xref: /openbmc/linux/drivers/xen/pvcalls-back.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * (c) 2017 Stefano Stabellini <stefano@aporeto.com>
4  */
5 
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/list.h>
9 #include <linux/radix-tree.h>
10 #include <linux/module.h>
11 #include <linux/semaphore.h>
12 #include <linux/wait.h>
13 #include <net/sock.h>
14 #include <net/inet_common.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/request_sock.h>
17 #include <trace/events/sock.h>
18 
19 #include <xen/events.h>
20 #include <xen/grant_table.h>
21 #include <xen/xen.h>
22 #include <xen/xenbus.h>
23 #include <xen/interface/io/pvcalls.h>
24 
25 #define PVCALLS_VERSIONS "1"
26 #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
27 
28 static struct pvcalls_back_global {
29 	struct list_head frontends;
30 	struct semaphore frontends_lock;
31 } pvcalls_back_global;
32 
33 /*
34  * Per-frontend data structure. It contains pointers to the command
35  * ring, its event channel, a list of active sockets and a tree of
36  * passive sockets.
37  */
38 struct pvcalls_fedata {
39 	struct list_head list;
40 	struct xenbus_device *dev;
41 	struct xen_pvcalls_sring *sring;
42 	struct xen_pvcalls_back_ring ring;
43 	int irq;
44 	struct list_head socket_mappings;
45 	struct radix_tree_root socketpass_mappings;
46 	struct semaphore socket_lock;
47 };
48 
49 struct pvcalls_ioworker {
50 	struct work_struct register_work;
51 	struct workqueue_struct *wq;
52 };
53 
54 struct sock_mapping {
55 	struct list_head list;
56 	struct pvcalls_fedata *fedata;
57 	struct sockpass_mapping *sockpass;
58 	struct socket *sock;
59 	uint64_t id;
60 	grant_ref_t ref;
61 	struct pvcalls_data_intf *ring;
62 	void *bytes;
63 	struct pvcalls_data data;
64 	uint32_t ring_order;
65 	int irq;
66 	atomic_t read;
67 	atomic_t write;
68 	atomic_t io;
69 	atomic_t release;
70 	atomic_t eoi;
71 	void (*saved_data_ready)(struct sock *sk);
72 	struct pvcalls_ioworker ioworker;
73 };
74 
75 struct sockpass_mapping {
76 	struct list_head list;
77 	struct pvcalls_fedata *fedata;
78 	struct socket *sock;
79 	uint64_t id;
80 	struct xen_pvcalls_request reqcopy;
81 	spinlock_t copy_lock;
82 	struct workqueue_struct *wq;
83 	struct work_struct register_work;
84 	void (*saved_data_ready)(struct sock *sk);
85 };
86 
87 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
88 static int pvcalls_back_release_active(struct xenbus_device *dev,
89 				       struct pvcalls_fedata *fedata,
90 				       struct sock_mapping *map);
91 
92 static bool pvcalls_conn_back_read(void *opaque)
93 {
94 	struct sock_mapping *map = (struct sock_mapping *)opaque;
95 	struct msghdr msg;
96 	struct kvec vec[2];
97 	RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
98 	int32_t error;
99 	struct pvcalls_data_intf *intf = map->ring;
100 	struct pvcalls_data *data = &map->data;
101 	unsigned long flags;
102 	int ret;
103 
104 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
105 	cons = intf->in_cons;
106 	prod = intf->in_prod;
107 	error = intf->in_error;
108 	/* read the indexes first, then deal with the data */
109 	virt_mb();
110 
111 	if (error)
112 		return false;
113 
114 	size = pvcalls_queued(prod, cons, array_size);
115 	if (size >= array_size)
116 		return false;
117 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
118 	if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
119 		atomic_set(&map->read, 0);
120 		spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
121 				flags);
122 		return true;
123 	}
124 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
125 	wanted = array_size - size;
126 	masked_prod = pvcalls_mask(prod, array_size);
127 	masked_cons = pvcalls_mask(cons, array_size);
128 
129 	memset(&msg, 0, sizeof(msg));
130 	if (masked_prod < masked_cons) {
131 		vec[0].iov_base = data->in + masked_prod;
132 		vec[0].iov_len = wanted;
133 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 1, wanted);
134 	} else {
135 		vec[0].iov_base = data->in + masked_prod;
136 		vec[0].iov_len = array_size - masked_prod;
137 		vec[1].iov_base = data->in;
138 		vec[1].iov_len = wanted - vec[0].iov_len;
139 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 2, wanted);
140 	}
141 
142 	atomic_set(&map->read, 0);
143 	ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
144 	WARN_ON(ret > wanted);
145 	if (ret == -EAGAIN) /* shouldn't happen */
146 		return true;
147 	if (!ret)
148 		ret = -ENOTCONN;
149 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
150 	if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
151 		atomic_inc(&map->read);
152 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
153 
154 	/* write the data, then modify the indexes */
155 	virt_wmb();
156 	if (ret < 0) {
157 		atomic_set(&map->read, 0);
158 		intf->in_error = ret;
159 	} else
160 		intf->in_prod = prod + ret;
161 	/* update the indexes, then notify the other end */
162 	virt_wmb();
163 	notify_remote_via_irq(map->irq);
164 
165 	return true;
166 }
167 
168 static bool pvcalls_conn_back_write(struct sock_mapping *map)
169 {
170 	struct pvcalls_data_intf *intf = map->ring;
171 	struct pvcalls_data *data = &map->data;
172 	struct msghdr msg;
173 	struct kvec vec[2];
174 	RING_IDX cons, prod, size, array_size;
175 	int ret;
176 
177 	atomic_set(&map->write, 0);
178 
179 	cons = intf->out_cons;
180 	prod = intf->out_prod;
181 	/* read the indexes before dealing with the data */
182 	virt_mb();
183 
184 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
185 	size = pvcalls_queued(prod, cons, array_size);
186 	if (size == 0)
187 		return false;
188 
189 	memset(&msg, 0, sizeof(msg));
190 	msg.msg_flags |= MSG_DONTWAIT;
191 	if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
192 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
193 		vec[0].iov_len = size;
194 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 1, size);
195 	} else {
196 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
197 		vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
198 		vec[1].iov_base = data->out;
199 		vec[1].iov_len = size - vec[0].iov_len;
200 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 2, size);
201 	}
202 
203 	ret = inet_sendmsg(map->sock, &msg, size);
204 	if (ret == -EAGAIN) {
205 		atomic_inc(&map->write);
206 		atomic_inc(&map->io);
207 		return true;
208 	}
209 
210 	/* write the data, then update the indexes */
211 	virt_wmb();
212 	if (ret < 0) {
213 		intf->out_error = ret;
214 	} else {
215 		intf->out_error = 0;
216 		intf->out_cons = cons + ret;
217 		prod = intf->out_prod;
218 	}
219 	/* update the indexes, then notify the other end */
220 	virt_wmb();
221 	if (prod != cons + ret) {
222 		atomic_inc(&map->write);
223 		atomic_inc(&map->io);
224 	}
225 	notify_remote_via_irq(map->irq);
226 
227 	return true;
228 }
229 
230 static void pvcalls_back_ioworker(struct work_struct *work)
231 {
232 	struct pvcalls_ioworker *ioworker = container_of(work,
233 		struct pvcalls_ioworker, register_work);
234 	struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
235 		ioworker);
236 	unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
237 
238 	while (atomic_read(&map->io) > 0) {
239 		if (atomic_read(&map->release) > 0) {
240 			atomic_set(&map->release, 0);
241 			return;
242 		}
243 
244 		if (atomic_read(&map->read) > 0 &&
245 		    pvcalls_conn_back_read(map))
246 			eoi_flags = 0;
247 		if (atomic_read(&map->write) > 0 &&
248 		    pvcalls_conn_back_write(map))
249 			eoi_flags = 0;
250 
251 		if (atomic_read(&map->eoi) > 0 && !atomic_read(&map->write)) {
252 			atomic_set(&map->eoi, 0);
253 			xen_irq_lateeoi(map->irq, eoi_flags);
254 			eoi_flags = XEN_EOI_FLAG_SPURIOUS;
255 		}
256 
257 		atomic_dec(&map->io);
258 	}
259 }
260 
261 static int pvcalls_back_socket(struct xenbus_device *dev,
262 		struct xen_pvcalls_request *req)
263 {
264 	struct pvcalls_fedata *fedata;
265 	int ret;
266 	struct xen_pvcalls_response *rsp;
267 
268 	fedata = dev_get_drvdata(&dev->dev);
269 
270 	if (req->u.socket.domain != AF_INET ||
271 	    req->u.socket.type != SOCK_STREAM ||
272 	    (req->u.socket.protocol != IPPROTO_IP &&
273 	     req->u.socket.protocol != AF_INET))
274 		ret = -EAFNOSUPPORT;
275 	else
276 		ret = 0;
277 
278 	/* leave the actual socket allocation for later */
279 
280 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
281 	rsp->req_id = req->req_id;
282 	rsp->cmd = req->cmd;
283 	rsp->u.socket.id = req->u.socket.id;
284 	rsp->ret = ret;
285 
286 	return 0;
287 }
288 
289 static void pvcalls_sk_state_change(struct sock *sock)
290 {
291 	struct sock_mapping *map = sock->sk_user_data;
292 
293 	if (map == NULL)
294 		return;
295 
296 	atomic_inc(&map->read);
297 	notify_remote_via_irq(map->irq);
298 }
299 
300 static void pvcalls_sk_data_ready(struct sock *sock)
301 {
302 	struct sock_mapping *map = sock->sk_user_data;
303 	struct pvcalls_ioworker *iow;
304 
305 	trace_sk_data_ready(sock);
306 
307 	if (map == NULL)
308 		return;
309 
310 	iow = &map->ioworker;
311 	atomic_inc(&map->read);
312 	atomic_inc(&map->io);
313 	queue_work(iow->wq, &iow->register_work);
314 }
315 
316 static struct sock_mapping *pvcalls_new_active_socket(
317 		struct pvcalls_fedata *fedata,
318 		uint64_t id,
319 		grant_ref_t ref,
320 		evtchn_port_t evtchn,
321 		struct socket *sock)
322 {
323 	int ret;
324 	struct sock_mapping *map;
325 	void *page;
326 
327 	map = kzalloc(sizeof(*map), GFP_KERNEL);
328 	if (map == NULL)
329 		return NULL;
330 
331 	map->fedata = fedata;
332 	map->sock = sock;
333 	map->id = id;
334 	map->ref = ref;
335 
336 	ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
337 	if (ret < 0)
338 		goto out;
339 	map->ring = page;
340 	map->ring_order = map->ring->ring_order;
341 	/* first read the order, then map the data ring */
342 	virt_rmb();
343 	if (map->ring_order > MAX_RING_ORDER) {
344 		pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
345 				__func__, map->ring_order, MAX_RING_ORDER);
346 		goto out;
347 	}
348 	ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
349 				     (1 << map->ring_order), &page);
350 	if (ret < 0)
351 		goto out;
352 	map->bytes = page;
353 
354 	ret = bind_interdomain_evtchn_to_irqhandler_lateeoi(
355 			fedata->dev, evtchn,
356 			pvcalls_back_conn_event, 0, "pvcalls-backend", map);
357 	if (ret < 0)
358 		goto out;
359 	map->irq = ret;
360 
361 	map->data.in = map->bytes;
362 	map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
363 
364 	map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1);
365 	if (!map->ioworker.wq)
366 		goto out;
367 	atomic_set(&map->io, 1);
368 	INIT_WORK(&map->ioworker.register_work,	pvcalls_back_ioworker);
369 
370 	down(&fedata->socket_lock);
371 	list_add_tail(&map->list, &fedata->socket_mappings);
372 	up(&fedata->socket_lock);
373 
374 	write_lock_bh(&map->sock->sk->sk_callback_lock);
375 	map->saved_data_ready = map->sock->sk->sk_data_ready;
376 	map->sock->sk->sk_user_data = map;
377 	map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
378 	map->sock->sk->sk_state_change = pvcalls_sk_state_change;
379 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
380 
381 	return map;
382 out:
383 	down(&fedata->socket_lock);
384 	list_del(&map->list);
385 	pvcalls_back_release_active(fedata->dev, fedata, map);
386 	up(&fedata->socket_lock);
387 	return NULL;
388 }
389 
390 static int pvcalls_back_connect(struct xenbus_device *dev,
391 				struct xen_pvcalls_request *req)
392 {
393 	struct pvcalls_fedata *fedata;
394 	int ret = -EINVAL;
395 	struct socket *sock;
396 	struct sock_mapping *map;
397 	struct xen_pvcalls_response *rsp;
398 	struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
399 
400 	fedata = dev_get_drvdata(&dev->dev);
401 
402 	if (req->u.connect.len < sizeof(sa->sa_family) ||
403 	    req->u.connect.len > sizeof(req->u.connect.addr) ||
404 	    sa->sa_family != AF_INET)
405 		goto out;
406 
407 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
408 	if (ret < 0)
409 		goto out;
410 	ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
411 	if (ret < 0) {
412 		sock_release(sock);
413 		goto out;
414 	}
415 
416 	map = pvcalls_new_active_socket(fedata,
417 					req->u.connect.id,
418 					req->u.connect.ref,
419 					req->u.connect.evtchn,
420 					sock);
421 	if (!map) {
422 		ret = -EFAULT;
423 		sock_release(sock);
424 	}
425 
426 out:
427 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
428 	rsp->req_id = req->req_id;
429 	rsp->cmd = req->cmd;
430 	rsp->u.connect.id = req->u.connect.id;
431 	rsp->ret = ret;
432 
433 	return 0;
434 }
435 
436 static int pvcalls_back_release_active(struct xenbus_device *dev,
437 				       struct pvcalls_fedata *fedata,
438 				       struct sock_mapping *map)
439 {
440 	disable_irq(map->irq);
441 	if (map->sock->sk != NULL) {
442 		write_lock_bh(&map->sock->sk->sk_callback_lock);
443 		map->sock->sk->sk_user_data = NULL;
444 		map->sock->sk->sk_data_ready = map->saved_data_ready;
445 		write_unlock_bh(&map->sock->sk->sk_callback_lock);
446 	}
447 
448 	atomic_set(&map->release, 1);
449 	flush_work(&map->ioworker.register_work);
450 
451 	xenbus_unmap_ring_vfree(dev, map->bytes);
452 	xenbus_unmap_ring_vfree(dev, (void *)map->ring);
453 	unbind_from_irqhandler(map->irq, map);
454 
455 	sock_release(map->sock);
456 	kfree(map);
457 
458 	return 0;
459 }
460 
461 static int pvcalls_back_release_passive(struct xenbus_device *dev,
462 					struct pvcalls_fedata *fedata,
463 					struct sockpass_mapping *mappass)
464 {
465 	if (mappass->sock->sk != NULL) {
466 		write_lock_bh(&mappass->sock->sk->sk_callback_lock);
467 		mappass->sock->sk->sk_user_data = NULL;
468 		mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
469 		write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
470 	}
471 	sock_release(mappass->sock);
472 	destroy_workqueue(mappass->wq);
473 	kfree(mappass);
474 
475 	return 0;
476 }
477 
478 static int pvcalls_back_release(struct xenbus_device *dev,
479 				struct xen_pvcalls_request *req)
480 {
481 	struct pvcalls_fedata *fedata;
482 	struct sock_mapping *map, *n;
483 	struct sockpass_mapping *mappass;
484 	int ret = 0;
485 	struct xen_pvcalls_response *rsp;
486 
487 	fedata = dev_get_drvdata(&dev->dev);
488 
489 	down(&fedata->socket_lock);
490 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
491 		if (map->id == req->u.release.id) {
492 			list_del(&map->list);
493 			up(&fedata->socket_lock);
494 			ret = pvcalls_back_release_active(dev, fedata, map);
495 			goto out;
496 		}
497 	}
498 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
499 				    req->u.release.id);
500 	if (mappass != NULL) {
501 		radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
502 		up(&fedata->socket_lock);
503 		ret = pvcalls_back_release_passive(dev, fedata, mappass);
504 	} else
505 		up(&fedata->socket_lock);
506 
507 out:
508 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
509 	rsp->req_id = req->req_id;
510 	rsp->u.release.id = req->u.release.id;
511 	rsp->cmd = req->cmd;
512 	rsp->ret = ret;
513 	return 0;
514 }
515 
516 static void __pvcalls_back_accept(struct work_struct *work)
517 {
518 	struct sockpass_mapping *mappass = container_of(
519 		work, struct sockpass_mapping, register_work);
520 	struct sock_mapping *map;
521 	struct pvcalls_ioworker *iow;
522 	struct pvcalls_fedata *fedata;
523 	struct socket *sock;
524 	struct xen_pvcalls_response *rsp;
525 	struct xen_pvcalls_request *req;
526 	int notify;
527 	int ret = -EINVAL;
528 	unsigned long flags;
529 
530 	fedata = mappass->fedata;
531 	/*
532 	 * __pvcalls_back_accept can race against pvcalls_back_accept.
533 	 * We only need to check the value of "cmd" on read. It could be
534 	 * done atomically, but to simplify the code on the write side, we
535 	 * use a spinlock.
536 	 */
537 	spin_lock_irqsave(&mappass->copy_lock, flags);
538 	req = &mappass->reqcopy;
539 	if (req->cmd != PVCALLS_ACCEPT) {
540 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
541 		return;
542 	}
543 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
544 
545 	sock = sock_alloc();
546 	if (sock == NULL)
547 		goto out_error;
548 	sock->type = mappass->sock->type;
549 	sock->ops = mappass->sock->ops;
550 
551 	ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true);
552 	if (ret == -EAGAIN) {
553 		sock_release(sock);
554 		return;
555 	}
556 
557 	map = pvcalls_new_active_socket(fedata,
558 					req->u.accept.id_new,
559 					req->u.accept.ref,
560 					req->u.accept.evtchn,
561 					sock);
562 	if (!map) {
563 		ret = -EFAULT;
564 		sock_release(sock);
565 		goto out_error;
566 	}
567 
568 	map->sockpass = mappass;
569 	iow = &map->ioworker;
570 	atomic_inc(&map->read);
571 	atomic_inc(&map->io);
572 	queue_work(iow->wq, &iow->register_work);
573 
574 out_error:
575 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
576 	rsp->req_id = req->req_id;
577 	rsp->cmd = req->cmd;
578 	rsp->u.accept.id = req->u.accept.id;
579 	rsp->ret = ret;
580 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
581 	if (notify)
582 		notify_remote_via_irq(fedata->irq);
583 
584 	mappass->reqcopy.cmd = 0;
585 }
586 
587 static void pvcalls_pass_sk_data_ready(struct sock *sock)
588 {
589 	struct sockpass_mapping *mappass = sock->sk_user_data;
590 	struct pvcalls_fedata *fedata;
591 	struct xen_pvcalls_response *rsp;
592 	unsigned long flags;
593 	int notify;
594 
595 	trace_sk_data_ready(sock);
596 
597 	if (mappass == NULL)
598 		return;
599 
600 	fedata = mappass->fedata;
601 	spin_lock_irqsave(&mappass->copy_lock, flags);
602 	if (mappass->reqcopy.cmd == PVCALLS_POLL) {
603 		rsp = RING_GET_RESPONSE(&fedata->ring,
604 					fedata->ring.rsp_prod_pvt++);
605 		rsp->req_id = mappass->reqcopy.req_id;
606 		rsp->u.poll.id = mappass->reqcopy.u.poll.id;
607 		rsp->cmd = mappass->reqcopy.cmd;
608 		rsp->ret = 0;
609 
610 		mappass->reqcopy.cmd = 0;
611 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
612 
613 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
614 		if (notify)
615 			notify_remote_via_irq(mappass->fedata->irq);
616 	} else {
617 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
618 		queue_work(mappass->wq, &mappass->register_work);
619 	}
620 }
621 
622 static int pvcalls_back_bind(struct xenbus_device *dev,
623 			     struct xen_pvcalls_request *req)
624 {
625 	struct pvcalls_fedata *fedata;
626 	int ret;
627 	struct sockpass_mapping *map;
628 	struct xen_pvcalls_response *rsp;
629 
630 	fedata = dev_get_drvdata(&dev->dev);
631 
632 	map = kzalloc(sizeof(*map), GFP_KERNEL);
633 	if (map == NULL) {
634 		ret = -ENOMEM;
635 		goto out;
636 	}
637 
638 	INIT_WORK(&map->register_work, __pvcalls_back_accept);
639 	spin_lock_init(&map->copy_lock);
640 	map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1);
641 	if (!map->wq) {
642 		ret = -ENOMEM;
643 		goto out;
644 	}
645 
646 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
647 	if (ret < 0)
648 		goto out;
649 
650 	ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
651 			req->u.bind.len);
652 	if (ret < 0)
653 		goto out;
654 
655 	map->fedata = fedata;
656 	map->id = req->u.bind.id;
657 
658 	down(&fedata->socket_lock);
659 	ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
660 				map);
661 	up(&fedata->socket_lock);
662 	if (ret)
663 		goto out;
664 
665 	write_lock_bh(&map->sock->sk->sk_callback_lock);
666 	map->saved_data_ready = map->sock->sk->sk_data_ready;
667 	map->sock->sk->sk_user_data = map;
668 	map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
669 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
670 
671 out:
672 	if (ret) {
673 		if (map && map->sock)
674 			sock_release(map->sock);
675 		if (map && map->wq)
676 			destroy_workqueue(map->wq);
677 		kfree(map);
678 	}
679 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
680 	rsp->req_id = req->req_id;
681 	rsp->cmd = req->cmd;
682 	rsp->u.bind.id = req->u.bind.id;
683 	rsp->ret = ret;
684 	return 0;
685 }
686 
687 static int pvcalls_back_listen(struct xenbus_device *dev,
688 			       struct xen_pvcalls_request *req)
689 {
690 	struct pvcalls_fedata *fedata;
691 	int ret = -EINVAL;
692 	struct sockpass_mapping *map;
693 	struct xen_pvcalls_response *rsp;
694 
695 	fedata = dev_get_drvdata(&dev->dev);
696 
697 	down(&fedata->socket_lock);
698 	map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
699 	up(&fedata->socket_lock);
700 	if (map == NULL)
701 		goto out;
702 
703 	ret = inet_listen(map->sock, req->u.listen.backlog);
704 
705 out:
706 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
707 	rsp->req_id = req->req_id;
708 	rsp->cmd = req->cmd;
709 	rsp->u.listen.id = req->u.listen.id;
710 	rsp->ret = ret;
711 	return 0;
712 }
713 
714 static int pvcalls_back_accept(struct xenbus_device *dev,
715 			       struct xen_pvcalls_request *req)
716 {
717 	struct pvcalls_fedata *fedata;
718 	struct sockpass_mapping *mappass;
719 	int ret = -EINVAL;
720 	struct xen_pvcalls_response *rsp;
721 	unsigned long flags;
722 
723 	fedata = dev_get_drvdata(&dev->dev);
724 
725 	down(&fedata->socket_lock);
726 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
727 		req->u.accept.id);
728 	up(&fedata->socket_lock);
729 	if (mappass == NULL)
730 		goto out_error;
731 
732 	/*
733 	 * Limitation of the current implementation: only support one
734 	 * concurrent accept or poll call on one socket.
735 	 */
736 	spin_lock_irqsave(&mappass->copy_lock, flags);
737 	if (mappass->reqcopy.cmd != 0) {
738 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
739 		ret = -EINTR;
740 		goto out_error;
741 	}
742 
743 	mappass->reqcopy = *req;
744 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
745 	queue_work(mappass->wq, &mappass->register_work);
746 
747 	/* Tell the caller we don't need to send back a notification yet */
748 	return -1;
749 
750 out_error:
751 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
752 	rsp->req_id = req->req_id;
753 	rsp->cmd = req->cmd;
754 	rsp->u.accept.id = req->u.accept.id;
755 	rsp->ret = ret;
756 	return 0;
757 }
758 
759 static int pvcalls_back_poll(struct xenbus_device *dev,
760 			     struct xen_pvcalls_request *req)
761 {
762 	struct pvcalls_fedata *fedata;
763 	struct sockpass_mapping *mappass;
764 	struct xen_pvcalls_response *rsp;
765 	struct inet_connection_sock *icsk;
766 	struct request_sock_queue *queue;
767 	unsigned long flags;
768 	int ret;
769 	bool data;
770 
771 	fedata = dev_get_drvdata(&dev->dev);
772 
773 	down(&fedata->socket_lock);
774 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
775 				    req->u.poll.id);
776 	up(&fedata->socket_lock);
777 	if (mappass == NULL)
778 		return -EINVAL;
779 
780 	/*
781 	 * Limitation of the current implementation: only support one
782 	 * concurrent accept or poll call on one socket.
783 	 */
784 	spin_lock_irqsave(&mappass->copy_lock, flags);
785 	if (mappass->reqcopy.cmd != 0) {
786 		ret = -EINTR;
787 		goto out;
788 	}
789 
790 	mappass->reqcopy = *req;
791 	icsk = inet_csk(mappass->sock->sk);
792 	queue = &icsk->icsk_accept_queue;
793 	data = READ_ONCE(queue->rskq_accept_head) != NULL;
794 	if (data) {
795 		mappass->reqcopy.cmd = 0;
796 		ret = 0;
797 		goto out;
798 	}
799 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
800 
801 	/* Tell the caller we don't need to send back a notification yet */
802 	return -1;
803 
804 out:
805 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
806 
807 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
808 	rsp->req_id = req->req_id;
809 	rsp->cmd = req->cmd;
810 	rsp->u.poll.id = req->u.poll.id;
811 	rsp->ret = ret;
812 	return 0;
813 }
814 
815 static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
816 				   struct xen_pvcalls_request *req)
817 {
818 	int ret = 0;
819 
820 	switch (req->cmd) {
821 	case PVCALLS_SOCKET:
822 		ret = pvcalls_back_socket(dev, req);
823 		break;
824 	case PVCALLS_CONNECT:
825 		ret = pvcalls_back_connect(dev, req);
826 		break;
827 	case PVCALLS_RELEASE:
828 		ret = pvcalls_back_release(dev, req);
829 		break;
830 	case PVCALLS_BIND:
831 		ret = pvcalls_back_bind(dev, req);
832 		break;
833 	case PVCALLS_LISTEN:
834 		ret = pvcalls_back_listen(dev, req);
835 		break;
836 	case PVCALLS_ACCEPT:
837 		ret = pvcalls_back_accept(dev, req);
838 		break;
839 	case PVCALLS_POLL:
840 		ret = pvcalls_back_poll(dev, req);
841 		break;
842 	default:
843 	{
844 		struct pvcalls_fedata *fedata;
845 		struct xen_pvcalls_response *rsp;
846 
847 		fedata = dev_get_drvdata(&dev->dev);
848 		rsp = RING_GET_RESPONSE(
849 				&fedata->ring, fedata->ring.rsp_prod_pvt++);
850 		rsp->req_id = req->req_id;
851 		rsp->cmd = req->cmd;
852 		rsp->ret = -ENOTSUPP;
853 		break;
854 	}
855 	}
856 	return ret;
857 }
858 
859 static void pvcalls_back_work(struct pvcalls_fedata *fedata)
860 {
861 	int notify, notify_all = 0, more = 1;
862 	struct xen_pvcalls_request req;
863 	struct xenbus_device *dev = fedata->dev;
864 
865 	while (more) {
866 		while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
867 			RING_COPY_REQUEST(&fedata->ring,
868 					  fedata->ring.req_cons++,
869 					  &req);
870 
871 			if (!pvcalls_back_handle_cmd(dev, &req)) {
872 				RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
873 					&fedata->ring, notify);
874 				notify_all += notify;
875 			}
876 		}
877 
878 		if (notify_all) {
879 			notify_remote_via_irq(fedata->irq);
880 			notify_all = 0;
881 		}
882 
883 		RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
884 	}
885 }
886 
887 static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
888 {
889 	struct xenbus_device *dev = dev_id;
890 	struct pvcalls_fedata *fedata = NULL;
891 	unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
892 
893 	if (dev) {
894 		fedata = dev_get_drvdata(&dev->dev);
895 		if (fedata) {
896 			pvcalls_back_work(fedata);
897 			eoi_flags = 0;
898 		}
899 	}
900 
901 	xen_irq_lateeoi(irq, eoi_flags);
902 
903 	return IRQ_HANDLED;
904 }
905 
906 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
907 {
908 	struct sock_mapping *map = sock_map;
909 	struct pvcalls_ioworker *iow;
910 
911 	if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
912 		map->sock->sk->sk_user_data != map) {
913 		xen_irq_lateeoi(irq, 0);
914 		return IRQ_HANDLED;
915 	}
916 
917 	iow = &map->ioworker;
918 
919 	atomic_inc(&map->write);
920 	atomic_inc(&map->eoi);
921 	atomic_inc(&map->io);
922 	queue_work(iow->wq, &iow->register_work);
923 
924 	return IRQ_HANDLED;
925 }
926 
927 static int backend_connect(struct xenbus_device *dev)
928 {
929 	int err;
930 	evtchn_port_t evtchn;
931 	grant_ref_t ring_ref;
932 	struct pvcalls_fedata *fedata = NULL;
933 
934 	fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
935 	if (!fedata)
936 		return -ENOMEM;
937 
938 	fedata->irq = -1;
939 	err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
940 			   &evtchn);
941 	if (err != 1) {
942 		err = -EINVAL;
943 		xenbus_dev_fatal(dev, err, "reading %s/event-channel",
944 				 dev->otherend);
945 		goto error;
946 	}
947 
948 	err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
949 	if (err != 1) {
950 		err = -EINVAL;
951 		xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
952 				 dev->otherend);
953 		goto error;
954 	}
955 
956 	err = bind_interdomain_evtchn_to_irq_lateeoi(dev, evtchn);
957 	if (err < 0)
958 		goto error;
959 	fedata->irq = err;
960 
961 	err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
962 				   IRQF_ONESHOT, "pvcalls-back", dev);
963 	if (err < 0)
964 		goto error;
965 
966 	err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
967 				     (void **)&fedata->sring);
968 	if (err < 0)
969 		goto error;
970 
971 	BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
972 	fedata->dev = dev;
973 
974 	INIT_LIST_HEAD(&fedata->socket_mappings);
975 	INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
976 	sema_init(&fedata->socket_lock, 1);
977 	dev_set_drvdata(&dev->dev, fedata);
978 
979 	down(&pvcalls_back_global.frontends_lock);
980 	list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
981 	up(&pvcalls_back_global.frontends_lock);
982 
983 	return 0;
984 
985  error:
986 	if (fedata->irq >= 0)
987 		unbind_from_irqhandler(fedata->irq, dev);
988 	if (fedata->sring != NULL)
989 		xenbus_unmap_ring_vfree(dev, fedata->sring);
990 	kfree(fedata);
991 	return err;
992 }
993 
994 static int backend_disconnect(struct xenbus_device *dev)
995 {
996 	struct pvcalls_fedata *fedata;
997 	struct sock_mapping *map, *n;
998 	struct sockpass_mapping *mappass;
999 	struct radix_tree_iter iter;
1000 	void **slot;
1001 
1002 
1003 	fedata = dev_get_drvdata(&dev->dev);
1004 
1005 	down(&fedata->socket_lock);
1006 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
1007 		list_del(&map->list);
1008 		pvcalls_back_release_active(dev, fedata, map);
1009 	}
1010 
1011 	radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
1012 		mappass = radix_tree_deref_slot(slot);
1013 		if (!mappass)
1014 			continue;
1015 		if (radix_tree_exception(mappass)) {
1016 			if (radix_tree_deref_retry(mappass))
1017 				slot = radix_tree_iter_retry(&iter);
1018 		} else {
1019 			radix_tree_delete(&fedata->socketpass_mappings,
1020 					  mappass->id);
1021 			pvcalls_back_release_passive(dev, fedata, mappass);
1022 		}
1023 	}
1024 	up(&fedata->socket_lock);
1025 
1026 	unbind_from_irqhandler(fedata->irq, dev);
1027 	xenbus_unmap_ring_vfree(dev, fedata->sring);
1028 
1029 	list_del(&fedata->list);
1030 	kfree(fedata);
1031 	dev_set_drvdata(&dev->dev, NULL);
1032 
1033 	return 0;
1034 }
1035 
1036 static int pvcalls_back_probe(struct xenbus_device *dev,
1037 			      const struct xenbus_device_id *id)
1038 {
1039 	int err, abort;
1040 	struct xenbus_transaction xbt;
1041 
1042 again:
1043 	abort = 1;
1044 
1045 	err = xenbus_transaction_start(&xbt);
1046 	if (err) {
1047 		pr_warn("%s cannot create xenstore transaction\n", __func__);
1048 		return err;
1049 	}
1050 
1051 	err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
1052 			    PVCALLS_VERSIONS);
1053 	if (err) {
1054 		pr_warn("%s write out 'versions' failed\n", __func__);
1055 		goto abort;
1056 	}
1057 
1058 	err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
1059 			    MAX_RING_ORDER);
1060 	if (err) {
1061 		pr_warn("%s write out 'max-page-order' failed\n", __func__);
1062 		goto abort;
1063 	}
1064 
1065 	err = xenbus_printf(xbt, dev->nodename, "function-calls",
1066 			    XENBUS_FUNCTIONS_CALLS);
1067 	if (err) {
1068 		pr_warn("%s write out 'function-calls' failed\n", __func__);
1069 		goto abort;
1070 	}
1071 
1072 	abort = 0;
1073 abort:
1074 	err = xenbus_transaction_end(xbt, abort);
1075 	if (err) {
1076 		if (err == -EAGAIN && !abort)
1077 			goto again;
1078 		pr_warn("%s cannot complete xenstore transaction\n", __func__);
1079 		return err;
1080 	}
1081 
1082 	if (abort)
1083 		return -EFAULT;
1084 
1085 	xenbus_switch_state(dev, XenbusStateInitWait);
1086 
1087 	return 0;
1088 }
1089 
1090 static void set_backend_state(struct xenbus_device *dev,
1091 			      enum xenbus_state state)
1092 {
1093 	while (dev->state != state) {
1094 		switch (dev->state) {
1095 		case XenbusStateClosed:
1096 			switch (state) {
1097 			case XenbusStateInitWait:
1098 			case XenbusStateConnected:
1099 				xenbus_switch_state(dev, XenbusStateInitWait);
1100 				break;
1101 			case XenbusStateClosing:
1102 				xenbus_switch_state(dev, XenbusStateClosing);
1103 				break;
1104 			default:
1105 				WARN_ON(1);
1106 			}
1107 			break;
1108 		case XenbusStateInitWait:
1109 		case XenbusStateInitialised:
1110 			switch (state) {
1111 			case XenbusStateConnected:
1112 				if (backend_connect(dev))
1113 					return;
1114 				xenbus_switch_state(dev, XenbusStateConnected);
1115 				break;
1116 			case XenbusStateClosing:
1117 			case XenbusStateClosed:
1118 				xenbus_switch_state(dev, XenbusStateClosing);
1119 				break;
1120 			default:
1121 				WARN_ON(1);
1122 			}
1123 			break;
1124 		case XenbusStateConnected:
1125 			switch (state) {
1126 			case XenbusStateInitWait:
1127 			case XenbusStateClosing:
1128 			case XenbusStateClosed:
1129 				down(&pvcalls_back_global.frontends_lock);
1130 				backend_disconnect(dev);
1131 				up(&pvcalls_back_global.frontends_lock);
1132 				xenbus_switch_state(dev, XenbusStateClosing);
1133 				break;
1134 			default:
1135 				WARN_ON(1);
1136 			}
1137 			break;
1138 		case XenbusStateClosing:
1139 			switch (state) {
1140 			case XenbusStateInitWait:
1141 			case XenbusStateConnected:
1142 			case XenbusStateClosed:
1143 				xenbus_switch_state(dev, XenbusStateClosed);
1144 				break;
1145 			default:
1146 				WARN_ON(1);
1147 			}
1148 			break;
1149 		default:
1150 			WARN_ON(1);
1151 		}
1152 	}
1153 }
1154 
1155 static void pvcalls_back_changed(struct xenbus_device *dev,
1156 				 enum xenbus_state frontend_state)
1157 {
1158 	switch (frontend_state) {
1159 	case XenbusStateInitialising:
1160 		set_backend_state(dev, XenbusStateInitWait);
1161 		break;
1162 
1163 	case XenbusStateInitialised:
1164 	case XenbusStateConnected:
1165 		set_backend_state(dev, XenbusStateConnected);
1166 		break;
1167 
1168 	case XenbusStateClosing:
1169 		set_backend_state(dev, XenbusStateClosing);
1170 		break;
1171 
1172 	case XenbusStateClosed:
1173 		set_backend_state(dev, XenbusStateClosed);
1174 		if (xenbus_dev_is_online(dev))
1175 			break;
1176 		device_unregister(&dev->dev);
1177 		break;
1178 	case XenbusStateUnknown:
1179 		set_backend_state(dev, XenbusStateClosed);
1180 		device_unregister(&dev->dev);
1181 		break;
1182 
1183 	default:
1184 		xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
1185 				 frontend_state);
1186 		break;
1187 	}
1188 }
1189 
1190 static void pvcalls_back_remove(struct xenbus_device *dev)
1191 {
1192 }
1193 
1194 static int pvcalls_back_uevent(const struct xenbus_device *xdev,
1195 			       struct kobj_uevent_env *env)
1196 {
1197 	return 0;
1198 }
1199 
1200 static const struct xenbus_device_id pvcalls_back_ids[] = {
1201 	{ "pvcalls" },
1202 	{ "" }
1203 };
1204 
1205 static struct xenbus_driver pvcalls_back_driver = {
1206 	.ids = pvcalls_back_ids,
1207 	.probe = pvcalls_back_probe,
1208 	.remove = pvcalls_back_remove,
1209 	.uevent = pvcalls_back_uevent,
1210 	.otherend_changed = pvcalls_back_changed,
1211 };
1212 
1213 static int __init pvcalls_back_init(void)
1214 {
1215 	int ret;
1216 
1217 	if (!xen_domain())
1218 		return -ENODEV;
1219 
1220 	ret = xenbus_register_backend(&pvcalls_back_driver);
1221 	if (ret < 0)
1222 		return ret;
1223 
1224 	sema_init(&pvcalls_back_global.frontends_lock, 1);
1225 	INIT_LIST_HEAD(&pvcalls_back_global.frontends);
1226 	return 0;
1227 }
1228 module_init(pvcalls_back_init);
1229 
1230 static void __exit pvcalls_back_fin(void)
1231 {
1232 	struct pvcalls_fedata *fedata, *nfedata;
1233 
1234 	down(&pvcalls_back_global.frontends_lock);
1235 	list_for_each_entry_safe(fedata, nfedata,
1236 				 &pvcalls_back_global.frontends, list) {
1237 		backend_disconnect(fedata->dev);
1238 	}
1239 	up(&pvcalls_back_global.frontends_lock);
1240 
1241 	xenbus_unregister_driver(&pvcalls_back_driver);
1242 }
1243 
1244 module_exit(pvcalls_back_fin);
1245 
1246 MODULE_DESCRIPTION("Xen PV Calls backend driver");
1247 MODULE_AUTHOR("Stefano Stabellini <sstabellini@kernel.org>");
1248 MODULE_LICENSE("GPL");
1249