161 int rc = -ENOMEM; 162 char *start; 163 164 if (io_tlb_default_mem.nslabs) { 165 pr_warn("swiotlb buffer already initialized\n"); 166 return -EEXIST; 167 } 168 169 retry: 170 m_ret = XEN_SWIOTLB_ENOMEM; 171 order = get_order(bytes); 172 173 /* 174 * Get IO TLB memory from any location. 175 */ 176 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 177 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 178 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 179 start = (void *)xen_get_swiotlb_free_pages(order); 180 if (start) 181 break; 182 order--; 183 } 184 if (!start) 185 goto exit; 186 if (order != get_order(bytes)) { 187 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 188 (PAGE_SIZE << order) >> 20); 189 nslabs = SLABS_PER_PAGE << order; 190 bytes = nslabs << IO_TLB_SHIFT; 191 } 192 193 /* 194 * And replace that memory with pages under 4GB. 195 */ 196 rc = xen_swiotlb_fixup(start, nslabs); 197 if (rc) { 198 free_pages((unsigned long)start, order); 199 m_ret = XEN_SWIOTLB_EFIXUP; 200 goto error; 201 } 202 rc = swiotlb_late_init_with_tbl(start, nslabs); 203 if (rc) 204 return rc; 205 swiotlb_set_max_segment(PAGE_SIZE); 206 return 0; 207 error: 208 if (nslabs > 1024 && repeat--) { 209 /* Min is 2MB */ 210 nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE)); 211 bytes = nslabs << IO_TLB_SHIFT; 212 pr_info("Lowering to %luMB\n", bytes >> 20); 213 goto retry; 214 } 215 exit: 216 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 217 return rc; 218 } 219 220 #ifdef CONFIG_X86 221 void __init xen_swiotlb_init_early(void) 222 { 223 unsigned long bytes = swiotlb_size_or_default(); 224 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 225 unsigned int repeat = 3; 226 char *start; 227 int rc; 228 229 retry: 230 /* 231 * Get IO TLB memory from any location. 232 */ 233 start = memblock_alloc(PAGE_ALIGN(bytes), PAGE_SIZE); 234 if (!start) 235 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 236 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 237 238 /* 239 * And replace that memory with pages under 4GB. 240 */ 241 rc = xen_swiotlb_fixup(start, nslabs); 242 if (rc) { 243 memblock_free(__pa(start), PAGE_ALIGN(bytes)); 244 if (nslabs > 1024 && repeat--) { 245 /* Min is 2MB */ 246 nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE)); 247 bytes = nslabs << IO_TLB_SHIFT; 248 pr_info("Lowering to %luMB\n", bytes >> 20); 249 goto retry; 250 } 251 panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc); 252 } 253 254 if (swiotlb_init_with_tbl(start, nslabs, true)) 255 panic("Cannot allocate SWIOTLB buffer"); 256 swiotlb_set_max_segment(PAGE_SIZE); 257 } 258 #endif /* CONFIG_X86 */ 259 260 static void * 261 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 262 dma_addr_t *dma_handle, gfp_t flags, 263 unsigned long attrs) 264 { 265 void *ret; 266 int order = get_order(size); 267 u64 dma_mask = DMA_BIT_MASK(32); 268 phys_addr_t phys; 269 dma_addr_t dev_addr; 270 271 /* 272 * Ignore region specifiers - the kernel's ideas of 273 * pseudo-phys memory layout has nothing to do with the 274 * machine physical layout. We can't allocate highmem 275 * because we can't return a pointer to it. 276 */ 277 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 278 279 /* Convert the size to actually allocated. */ 280 size = 1UL << (order + XEN_PAGE_SHIFT); 281 282 /* On ARM this function returns an ioremap'ped virtual address for 283 * which virt_to_phys doesn't return the corresponding physical 284 * address. In fact on ARM virt_to_phys only works for kernel direct 285 * mapped RAM memory. Also see comment below. 286 */ 287 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 288 289 if (!ret) 290 return ret; 291 292 if (hwdev && hwdev->coherent_dma_mask) 293 dma_mask = hwdev->coherent_dma_mask; 294 295 /* At this point dma_handle is the dma address, next we are 296 * going to set it to the machine address. 297 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 298 * to *dma_handle. */ 299 phys = dma_to_phys(hwdev, *dma_handle); 300 dev_addr = xen_phys_to_dma(hwdev, phys); 301 if (((dev_addr + size - 1 <= dma_mask)) && 302 !range_straddles_page_boundary(phys, size)) 303 *dma_handle = dev_addr; 304 else { 305 if (xen_create_contiguous_region(phys, order, 306 fls64(dma_mask), dma_handle) != 0) { 307 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 308 return NULL; 309 } 310 *dma_handle = phys_to_dma(hwdev, *dma_handle); 311 SetPageXenRemapped(virt_to_page(ret)); 312 } 313 memset(ret, 0, size); 314 return ret; 315 } 316 317 static void 318 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 319 dma_addr_t dev_addr, unsigned long attrs) 320 { 321 int order = get_order(size); 322 phys_addr_t phys; 323 u64 dma_mask = DMA_BIT_MASK(32); 324 struct page *page; 325 326 if (hwdev && hwdev->coherent_dma_mask) 327 dma_mask = hwdev->coherent_dma_mask; 328 329 /* do not use virt_to_phys because on ARM it doesn't return you the 330 * physical address */ 331 phys = xen_dma_to_phys(hwdev, dev_addr); 332 333 /* Convert the size to actually allocated. */ 334 size = 1UL << (order + XEN_PAGE_SHIFT); 335 336 if (is_vmalloc_addr(vaddr)) 337 page = vmalloc_to_page(vaddr); 338 else 339 page = virt_to_page(vaddr); 340 341 if (!WARN_ON((dev_addr + size - 1 > dma_mask) || 342 range_straddles_page_boundary(phys, size)) && 343 TestClearPageXenRemapped(page)) 344 xen_destroy_contiguous_region(phys, order); 345 346 xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys), 347 attrs); 348 } 349 350 /* 351 * Map a single buffer of the indicated size for DMA in streaming mode. The 352 * physical address to use is returned. 353 * 354 * Once the device is given the dma address, the device owns this memory until 355 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 356 */ 357 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 358 unsigned long offset, size_t size, 359 enum dma_data_direction dir, 360 unsigned long attrs) 361 { 362 phys_addr_t map, phys = page_to_phys(page) + offset; 363 dma_addr_t dev_addr = xen_phys_to_dma(dev, phys); 364 365 BUG_ON(dir == DMA_NONE); 366 /* 367 * If the address happens to be in the device's DMA window, 368 * we can safely return the device addr and not worry about bounce 369 * buffering it. 370 */ 371 if (dma_capable(dev, dev_addr, size, true) && 372 !range_straddles_page_boundary(phys, size) && 373 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 374 !is_swiotlb_force_bounce(dev)) 375 goto done; 376 377 /* 378 * Oh well, have to allocate and map a bounce buffer. 379 */ 380 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 381 382 map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs); 383 if (map == (phys_addr_t)DMA_MAPPING_ERROR) 384 return DMA_MAPPING_ERROR; 385 386 phys = map; 387 dev_addr = xen_phys_to_dma(dev, map); 388 389 /* 390 * Ensure that the address returned is DMA'ble 391 */ 392 if (unlikely(!dma_capable(dev, dev_addr, size, true))) { 393 swiotlb_tbl_unmap_single(dev, map, size, dir, 394 attrs | DMA_ATTR_SKIP_CPU_SYNC); 395 return DMA_MAPPING_ERROR; 396 } 397 398 done: 399 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 400 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr)))) 401 arch_sync_dma_for_device(phys, size, dir); 402 else 403 xen_dma_sync_for_device(dev, dev_addr, size, dir); 404 } 405 return dev_addr; 406 } 407 408 /* 409 * Unmap a single streaming mode DMA translation. The dma_addr and size must 410 * match what was provided for in a previous xen_swiotlb_map_page call. All 411 * other usages are undefined. 412 * 413 * After this call, reads by the cpu to the buffer are guaranteed to see 414 * whatever the device wrote there. 415 */ 416 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 417 size_t size, enum dma_data_direction dir, unsigned long attrs) 418 { 419 phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr); 420 421 BUG_ON(dir == DMA_NONE); 422 423 if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 424 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr)))) 425 arch_sync_dma_for_cpu(paddr, size, dir); 426 else 427 xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir); 428 } 429 430 /* NOTE: We use dev_addr here, not paddr! */ 431 if (is_xen_swiotlb_buffer(hwdev, dev_addr)) 432 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 433 } 434 435 static void 436 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 437 size_t size, enum dma_data_direction dir) 438 { 439 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 440 441 if (!dev_is_dma_coherent(dev)) { 442 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 443 arch_sync_dma_for_cpu(paddr, size, dir); 444 else 445 xen_dma_sync_for_cpu(dev, dma_addr, size, dir); 446 } 447 448 if (is_xen_swiotlb_buffer(dev, dma_addr)) 449 swiotlb_sync_single_for_cpu(dev, paddr, size, dir); 450 } 451 452 static void 453 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 454 size_t size, enum dma_data_direction dir) 455 { 456 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 457 458 if (is_xen_swiotlb_buffer(dev, dma_addr)) 459 swiotlb_sync_single_for_device(dev, paddr, size, dir); 460 461 if (!dev_is_dma_coherent(dev)) { 462 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 463 arch_sync_dma_for_device(paddr, size, dir); 464 else 465 xen_dma_sync_for_device(dev, dma_addr, size, dir); 466 } 467 } 468 469 /* 470 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 471 * concerning calls here are the same as for swiotlb_unmap_page() above. 472 */ 473 static void 474 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 475 enum dma_data_direction dir, unsigned long attrs) 476 { 477 struct scatterlist *sg; 478 int i; 479 480 BUG_ON(dir == DMA_NONE); 481 482 for_each_sg(sgl, sg, nelems, i) 483 xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), 484 dir, attrs); 485 486 } 487 488 static int 489 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 490 enum dma_data_direction dir, unsigned long attrs) 491 { 492 struct scatterlist *sg; 493 int i; 494 495 BUG_ON(dir == DMA_NONE); 496 497 for_each_sg(sgl, sg, nelems, i) { 498 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 499 sg->offset, sg->length, dir, attrs); 500 if (sg->dma_address == DMA_MAPPING_ERROR) 501 goto out_unmap; 502 sg_dma_len(sg) = sg->length; 503 } 504 505 return nelems; 506 out_unmap: 507 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 508 sg_dma_len(sgl) = 0; 509 return -EIO; 510 } 511 512 static void 513 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 514 int nelems, enum dma_data_direction dir) 515 { 516 struct scatterlist *sg; 517 int i; 518 519 for_each_sg(sgl, sg, nelems, i) { 520 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 521 sg->length, dir); 522 } 523 } 524 525 static void 526 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 527 int nelems, enum dma_data_direction dir) 528 { 529 struct scatterlist *sg; 530 int i; 531 532 for_each_sg(sgl, sg, nelems, i) { 533 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 534 sg->length, dir); 535 } 536 } 537 538 /* 539 * Return whether the given device DMA address mask can be supported 540 * properly. For example, if your device can only drive the low 24-bits 541 * during bus mastering, then you would pass 0x00ffffff as the mask to 542 * this function. 543 */ 544 static int 545 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 546 { 547 return xen_phys_to_dma(hwdev, io_tlb_default_mem.end - 1) <= mask; 548 } 549 550 const struct dma_map_ops xen_swiotlb_dma_ops = { 551 .alloc = xen_swiotlb_alloc_coherent, 552 .free = xen_swiotlb_free_coherent, 553 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 554 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 555 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 556 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 557 .map_sg = xen_swiotlb_map_sg, 558 .unmap_sg = xen_swiotlb_unmap_sg, 559 .map_page = xen_swiotlb_map_page, 560 .unmap_page = xen_swiotlb_unmap_page, 561 .dma_supported = xen_swiotlb_dma_supported, 562 .mmap = dma_common_mmap, 563 .get_sgtable = dma_common_get_sgtable, 564 .alloc_pages = dma_common_alloc_pages, 565 .free_pages = dma_common_free_pages, 566 }; 567