xref: /openbmc/linux/drivers/xen/swiotlb-xen.c (revision 05bcf503)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 static u64 start_dma_addr;
56 
57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58 {
59 	return phys_to_machine(XPADDR(paddr)).maddr;
60 }
61 
62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63 {
64 	return machine_to_phys(XMADDR(baddr)).paddr;
65 }
66 
67 static dma_addr_t xen_virt_to_bus(void *address)
68 {
69 	return xen_phys_to_bus(virt_to_phys(address));
70 }
71 
72 static int check_pages_physically_contiguous(unsigned long pfn,
73 					     unsigned int offset,
74 					     size_t length)
75 {
76 	unsigned long next_mfn;
77 	int i;
78 	int nr_pages;
79 
80 	next_mfn = pfn_to_mfn(pfn);
81 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82 
83 	for (i = 1; i < nr_pages; i++) {
84 		if (pfn_to_mfn(++pfn) != ++next_mfn)
85 			return 0;
86 	}
87 	return 1;
88 }
89 
90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92 	unsigned long pfn = PFN_DOWN(p);
93 	unsigned int offset = p & ~PAGE_MASK;
94 
95 	if (offset + size <= PAGE_SIZE)
96 		return 0;
97 	if (check_pages_physically_contiguous(pfn, offset, size))
98 		return 0;
99 	return 1;
100 }
101 
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104 	unsigned long mfn = PFN_DOWN(dma_addr);
105 	unsigned long pfn = mfn_to_local_pfn(mfn);
106 	phys_addr_t paddr;
107 
108 	/* If the address is outside our domain, it CAN
109 	 * have the same virtual address as another address
110 	 * in our domain. Therefore _only_ check address within our domain.
111 	 */
112 	if (pfn_valid(pfn)) {
113 		paddr = PFN_PHYS(pfn);
114 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 		       paddr < virt_to_phys(xen_io_tlb_end);
116 	}
117 	return 0;
118 }
119 
120 static int max_dma_bits = 32;
121 
122 static int
123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124 {
125 	int i, rc;
126 	int dma_bits;
127 
128 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129 
130 	i = 0;
131 	do {
132 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134 		do {
135 			rc = xen_create_contiguous_region(
136 				(unsigned long)buf + (i << IO_TLB_SHIFT),
137 				get_order(slabs << IO_TLB_SHIFT),
138 				dma_bits);
139 		} while (rc && dma_bits++ < max_dma_bits);
140 		if (rc)
141 			return rc;
142 
143 		i += slabs;
144 	} while (i < nslabs);
145 	return 0;
146 }
147 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
148 {
149 	if (!nr_tbl) {
150 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
151 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
152 	} else
153 		xen_io_tlb_nslabs = nr_tbl;
154 
155 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
156 }
157 
158 enum xen_swiotlb_err {
159 	XEN_SWIOTLB_UNKNOWN = 0,
160 	XEN_SWIOTLB_ENOMEM,
161 	XEN_SWIOTLB_EFIXUP
162 };
163 
164 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
165 {
166 	switch (err) {
167 	case XEN_SWIOTLB_ENOMEM:
168 		return "Cannot allocate Xen-SWIOTLB buffer\n";
169 	case XEN_SWIOTLB_EFIXUP:
170 		return "Failed to get contiguous memory for DMA from Xen!\n"\
171 		    "You either: don't have the permissions, do not have"\
172 		    " enough free memory under 4GB, or the hypervisor memory"\
173 		    " is too fragmented!";
174 	default:
175 		break;
176 	}
177 	return "";
178 }
179 int __ref xen_swiotlb_init(int verbose, bool early)
180 {
181 	unsigned long bytes, order;
182 	int rc = -ENOMEM;
183 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
184 	unsigned int repeat = 3;
185 
186 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
187 retry:
188 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
189 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
190 	/*
191 	 * Get IO TLB memory from any location.
192 	 */
193 	if (early)
194 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
195 	else {
196 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
197 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
198 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
199 			xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
200 			if (xen_io_tlb_start)
201 				break;
202 			order--;
203 		}
204 		if (order != get_order(bytes)) {
205 			pr_warn("Warning: only able to allocate %ld MB "
206 				"for software IO TLB\n", (PAGE_SIZE << order) >> 20);
207 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
208 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
209 		}
210 	}
211 	if (!xen_io_tlb_start) {
212 		m_ret = XEN_SWIOTLB_ENOMEM;
213 		goto error;
214 	}
215 	xen_io_tlb_end = xen_io_tlb_start + bytes;
216 	/*
217 	 * And replace that memory with pages under 4GB.
218 	 */
219 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
220 			       bytes,
221 			       xen_io_tlb_nslabs);
222 	if (rc) {
223 		if (early)
224 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
225 		else {
226 			free_pages((unsigned long)xen_io_tlb_start, order);
227 			xen_io_tlb_start = NULL;
228 		}
229 		m_ret = XEN_SWIOTLB_EFIXUP;
230 		goto error;
231 	}
232 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
233 	if (early) {
234 		swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
235 		rc = 0;
236 	} else
237 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
238 	return rc;
239 error:
240 	if (repeat--) {
241 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
242 					(xen_io_tlb_nslabs >> 1));
243 		printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
244 		      (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
245 		goto retry;
246 	}
247 	pr_err("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
248 	if (early)
249 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
250 	else
251 		free_pages((unsigned long)xen_io_tlb_start, order);
252 	return rc;
253 }
254 void *
255 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
256 			   dma_addr_t *dma_handle, gfp_t flags,
257 			   struct dma_attrs *attrs)
258 {
259 	void *ret;
260 	int order = get_order(size);
261 	u64 dma_mask = DMA_BIT_MASK(32);
262 	unsigned long vstart;
263 	phys_addr_t phys;
264 	dma_addr_t dev_addr;
265 
266 	/*
267 	* Ignore region specifiers - the kernel's ideas of
268 	* pseudo-phys memory layout has nothing to do with the
269 	* machine physical layout.  We can't allocate highmem
270 	* because we can't return a pointer to it.
271 	*/
272 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
273 
274 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
275 		return ret;
276 
277 	vstart = __get_free_pages(flags, order);
278 	ret = (void *)vstart;
279 
280 	if (!ret)
281 		return ret;
282 
283 	if (hwdev && hwdev->coherent_dma_mask)
284 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
285 
286 	phys = virt_to_phys(ret);
287 	dev_addr = xen_phys_to_bus(phys);
288 	if (((dev_addr + size - 1 <= dma_mask)) &&
289 	    !range_straddles_page_boundary(phys, size))
290 		*dma_handle = dev_addr;
291 	else {
292 		if (xen_create_contiguous_region(vstart, order,
293 						 fls64(dma_mask)) != 0) {
294 			free_pages(vstart, order);
295 			return NULL;
296 		}
297 		*dma_handle = virt_to_machine(ret).maddr;
298 	}
299 	memset(ret, 0, size);
300 	return ret;
301 }
302 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
303 
304 void
305 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
306 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
307 {
308 	int order = get_order(size);
309 	phys_addr_t phys;
310 	u64 dma_mask = DMA_BIT_MASK(32);
311 
312 	if (dma_release_from_coherent(hwdev, order, vaddr))
313 		return;
314 
315 	if (hwdev && hwdev->coherent_dma_mask)
316 		dma_mask = hwdev->coherent_dma_mask;
317 
318 	phys = virt_to_phys(vaddr);
319 
320 	if (((dev_addr + size - 1 > dma_mask)) ||
321 	    range_straddles_page_boundary(phys, size))
322 		xen_destroy_contiguous_region((unsigned long)vaddr, order);
323 
324 	free_pages((unsigned long)vaddr, order);
325 }
326 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
327 
328 
329 /*
330  * Map a single buffer of the indicated size for DMA in streaming mode.  The
331  * physical address to use is returned.
332  *
333  * Once the device is given the dma address, the device owns this memory until
334  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
335  */
336 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
337 				unsigned long offset, size_t size,
338 				enum dma_data_direction dir,
339 				struct dma_attrs *attrs)
340 {
341 	phys_addr_t phys = page_to_phys(page) + offset;
342 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
343 	void *map;
344 
345 	BUG_ON(dir == DMA_NONE);
346 	/*
347 	 * If the address happens to be in the device's DMA window,
348 	 * we can safely return the device addr and not worry about bounce
349 	 * buffering it.
350 	 */
351 	if (dma_capable(dev, dev_addr, size) &&
352 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
353 		return dev_addr;
354 
355 	/*
356 	 * Oh well, have to allocate and map a bounce buffer.
357 	 */
358 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
359 	if (!map)
360 		return DMA_ERROR_CODE;
361 
362 	dev_addr = xen_virt_to_bus(map);
363 
364 	/*
365 	 * Ensure that the address returned is DMA'ble
366 	 */
367 	if (!dma_capable(dev, dev_addr, size)) {
368 		swiotlb_tbl_unmap_single(dev, map, size, dir);
369 		dev_addr = 0;
370 	}
371 	return dev_addr;
372 }
373 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
374 
375 /*
376  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
377  * match what was provided for in a previous xen_swiotlb_map_page call.  All
378  * other usages are undefined.
379  *
380  * After this call, reads by the cpu to the buffer are guaranteed to see
381  * whatever the device wrote there.
382  */
383 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
384 			     size_t size, enum dma_data_direction dir)
385 {
386 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
387 
388 	BUG_ON(dir == DMA_NONE);
389 
390 	/* NOTE: We use dev_addr here, not paddr! */
391 	if (is_xen_swiotlb_buffer(dev_addr)) {
392 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
393 		return;
394 	}
395 
396 	if (dir != DMA_FROM_DEVICE)
397 		return;
398 
399 	/*
400 	 * phys_to_virt doesn't work with hihgmem page but we could
401 	 * call dma_mark_clean() with hihgmem page here. However, we
402 	 * are fine since dma_mark_clean() is null on POWERPC. We can
403 	 * make dma_mark_clean() take a physical address if necessary.
404 	 */
405 	dma_mark_clean(phys_to_virt(paddr), size);
406 }
407 
408 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
409 			    size_t size, enum dma_data_direction dir,
410 			    struct dma_attrs *attrs)
411 {
412 	xen_unmap_single(hwdev, dev_addr, size, dir);
413 }
414 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
415 
416 /*
417  * Make physical memory consistent for a single streaming mode DMA translation
418  * after a transfer.
419  *
420  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
421  * using the cpu, yet do not wish to teardown the dma mapping, you must
422  * call this function before doing so.  At the next point you give the dma
423  * address back to the card, you must first perform a
424  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
425  */
426 static void
427 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
428 			size_t size, enum dma_data_direction dir,
429 			enum dma_sync_target target)
430 {
431 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
432 
433 	BUG_ON(dir == DMA_NONE);
434 
435 	/* NOTE: We use dev_addr here, not paddr! */
436 	if (is_xen_swiotlb_buffer(dev_addr)) {
437 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
438 				       target);
439 		return;
440 	}
441 
442 	if (dir != DMA_FROM_DEVICE)
443 		return;
444 
445 	dma_mark_clean(phys_to_virt(paddr), size);
446 }
447 
448 void
449 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
450 				size_t size, enum dma_data_direction dir)
451 {
452 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
453 }
454 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
455 
456 void
457 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
458 				   size_t size, enum dma_data_direction dir)
459 {
460 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
461 }
462 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
463 
464 /*
465  * Map a set of buffers described by scatterlist in streaming mode for DMA.
466  * This is the scatter-gather version of the above xen_swiotlb_map_page
467  * interface.  Here the scatter gather list elements are each tagged with the
468  * appropriate dma address and length.  They are obtained via
469  * sg_dma_{address,length}(SG).
470  *
471  * NOTE: An implementation may be able to use a smaller number of
472  *       DMA address/length pairs than there are SG table elements.
473  *       (for example via virtual mapping capabilities)
474  *       The routine returns the number of addr/length pairs actually
475  *       used, at most nents.
476  *
477  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
478  * same here.
479  */
480 int
481 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
482 			 int nelems, enum dma_data_direction dir,
483 			 struct dma_attrs *attrs)
484 {
485 	struct scatterlist *sg;
486 	int i;
487 
488 	BUG_ON(dir == DMA_NONE);
489 
490 	for_each_sg(sgl, sg, nelems, i) {
491 		phys_addr_t paddr = sg_phys(sg);
492 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
493 
494 		if (swiotlb_force ||
495 		    !dma_capable(hwdev, dev_addr, sg->length) ||
496 		    range_straddles_page_boundary(paddr, sg->length)) {
497 			void *map = swiotlb_tbl_map_single(hwdev,
498 							   start_dma_addr,
499 							   sg_phys(sg),
500 							   sg->length, dir);
501 			if (!map) {
502 				/* Don't panic here, we expect map_sg users
503 				   to do proper error handling. */
504 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
505 							   attrs);
506 				sgl[0].dma_length = 0;
507 				return DMA_ERROR_CODE;
508 			}
509 			sg->dma_address = xen_virt_to_bus(map);
510 		} else
511 			sg->dma_address = dev_addr;
512 		sg->dma_length = sg->length;
513 	}
514 	return nelems;
515 }
516 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
517 
518 /*
519  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
520  * concerning calls here are the same as for swiotlb_unmap_page() above.
521  */
522 void
523 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
524 			   int nelems, enum dma_data_direction dir,
525 			   struct dma_attrs *attrs)
526 {
527 	struct scatterlist *sg;
528 	int i;
529 
530 	BUG_ON(dir == DMA_NONE);
531 
532 	for_each_sg(sgl, sg, nelems, i)
533 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
534 
535 }
536 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
537 
538 /*
539  * Make physical memory consistent for a set of streaming mode DMA translations
540  * after a transfer.
541  *
542  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
543  * and usage.
544  */
545 static void
546 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
547 		    int nelems, enum dma_data_direction dir,
548 		    enum dma_sync_target target)
549 {
550 	struct scatterlist *sg;
551 	int i;
552 
553 	for_each_sg(sgl, sg, nelems, i)
554 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
555 					sg->dma_length, dir, target);
556 }
557 
558 void
559 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
560 			    int nelems, enum dma_data_direction dir)
561 {
562 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
563 }
564 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
565 
566 void
567 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
568 			       int nelems, enum dma_data_direction dir)
569 {
570 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
571 }
572 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
573 
574 int
575 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
576 {
577 	return !dma_addr;
578 }
579 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
580 
581 /*
582  * Return whether the given device DMA address mask can be supported
583  * properly.  For example, if your device can only drive the low 24-bits
584  * during bus mastering, then you would pass 0x00ffffff as the mask to
585  * this function.
586  */
587 int
588 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
589 {
590 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
591 }
592 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
593