1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #include <linux/bootmem.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/export.h> 39 #include <xen/swiotlb-xen.h> 40 #include <xen/page.h> 41 #include <xen/xen-ops.h> 42 #include <xen/hvc-console.h> 43 /* 44 * Used to do a quick range check in swiotlb_tbl_unmap_single and 45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 46 * API. 47 */ 48 49 static char *xen_io_tlb_start, *xen_io_tlb_end; 50 static unsigned long xen_io_tlb_nslabs; 51 /* 52 * Quick lookup value of the bus address of the IOTLB. 53 */ 54 55 static u64 start_dma_addr; 56 57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 58 { 59 return phys_to_machine(XPADDR(paddr)).maddr; 60 } 61 62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 63 { 64 return machine_to_phys(XMADDR(baddr)).paddr; 65 } 66 67 static dma_addr_t xen_virt_to_bus(void *address) 68 { 69 return xen_phys_to_bus(virt_to_phys(address)); 70 } 71 72 static int check_pages_physically_contiguous(unsigned long pfn, 73 unsigned int offset, 74 size_t length) 75 { 76 unsigned long next_mfn; 77 int i; 78 int nr_pages; 79 80 next_mfn = pfn_to_mfn(pfn); 81 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 82 83 for (i = 1; i < nr_pages; i++) { 84 if (pfn_to_mfn(++pfn) != ++next_mfn) 85 return 0; 86 } 87 return 1; 88 } 89 90 static int range_straddles_page_boundary(phys_addr_t p, size_t size) 91 { 92 unsigned long pfn = PFN_DOWN(p); 93 unsigned int offset = p & ~PAGE_MASK; 94 95 if (offset + size <= PAGE_SIZE) 96 return 0; 97 if (check_pages_physically_contiguous(pfn, offset, size)) 98 return 0; 99 return 1; 100 } 101 102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 103 { 104 unsigned long mfn = PFN_DOWN(dma_addr); 105 unsigned long pfn = mfn_to_local_pfn(mfn); 106 phys_addr_t paddr; 107 108 /* If the address is outside our domain, it CAN 109 * have the same virtual address as another address 110 * in our domain. Therefore _only_ check address within our domain. 111 */ 112 if (pfn_valid(pfn)) { 113 paddr = PFN_PHYS(pfn); 114 return paddr >= virt_to_phys(xen_io_tlb_start) && 115 paddr < virt_to_phys(xen_io_tlb_end); 116 } 117 return 0; 118 } 119 120 static int max_dma_bits = 32; 121 122 static int 123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 124 { 125 int i, rc; 126 int dma_bits; 127 128 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 129 130 i = 0; 131 do { 132 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 133 134 do { 135 rc = xen_create_contiguous_region( 136 (unsigned long)buf + (i << IO_TLB_SHIFT), 137 get_order(slabs << IO_TLB_SHIFT), 138 dma_bits); 139 } while (rc && dma_bits++ < max_dma_bits); 140 if (rc) 141 return rc; 142 143 i += slabs; 144 } while (i < nslabs); 145 return 0; 146 } 147 static unsigned long xen_set_nslabs(unsigned long nr_tbl) 148 { 149 if (!nr_tbl) { 150 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 151 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 152 } else 153 xen_io_tlb_nslabs = nr_tbl; 154 155 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 156 } 157 158 enum xen_swiotlb_err { 159 XEN_SWIOTLB_UNKNOWN = 0, 160 XEN_SWIOTLB_ENOMEM, 161 XEN_SWIOTLB_EFIXUP 162 }; 163 164 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 165 { 166 switch (err) { 167 case XEN_SWIOTLB_ENOMEM: 168 return "Cannot allocate Xen-SWIOTLB buffer\n"; 169 case XEN_SWIOTLB_EFIXUP: 170 return "Failed to get contiguous memory for DMA from Xen!\n"\ 171 "You either: don't have the permissions, do not have"\ 172 " enough free memory under 4GB, or the hypervisor memory"\ 173 " is too fragmented!"; 174 default: 175 break; 176 } 177 return ""; 178 } 179 int __ref xen_swiotlb_init(int verbose, bool early) 180 { 181 unsigned long bytes, order; 182 int rc = -ENOMEM; 183 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 184 unsigned int repeat = 3; 185 186 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 187 retry: 188 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 189 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 190 /* 191 * Get IO TLB memory from any location. 192 */ 193 if (early) 194 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 195 else { 196 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 197 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 198 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 199 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order); 200 if (xen_io_tlb_start) 201 break; 202 order--; 203 } 204 if (order != get_order(bytes)) { 205 pr_warn("Warning: only able to allocate %ld MB " 206 "for software IO TLB\n", (PAGE_SIZE << order) >> 20); 207 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 208 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 209 } 210 } 211 if (!xen_io_tlb_start) { 212 m_ret = XEN_SWIOTLB_ENOMEM; 213 goto error; 214 } 215 xen_io_tlb_end = xen_io_tlb_start + bytes; 216 /* 217 * And replace that memory with pages under 4GB. 218 */ 219 rc = xen_swiotlb_fixup(xen_io_tlb_start, 220 bytes, 221 xen_io_tlb_nslabs); 222 if (rc) { 223 if (early) 224 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 225 else { 226 free_pages((unsigned long)xen_io_tlb_start, order); 227 xen_io_tlb_start = NULL; 228 } 229 m_ret = XEN_SWIOTLB_EFIXUP; 230 goto error; 231 } 232 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 233 if (early) { 234 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); 235 rc = 0; 236 } else 237 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 238 return rc; 239 error: 240 if (repeat--) { 241 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 242 (xen_io_tlb_nslabs >> 1)); 243 printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n", 244 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 245 goto retry; 246 } 247 pr_err("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 248 if (early) 249 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 250 else 251 free_pages((unsigned long)xen_io_tlb_start, order); 252 return rc; 253 } 254 void * 255 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 256 dma_addr_t *dma_handle, gfp_t flags, 257 struct dma_attrs *attrs) 258 { 259 void *ret; 260 int order = get_order(size); 261 u64 dma_mask = DMA_BIT_MASK(32); 262 unsigned long vstart; 263 phys_addr_t phys; 264 dma_addr_t dev_addr; 265 266 /* 267 * Ignore region specifiers - the kernel's ideas of 268 * pseudo-phys memory layout has nothing to do with the 269 * machine physical layout. We can't allocate highmem 270 * because we can't return a pointer to it. 271 */ 272 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 273 274 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 275 return ret; 276 277 vstart = __get_free_pages(flags, order); 278 ret = (void *)vstart; 279 280 if (!ret) 281 return ret; 282 283 if (hwdev && hwdev->coherent_dma_mask) 284 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 285 286 phys = virt_to_phys(ret); 287 dev_addr = xen_phys_to_bus(phys); 288 if (((dev_addr + size - 1 <= dma_mask)) && 289 !range_straddles_page_boundary(phys, size)) 290 *dma_handle = dev_addr; 291 else { 292 if (xen_create_contiguous_region(vstart, order, 293 fls64(dma_mask)) != 0) { 294 free_pages(vstart, order); 295 return NULL; 296 } 297 *dma_handle = virt_to_machine(ret).maddr; 298 } 299 memset(ret, 0, size); 300 return ret; 301 } 302 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 303 304 void 305 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 306 dma_addr_t dev_addr, struct dma_attrs *attrs) 307 { 308 int order = get_order(size); 309 phys_addr_t phys; 310 u64 dma_mask = DMA_BIT_MASK(32); 311 312 if (dma_release_from_coherent(hwdev, order, vaddr)) 313 return; 314 315 if (hwdev && hwdev->coherent_dma_mask) 316 dma_mask = hwdev->coherent_dma_mask; 317 318 phys = virt_to_phys(vaddr); 319 320 if (((dev_addr + size - 1 > dma_mask)) || 321 range_straddles_page_boundary(phys, size)) 322 xen_destroy_contiguous_region((unsigned long)vaddr, order); 323 324 free_pages((unsigned long)vaddr, order); 325 } 326 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 327 328 329 /* 330 * Map a single buffer of the indicated size for DMA in streaming mode. The 331 * physical address to use is returned. 332 * 333 * Once the device is given the dma address, the device owns this memory until 334 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 335 */ 336 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 337 unsigned long offset, size_t size, 338 enum dma_data_direction dir, 339 struct dma_attrs *attrs) 340 { 341 phys_addr_t phys = page_to_phys(page) + offset; 342 dma_addr_t dev_addr = xen_phys_to_bus(phys); 343 void *map; 344 345 BUG_ON(dir == DMA_NONE); 346 /* 347 * If the address happens to be in the device's DMA window, 348 * we can safely return the device addr and not worry about bounce 349 * buffering it. 350 */ 351 if (dma_capable(dev, dev_addr, size) && 352 !range_straddles_page_boundary(phys, size) && !swiotlb_force) 353 return dev_addr; 354 355 /* 356 * Oh well, have to allocate and map a bounce buffer. 357 */ 358 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 359 if (!map) 360 return DMA_ERROR_CODE; 361 362 dev_addr = xen_virt_to_bus(map); 363 364 /* 365 * Ensure that the address returned is DMA'ble 366 */ 367 if (!dma_capable(dev, dev_addr, size)) { 368 swiotlb_tbl_unmap_single(dev, map, size, dir); 369 dev_addr = 0; 370 } 371 return dev_addr; 372 } 373 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 374 375 /* 376 * Unmap a single streaming mode DMA translation. The dma_addr and size must 377 * match what was provided for in a previous xen_swiotlb_map_page call. All 378 * other usages are undefined. 379 * 380 * After this call, reads by the cpu to the buffer are guaranteed to see 381 * whatever the device wrote there. 382 */ 383 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 384 size_t size, enum dma_data_direction dir) 385 { 386 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 387 388 BUG_ON(dir == DMA_NONE); 389 390 /* NOTE: We use dev_addr here, not paddr! */ 391 if (is_xen_swiotlb_buffer(dev_addr)) { 392 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); 393 return; 394 } 395 396 if (dir != DMA_FROM_DEVICE) 397 return; 398 399 /* 400 * phys_to_virt doesn't work with hihgmem page but we could 401 * call dma_mark_clean() with hihgmem page here. However, we 402 * are fine since dma_mark_clean() is null on POWERPC. We can 403 * make dma_mark_clean() take a physical address if necessary. 404 */ 405 dma_mark_clean(phys_to_virt(paddr), size); 406 } 407 408 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 409 size_t size, enum dma_data_direction dir, 410 struct dma_attrs *attrs) 411 { 412 xen_unmap_single(hwdev, dev_addr, size, dir); 413 } 414 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 415 416 /* 417 * Make physical memory consistent for a single streaming mode DMA translation 418 * after a transfer. 419 * 420 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 421 * using the cpu, yet do not wish to teardown the dma mapping, you must 422 * call this function before doing so. At the next point you give the dma 423 * address back to the card, you must first perform a 424 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 425 */ 426 static void 427 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 428 size_t size, enum dma_data_direction dir, 429 enum dma_sync_target target) 430 { 431 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 432 433 BUG_ON(dir == DMA_NONE); 434 435 /* NOTE: We use dev_addr here, not paddr! */ 436 if (is_xen_swiotlb_buffer(dev_addr)) { 437 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, 438 target); 439 return; 440 } 441 442 if (dir != DMA_FROM_DEVICE) 443 return; 444 445 dma_mark_clean(phys_to_virt(paddr), size); 446 } 447 448 void 449 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 450 size_t size, enum dma_data_direction dir) 451 { 452 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 453 } 454 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 455 456 void 457 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 458 size_t size, enum dma_data_direction dir) 459 { 460 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 461 } 462 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 463 464 /* 465 * Map a set of buffers described by scatterlist in streaming mode for DMA. 466 * This is the scatter-gather version of the above xen_swiotlb_map_page 467 * interface. Here the scatter gather list elements are each tagged with the 468 * appropriate dma address and length. They are obtained via 469 * sg_dma_{address,length}(SG). 470 * 471 * NOTE: An implementation may be able to use a smaller number of 472 * DMA address/length pairs than there are SG table elements. 473 * (for example via virtual mapping capabilities) 474 * The routine returns the number of addr/length pairs actually 475 * used, at most nents. 476 * 477 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 478 * same here. 479 */ 480 int 481 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 482 int nelems, enum dma_data_direction dir, 483 struct dma_attrs *attrs) 484 { 485 struct scatterlist *sg; 486 int i; 487 488 BUG_ON(dir == DMA_NONE); 489 490 for_each_sg(sgl, sg, nelems, i) { 491 phys_addr_t paddr = sg_phys(sg); 492 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 493 494 if (swiotlb_force || 495 !dma_capable(hwdev, dev_addr, sg->length) || 496 range_straddles_page_boundary(paddr, sg->length)) { 497 void *map = swiotlb_tbl_map_single(hwdev, 498 start_dma_addr, 499 sg_phys(sg), 500 sg->length, dir); 501 if (!map) { 502 /* Don't panic here, we expect map_sg users 503 to do proper error handling. */ 504 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 505 attrs); 506 sgl[0].dma_length = 0; 507 return DMA_ERROR_CODE; 508 } 509 sg->dma_address = xen_virt_to_bus(map); 510 } else 511 sg->dma_address = dev_addr; 512 sg->dma_length = sg->length; 513 } 514 return nelems; 515 } 516 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 517 518 /* 519 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 520 * concerning calls here are the same as for swiotlb_unmap_page() above. 521 */ 522 void 523 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 524 int nelems, enum dma_data_direction dir, 525 struct dma_attrs *attrs) 526 { 527 struct scatterlist *sg; 528 int i; 529 530 BUG_ON(dir == DMA_NONE); 531 532 for_each_sg(sgl, sg, nelems, i) 533 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); 534 535 } 536 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 537 538 /* 539 * Make physical memory consistent for a set of streaming mode DMA translations 540 * after a transfer. 541 * 542 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 543 * and usage. 544 */ 545 static void 546 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 547 int nelems, enum dma_data_direction dir, 548 enum dma_sync_target target) 549 { 550 struct scatterlist *sg; 551 int i; 552 553 for_each_sg(sgl, sg, nelems, i) 554 xen_swiotlb_sync_single(hwdev, sg->dma_address, 555 sg->dma_length, dir, target); 556 } 557 558 void 559 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 560 int nelems, enum dma_data_direction dir) 561 { 562 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 563 } 564 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 565 566 void 567 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 568 int nelems, enum dma_data_direction dir) 569 { 570 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 571 } 572 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 573 574 int 575 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 576 { 577 return !dma_addr; 578 } 579 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 580 581 /* 582 * Return whether the given device DMA address mask can be supported 583 * properly. For example, if your device can only drive the low 24-bits 584 * during bus mastering, then you would pass 0x00ffffff as the mask to 585 * this function. 586 */ 587 int 588 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 589 { 590 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 591 } 592 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 593