1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38 #include <linux/memblock.h> 39 #include <linux/dma-direct.h> 40 #include <linux/export.h> 41 #include <xen/swiotlb-xen.h> 42 #include <xen/page.h> 43 #include <xen/xen-ops.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/dma-mapping.h> 47 #include <asm/xen/page-coherent.h> 48 49 #include <trace/events/swiotlb.h> 50 /* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56 #define XEN_SWIOTLB_ERROR_CODE (~(dma_addr_t)0x0) 57 58 static char *xen_io_tlb_start, *xen_io_tlb_end; 59 static unsigned long xen_io_tlb_nslabs; 60 /* 61 * Quick lookup value of the bus address of the IOTLB. 62 */ 63 64 static u64 start_dma_addr; 65 66 /* 67 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t 68 * can be 32bit when dma_addr_t is 64bit leading to a loss in 69 * information if the shift is done before casting to 64bit. 70 */ 71 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 72 { 73 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 74 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT; 75 76 dma |= paddr & ~XEN_PAGE_MASK; 77 78 return dma; 79 } 80 81 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 82 { 83 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 84 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT; 85 phys_addr_t paddr = dma; 86 87 paddr |= baddr & ~XEN_PAGE_MASK; 88 89 return paddr; 90 } 91 92 static inline dma_addr_t xen_virt_to_bus(void *address) 93 { 94 return xen_phys_to_bus(virt_to_phys(address)); 95 } 96 97 static int check_pages_physically_contiguous(unsigned long xen_pfn, 98 unsigned int offset, 99 size_t length) 100 { 101 unsigned long next_bfn; 102 int i; 103 int nr_pages; 104 105 next_bfn = pfn_to_bfn(xen_pfn); 106 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT; 107 108 for (i = 1; i < nr_pages; i++) { 109 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 110 return 0; 111 } 112 return 1; 113 } 114 115 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 116 { 117 unsigned long xen_pfn = XEN_PFN_DOWN(p); 118 unsigned int offset = p & ~XEN_PAGE_MASK; 119 120 if (offset + size <= XEN_PAGE_SIZE) 121 return 0; 122 if (check_pages_physically_contiguous(xen_pfn, offset, size)) 123 return 0; 124 return 1; 125 } 126 127 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 128 { 129 unsigned long bfn = XEN_PFN_DOWN(dma_addr); 130 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 131 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn); 132 133 /* If the address is outside our domain, it CAN 134 * have the same virtual address as another address 135 * in our domain. Therefore _only_ check address within our domain. 136 */ 137 if (pfn_valid(PFN_DOWN(paddr))) { 138 return paddr >= virt_to_phys(xen_io_tlb_start) && 139 paddr < virt_to_phys(xen_io_tlb_end); 140 } 141 return 0; 142 } 143 144 static int max_dma_bits = 32; 145 146 static int 147 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 148 { 149 int i, rc; 150 int dma_bits; 151 dma_addr_t dma_handle; 152 phys_addr_t p = virt_to_phys(buf); 153 154 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 155 156 i = 0; 157 do { 158 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 159 160 do { 161 rc = xen_create_contiguous_region( 162 p + (i << IO_TLB_SHIFT), 163 get_order(slabs << IO_TLB_SHIFT), 164 dma_bits, &dma_handle); 165 } while (rc && dma_bits++ < max_dma_bits); 166 if (rc) 167 return rc; 168 169 i += slabs; 170 } while (i < nslabs); 171 return 0; 172 } 173 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 174 { 175 if (!nr_tbl) { 176 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 177 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 178 } else 179 xen_io_tlb_nslabs = nr_tbl; 180 181 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 182 } 183 184 enum xen_swiotlb_err { 185 XEN_SWIOTLB_UNKNOWN = 0, 186 XEN_SWIOTLB_ENOMEM, 187 XEN_SWIOTLB_EFIXUP 188 }; 189 190 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 191 { 192 switch (err) { 193 case XEN_SWIOTLB_ENOMEM: 194 return "Cannot allocate Xen-SWIOTLB buffer\n"; 195 case XEN_SWIOTLB_EFIXUP: 196 return "Failed to get contiguous memory for DMA from Xen!\n"\ 197 "You either: don't have the permissions, do not have"\ 198 " enough free memory under 4GB, or the hypervisor memory"\ 199 " is too fragmented!"; 200 default: 201 break; 202 } 203 return ""; 204 } 205 int __ref xen_swiotlb_init(int verbose, bool early) 206 { 207 unsigned long bytes, order; 208 int rc = -ENOMEM; 209 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 210 unsigned int repeat = 3; 211 212 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 213 retry: 214 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 215 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 216 /* 217 * Get IO TLB memory from any location. 218 */ 219 if (early) 220 xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes), 221 PAGE_SIZE); 222 else { 223 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 224 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 225 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 226 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 227 if (xen_io_tlb_start) 228 break; 229 order--; 230 } 231 if (order != get_order(bytes)) { 232 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 233 (PAGE_SIZE << order) >> 20); 234 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 235 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 236 } 237 } 238 if (!xen_io_tlb_start) { 239 m_ret = XEN_SWIOTLB_ENOMEM; 240 goto error; 241 } 242 xen_io_tlb_end = xen_io_tlb_start + bytes; 243 /* 244 * And replace that memory with pages under 4GB. 245 */ 246 rc = xen_swiotlb_fixup(xen_io_tlb_start, 247 bytes, 248 xen_io_tlb_nslabs); 249 if (rc) { 250 if (early) 251 memblock_free(__pa(xen_io_tlb_start), 252 PAGE_ALIGN(bytes)); 253 else { 254 free_pages((unsigned long)xen_io_tlb_start, order); 255 xen_io_tlb_start = NULL; 256 } 257 m_ret = XEN_SWIOTLB_EFIXUP; 258 goto error; 259 } 260 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 261 if (early) { 262 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 263 verbose)) 264 panic("Cannot allocate SWIOTLB buffer"); 265 rc = 0; 266 } else 267 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 268 269 if (!rc) 270 swiotlb_set_max_segment(PAGE_SIZE); 271 272 return rc; 273 error: 274 if (repeat--) { 275 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 276 (xen_io_tlb_nslabs >> 1)); 277 pr_info("Lowering to %luMB\n", 278 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 279 goto retry; 280 } 281 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 282 if (early) 283 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 284 else 285 free_pages((unsigned long)xen_io_tlb_start, order); 286 return rc; 287 } 288 289 static void * 290 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 291 dma_addr_t *dma_handle, gfp_t flags, 292 unsigned long attrs) 293 { 294 void *ret; 295 int order = get_order(size); 296 u64 dma_mask = DMA_BIT_MASK(32); 297 phys_addr_t phys; 298 dma_addr_t dev_addr; 299 300 /* 301 * Ignore region specifiers - the kernel's ideas of 302 * pseudo-phys memory layout has nothing to do with the 303 * machine physical layout. We can't allocate highmem 304 * because we can't return a pointer to it. 305 */ 306 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 307 308 /* Convert the size to actually allocated. */ 309 size = 1UL << (order + XEN_PAGE_SHIFT); 310 311 /* On ARM this function returns an ioremap'ped virtual address for 312 * which virt_to_phys doesn't return the corresponding physical 313 * address. In fact on ARM virt_to_phys only works for kernel direct 314 * mapped RAM memory. Also see comment below. 315 */ 316 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 317 318 if (!ret) 319 return ret; 320 321 if (hwdev && hwdev->coherent_dma_mask) 322 dma_mask = hwdev->coherent_dma_mask; 323 324 /* At this point dma_handle is the physical address, next we are 325 * going to set it to the machine address. 326 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 327 * to *dma_handle. */ 328 phys = *dma_handle; 329 dev_addr = xen_phys_to_bus(phys); 330 if (((dev_addr + size - 1 <= dma_mask)) && 331 !range_straddles_page_boundary(phys, size)) 332 *dma_handle = dev_addr; 333 else { 334 if (xen_create_contiguous_region(phys, order, 335 fls64(dma_mask), dma_handle) != 0) { 336 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 337 return NULL; 338 } 339 } 340 memset(ret, 0, size); 341 return ret; 342 } 343 344 static void 345 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 346 dma_addr_t dev_addr, unsigned long attrs) 347 { 348 int order = get_order(size); 349 phys_addr_t phys; 350 u64 dma_mask = DMA_BIT_MASK(32); 351 352 if (hwdev && hwdev->coherent_dma_mask) 353 dma_mask = hwdev->coherent_dma_mask; 354 355 /* do not use virt_to_phys because on ARM it doesn't return you the 356 * physical address */ 357 phys = xen_bus_to_phys(dev_addr); 358 359 /* Convert the size to actually allocated. */ 360 size = 1UL << (order + XEN_PAGE_SHIFT); 361 362 if (((dev_addr + size - 1 <= dma_mask)) || 363 range_straddles_page_boundary(phys, size)) 364 xen_destroy_contiguous_region(phys, order); 365 366 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 367 } 368 369 /* 370 * Map a single buffer of the indicated size for DMA in streaming mode. The 371 * physical address to use is returned. 372 * 373 * Once the device is given the dma address, the device owns this memory until 374 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 375 */ 376 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 377 unsigned long offset, size_t size, 378 enum dma_data_direction dir, 379 unsigned long attrs) 380 { 381 phys_addr_t map, phys = page_to_phys(page) + offset; 382 dma_addr_t dev_addr = xen_phys_to_bus(phys); 383 384 BUG_ON(dir == DMA_NONE); 385 /* 386 * If the address happens to be in the device's DMA window, 387 * we can safely return the device addr and not worry about bounce 388 * buffering it. 389 */ 390 if (dma_capable(dev, dev_addr, size) && 391 !range_straddles_page_boundary(phys, size) && 392 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 393 (swiotlb_force != SWIOTLB_FORCE)) { 394 /* we are not interested in the dma_addr returned by 395 * xen_dma_map_page, only in the potential cache flushes executed 396 * by the function. */ 397 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 398 return dev_addr; 399 } 400 401 /* 402 * Oh well, have to allocate and map a bounce buffer. 403 */ 404 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 405 406 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir, 407 attrs); 408 if (map == SWIOTLB_MAP_ERROR) 409 return XEN_SWIOTLB_ERROR_CODE; 410 411 dev_addr = xen_phys_to_bus(map); 412 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 413 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 414 415 /* 416 * Ensure that the address returned is DMA'ble 417 */ 418 if (dma_capable(dev, dev_addr, size)) 419 return dev_addr; 420 421 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 422 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); 423 424 return XEN_SWIOTLB_ERROR_CODE; 425 } 426 427 /* 428 * Unmap a single streaming mode DMA translation. The dma_addr and size must 429 * match what was provided for in a previous xen_swiotlb_map_page call. All 430 * other usages are undefined. 431 * 432 * After this call, reads by the cpu to the buffer are guaranteed to see 433 * whatever the device wrote there. 434 */ 435 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 436 size_t size, enum dma_data_direction dir, 437 unsigned long attrs) 438 { 439 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 440 441 BUG_ON(dir == DMA_NONE); 442 443 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 444 445 /* NOTE: We use dev_addr here, not paddr! */ 446 if (is_xen_swiotlb_buffer(dev_addr)) { 447 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 448 return; 449 } 450 451 if (dir != DMA_FROM_DEVICE) 452 return; 453 454 /* 455 * phys_to_virt doesn't work with hihgmem page but we could 456 * call dma_mark_clean() with hihgmem page here. However, we 457 * are fine since dma_mark_clean() is null on POWERPC. We can 458 * make dma_mark_clean() take a physical address if necessary. 459 */ 460 dma_mark_clean(phys_to_virt(paddr), size); 461 } 462 463 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 464 size_t size, enum dma_data_direction dir, 465 unsigned long attrs) 466 { 467 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 468 } 469 470 /* 471 * Make physical memory consistent for a single streaming mode DMA translation 472 * after a transfer. 473 * 474 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 475 * using the cpu, yet do not wish to teardown the dma mapping, you must 476 * call this function before doing so. At the next point you give the dma 477 * address back to the card, you must first perform a 478 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 479 */ 480 static void 481 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 482 size_t size, enum dma_data_direction dir, 483 enum dma_sync_target target) 484 { 485 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 486 487 BUG_ON(dir == DMA_NONE); 488 489 if (target == SYNC_FOR_CPU) 490 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 491 492 /* NOTE: We use dev_addr here, not paddr! */ 493 if (is_xen_swiotlb_buffer(dev_addr)) 494 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 495 496 if (target == SYNC_FOR_DEVICE) 497 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 498 499 if (dir != DMA_FROM_DEVICE) 500 return; 501 502 dma_mark_clean(phys_to_virt(paddr), size); 503 } 504 505 void 506 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 507 size_t size, enum dma_data_direction dir) 508 { 509 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 510 } 511 512 void 513 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 514 size_t size, enum dma_data_direction dir) 515 { 516 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 517 } 518 519 /* 520 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 521 * concerning calls here are the same as for swiotlb_unmap_page() above. 522 */ 523 static void 524 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 525 int nelems, enum dma_data_direction dir, 526 unsigned long attrs) 527 { 528 struct scatterlist *sg; 529 int i; 530 531 BUG_ON(dir == DMA_NONE); 532 533 for_each_sg(sgl, sg, nelems, i) 534 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 535 536 } 537 538 /* 539 * Map a set of buffers described by scatterlist in streaming mode for DMA. 540 * This is the scatter-gather version of the above xen_swiotlb_map_page 541 * interface. Here the scatter gather list elements are each tagged with the 542 * appropriate dma address and length. They are obtained via 543 * sg_dma_{address,length}(SG). 544 * 545 * NOTE: An implementation may be able to use a smaller number of 546 * DMA address/length pairs than there are SG table elements. 547 * (for example via virtual mapping capabilities) 548 * The routine returns the number of addr/length pairs actually 549 * used, at most nents. 550 * 551 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 552 * same here. 553 */ 554 static int 555 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 556 int nelems, enum dma_data_direction dir, 557 unsigned long attrs) 558 { 559 struct scatterlist *sg; 560 int i; 561 562 BUG_ON(dir == DMA_NONE); 563 564 for_each_sg(sgl, sg, nelems, i) { 565 phys_addr_t paddr = sg_phys(sg); 566 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 567 568 if (swiotlb_force == SWIOTLB_FORCE || 569 xen_arch_need_swiotlb(hwdev, paddr, dev_addr) || 570 !dma_capable(hwdev, dev_addr, sg->length) || 571 range_straddles_page_boundary(paddr, sg->length)) { 572 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 573 start_dma_addr, 574 sg_phys(sg), 575 sg->length, 576 dir, attrs); 577 if (map == SWIOTLB_MAP_ERROR) { 578 dev_warn(hwdev, "swiotlb buffer is full\n"); 579 /* Don't panic here, we expect map_sg users 580 to do proper error handling. */ 581 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 582 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 583 attrs); 584 sg_dma_len(sgl) = 0; 585 return 0; 586 } 587 dev_addr = xen_phys_to_bus(map); 588 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 589 dev_addr, 590 map & ~PAGE_MASK, 591 sg->length, 592 dir, 593 attrs); 594 sg->dma_address = dev_addr; 595 } else { 596 /* we are not interested in the dma_addr returned by 597 * xen_dma_map_page, only in the potential cache flushes executed 598 * by the function. */ 599 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 600 dev_addr, 601 paddr & ~PAGE_MASK, 602 sg->length, 603 dir, 604 attrs); 605 sg->dma_address = dev_addr; 606 } 607 sg_dma_len(sg) = sg->length; 608 } 609 return nelems; 610 } 611 612 /* 613 * Make physical memory consistent for a set of streaming mode DMA translations 614 * after a transfer. 615 * 616 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 617 * and usage. 618 */ 619 static void 620 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 621 int nelems, enum dma_data_direction dir, 622 enum dma_sync_target target) 623 { 624 struct scatterlist *sg; 625 int i; 626 627 for_each_sg(sgl, sg, nelems, i) 628 xen_swiotlb_sync_single(hwdev, sg->dma_address, 629 sg_dma_len(sg), dir, target); 630 } 631 632 static void 633 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 634 int nelems, enum dma_data_direction dir) 635 { 636 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 637 } 638 639 static void 640 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 641 int nelems, enum dma_data_direction dir) 642 { 643 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 644 } 645 646 /* 647 * Return whether the given device DMA address mask can be supported 648 * properly. For example, if your device can only drive the low 24-bits 649 * during bus mastering, then you would pass 0x00ffffff as the mask to 650 * this function. 651 */ 652 static int 653 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 654 { 655 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 656 } 657 658 /* 659 * Create userspace mapping for the DMA-coherent memory. 660 * This function should be called with the pages from the current domain only, 661 * passing pages mapped from other domains would lead to memory corruption. 662 */ 663 static int 664 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma, 665 void *cpu_addr, dma_addr_t dma_addr, size_t size, 666 unsigned long attrs) 667 { 668 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 669 if (xen_get_dma_ops(dev)->mmap) 670 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr, 671 dma_addr, size, attrs); 672 #endif 673 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 674 } 675 676 /* 677 * This function should be called with the pages from the current domain only, 678 * passing pages mapped from other domains would lead to memory corruption. 679 */ 680 static int 681 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 682 void *cpu_addr, dma_addr_t handle, size_t size, 683 unsigned long attrs) 684 { 685 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 686 if (xen_get_dma_ops(dev)->get_sgtable) { 687 #if 0 688 /* 689 * This check verifies that the page belongs to the current domain and 690 * is not one mapped from another domain. 691 * This check is for debug only, and should not go to production build 692 */ 693 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle)); 694 BUG_ON (!page_is_ram(bfn)); 695 #endif 696 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr, 697 handle, size, attrs); 698 } 699 #endif 700 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs); 701 } 702 703 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr) 704 { 705 return dma_addr == XEN_SWIOTLB_ERROR_CODE; 706 } 707 708 const struct dma_map_ops xen_swiotlb_dma_ops = { 709 .alloc = xen_swiotlb_alloc_coherent, 710 .free = xen_swiotlb_free_coherent, 711 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 712 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 713 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 714 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 715 .map_sg = xen_swiotlb_map_sg_attrs, 716 .unmap_sg = xen_swiotlb_unmap_sg_attrs, 717 .map_page = xen_swiotlb_map_page, 718 .unmap_page = xen_swiotlb_unmap_page, 719 .dma_supported = xen_swiotlb_dma_supported, 720 .mmap = xen_swiotlb_dma_mmap, 721 .get_sgtable = xen_swiotlb_get_sgtable, 722 .mapping_error = xen_swiotlb_mapping_error, 723 }; 724