xref: /openbmc/linux/drivers/xen/pvcalls-back.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * (c) 2017 Stefano Stabellini <stefano@aporeto.com>
4  */
5 
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/list.h>
9 #include <linux/radix-tree.h>
10 #include <linux/module.h>
11 #include <linux/semaphore.h>
12 #include <linux/wait.h>
13 #include <net/sock.h>
14 #include <net/inet_common.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/request_sock.h>
17 
18 #include <xen/events.h>
19 #include <xen/grant_table.h>
20 #include <xen/xen.h>
21 #include <xen/xenbus.h>
22 #include <xen/interface/io/pvcalls.h>
23 
24 #define PVCALLS_VERSIONS "1"
25 #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
26 
27 static struct pvcalls_back_global {
28 	struct list_head frontends;
29 	struct semaphore frontends_lock;
30 } pvcalls_back_global;
31 
32 /*
33  * Per-frontend data structure. It contains pointers to the command
34  * ring, its event channel, a list of active sockets and a tree of
35  * passive sockets.
36  */
37 struct pvcalls_fedata {
38 	struct list_head list;
39 	struct xenbus_device *dev;
40 	struct xen_pvcalls_sring *sring;
41 	struct xen_pvcalls_back_ring ring;
42 	int irq;
43 	struct list_head socket_mappings;
44 	struct radix_tree_root socketpass_mappings;
45 	struct semaphore socket_lock;
46 };
47 
48 struct pvcalls_ioworker {
49 	struct work_struct register_work;
50 	struct workqueue_struct *wq;
51 };
52 
53 struct sock_mapping {
54 	struct list_head list;
55 	struct pvcalls_fedata *fedata;
56 	struct sockpass_mapping *sockpass;
57 	struct socket *sock;
58 	uint64_t id;
59 	grant_ref_t ref;
60 	struct pvcalls_data_intf *ring;
61 	void *bytes;
62 	struct pvcalls_data data;
63 	uint32_t ring_order;
64 	int irq;
65 	atomic_t read;
66 	atomic_t write;
67 	atomic_t io;
68 	atomic_t release;
69 	void (*saved_data_ready)(struct sock *sk);
70 	struct pvcalls_ioworker ioworker;
71 };
72 
73 struct sockpass_mapping {
74 	struct list_head list;
75 	struct pvcalls_fedata *fedata;
76 	struct socket *sock;
77 	uint64_t id;
78 	struct xen_pvcalls_request reqcopy;
79 	spinlock_t copy_lock;
80 	struct workqueue_struct *wq;
81 	struct work_struct register_work;
82 	void (*saved_data_ready)(struct sock *sk);
83 };
84 
85 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
86 static int pvcalls_back_release_active(struct xenbus_device *dev,
87 				       struct pvcalls_fedata *fedata,
88 				       struct sock_mapping *map);
89 
90 static void pvcalls_conn_back_read(void *opaque)
91 {
92 	struct sock_mapping *map = (struct sock_mapping *)opaque;
93 	struct msghdr msg;
94 	struct kvec vec[2];
95 	RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
96 	int32_t error;
97 	struct pvcalls_data_intf *intf = map->ring;
98 	struct pvcalls_data *data = &map->data;
99 	unsigned long flags;
100 	int ret;
101 
102 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
103 	cons = intf->in_cons;
104 	prod = intf->in_prod;
105 	error = intf->in_error;
106 	/* read the indexes first, then deal with the data */
107 	virt_mb();
108 
109 	if (error)
110 		return;
111 
112 	size = pvcalls_queued(prod, cons, array_size);
113 	if (size >= array_size)
114 		return;
115 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
116 	if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
117 		atomic_set(&map->read, 0);
118 		spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
119 				flags);
120 		return;
121 	}
122 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
123 	wanted = array_size - size;
124 	masked_prod = pvcalls_mask(prod, array_size);
125 	masked_cons = pvcalls_mask(cons, array_size);
126 
127 	memset(&msg, 0, sizeof(msg));
128 	if (masked_prod < masked_cons) {
129 		vec[0].iov_base = data->in + masked_prod;
130 		vec[0].iov_len = wanted;
131 		iov_iter_kvec(&msg.msg_iter, WRITE, vec, 1, wanted);
132 	} else {
133 		vec[0].iov_base = data->in + masked_prod;
134 		vec[0].iov_len = array_size - masked_prod;
135 		vec[1].iov_base = data->in;
136 		vec[1].iov_len = wanted - vec[0].iov_len;
137 		iov_iter_kvec(&msg.msg_iter, WRITE, vec, 2, wanted);
138 	}
139 
140 	atomic_set(&map->read, 0);
141 	ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
142 	WARN_ON(ret > wanted);
143 	if (ret == -EAGAIN) /* shouldn't happen */
144 		return;
145 	if (!ret)
146 		ret = -ENOTCONN;
147 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
148 	if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
149 		atomic_inc(&map->read);
150 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
151 
152 	/* write the data, then modify the indexes */
153 	virt_wmb();
154 	if (ret < 0) {
155 		atomic_set(&map->read, 0);
156 		intf->in_error = ret;
157 	} else
158 		intf->in_prod = prod + ret;
159 	/* update the indexes, then notify the other end */
160 	virt_wmb();
161 	notify_remote_via_irq(map->irq);
162 
163 	return;
164 }
165 
166 static void pvcalls_conn_back_write(struct sock_mapping *map)
167 {
168 	struct pvcalls_data_intf *intf = map->ring;
169 	struct pvcalls_data *data = &map->data;
170 	struct msghdr msg;
171 	struct kvec vec[2];
172 	RING_IDX cons, prod, size, array_size;
173 	int ret;
174 
175 	cons = intf->out_cons;
176 	prod = intf->out_prod;
177 	/* read the indexes before dealing with the data */
178 	virt_mb();
179 
180 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
181 	size = pvcalls_queued(prod, cons, array_size);
182 	if (size == 0)
183 		return;
184 
185 	memset(&msg, 0, sizeof(msg));
186 	msg.msg_flags |= MSG_DONTWAIT;
187 	if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
188 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
189 		vec[0].iov_len = size;
190 		iov_iter_kvec(&msg.msg_iter, READ, vec, 1, size);
191 	} else {
192 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
193 		vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
194 		vec[1].iov_base = data->out;
195 		vec[1].iov_len = size - vec[0].iov_len;
196 		iov_iter_kvec(&msg.msg_iter, READ, vec, 2, size);
197 	}
198 
199 	atomic_set(&map->write, 0);
200 	ret = inet_sendmsg(map->sock, &msg, size);
201 	if (ret == -EAGAIN || (ret >= 0 && ret < size)) {
202 		atomic_inc(&map->write);
203 		atomic_inc(&map->io);
204 	}
205 	if (ret == -EAGAIN)
206 		return;
207 
208 	/* write the data, then update the indexes */
209 	virt_wmb();
210 	if (ret < 0) {
211 		intf->out_error = ret;
212 	} else {
213 		intf->out_error = 0;
214 		intf->out_cons = cons + ret;
215 		prod = intf->out_prod;
216 	}
217 	/* update the indexes, then notify the other end */
218 	virt_wmb();
219 	if (prod != cons + ret)
220 		atomic_inc(&map->write);
221 	notify_remote_via_irq(map->irq);
222 }
223 
224 static void pvcalls_back_ioworker(struct work_struct *work)
225 {
226 	struct pvcalls_ioworker *ioworker = container_of(work,
227 		struct pvcalls_ioworker, register_work);
228 	struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
229 		ioworker);
230 
231 	while (atomic_read(&map->io) > 0) {
232 		if (atomic_read(&map->release) > 0) {
233 			atomic_set(&map->release, 0);
234 			return;
235 		}
236 
237 		if (atomic_read(&map->read) > 0)
238 			pvcalls_conn_back_read(map);
239 		if (atomic_read(&map->write) > 0)
240 			pvcalls_conn_back_write(map);
241 
242 		atomic_dec(&map->io);
243 	}
244 }
245 
246 static int pvcalls_back_socket(struct xenbus_device *dev,
247 		struct xen_pvcalls_request *req)
248 {
249 	struct pvcalls_fedata *fedata;
250 	int ret;
251 	struct xen_pvcalls_response *rsp;
252 
253 	fedata = dev_get_drvdata(&dev->dev);
254 
255 	if (req->u.socket.domain != AF_INET ||
256 	    req->u.socket.type != SOCK_STREAM ||
257 	    (req->u.socket.protocol != IPPROTO_IP &&
258 	     req->u.socket.protocol != AF_INET))
259 		ret = -EAFNOSUPPORT;
260 	else
261 		ret = 0;
262 
263 	/* leave the actual socket allocation for later */
264 
265 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
266 	rsp->req_id = req->req_id;
267 	rsp->cmd = req->cmd;
268 	rsp->u.socket.id = req->u.socket.id;
269 	rsp->ret = ret;
270 
271 	return 0;
272 }
273 
274 static void pvcalls_sk_state_change(struct sock *sock)
275 {
276 	struct sock_mapping *map = sock->sk_user_data;
277 
278 	if (map == NULL)
279 		return;
280 
281 	atomic_inc(&map->read);
282 	notify_remote_via_irq(map->irq);
283 }
284 
285 static void pvcalls_sk_data_ready(struct sock *sock)
286 {
287 	struct sock_mapping *map = sock->sk_user_data;
288 	struct pvcalls_ioworker *iow;
289 
290 	if (map == NULL)
291 		return;
292 
293 	iow = &map->ioworker;
294 	atomic_inc(&map->read);
295 	atomic_inc(&map->io);
296 	queue_work(iow->wq, &iow->register_work);
297 }
298 
299 static struct sock_mapping *pvcalls_new_active_socket(
300 		struct pvcalls_fedata *fedata,
301 		uint64_t id,
302 		grant_ref_t ref,
303 		evtchn_port_t evtchn,
304 		struct socket *sock)
305 {
306 	int ret;
307 	struct sock_mapping *map;
308 	void *page;
309 
310 	map = kzalloc(sizeof(*map), GFP_KERNEL);
311 	if (map == NULL)
312 		return NULL;
313 
314 	map->fedata = fedata;
315 	map->sock = sock;
316 	map->id = id;
317 	map->ref = ref;
318 
319 	ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
320 	if (ret < 0)
321 		goto out;
322 	map->ring = page;
323 	map->ring_order = map->ring->ring_order;
324 	/* first read the order, then map the data ring */
325 	virt_rmb();
326 	if (map->ring_order > MAX_RING_ORDER) {
327 		pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
328 				__func__, map->ring_order, MAX_RING_ORDER);
329 		goto out;
330 	}
331 	ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
332 				     (1 << map->ring_order), &page);
333 	if (ret < 0)
334 		goto out;
335 	map->bytes = page;
336 
337 	ret = bind_interdomain_evtchn_to_irqhandler(fedata->dev->otherend_id,
338 						    evtchn,
339 						    pvcalls_back_conn_event,
340 						    0,
341 						    "pvcalls-backend",
342 						    map);
343 	if (ret < 0)
344 		goto out;
345 	map->irq = ret;
346 
347 	map->data.in = map->bytes;
348 	map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
349 
350 	map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1);
351 	if (!map->ioworker.wq)
352 		goto out;
353 	atomic_set(&map->io, 1);
354 	INIT_WORK(&map->ioworker.register_work,	pvcalls_back_ioworker);
355 
356 	down(&fedata->socket_lock);
357 	list_add_tail(&map->list, &fedata->socket_mappings);
358 	up(&fedata->socket_lock);
359 
360 	write_lock_bh(&map->sock->sk->sk_callback_lock);
361 	map->saved_data_ready = map->sock->sk->sk_data_ready;
362 	map->sock->sk->sk_user_data = map;
363 	map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
364 	map->sock->sk->sk_state_change = pvcalls_sk_state_change;
365 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
366 
367 	return map;
368 out:
369 	down(&fedata->socket_lock);
370 	list_del(&map->list);
371 	pvcalls_back_release_active(fedata->dev, fedata, map);
372 	up(&fedata->socket_lock);
373 	return NULL;
374 }
375 
376 static int pvcalls_back_connect(struct xenbus_device *dev,
377 				struct xen_pvcalls_request *req)
378 {
379 	struct pvcalls_fedata *fedata;
380 	int ret = -EINVAL;
381 	struct socket *sock;
382 	struct sock_mapping *map;
383 	struct xen_pvcalls_response *rsp;
384 	struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
385 
386 	fedata = dev_get_drvdata(&dev->dev);
387 
388 	if (req->u.connect.len < sizeof(sa->sa_family) ||
389 	    req->u.connect.len > sizeof(req->u.connect.addr) ||
390 	    sa->sa_family != AF_INET)
391 		goto out;
392 
393 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
394 	if (ret < 0)
395 		goto out;
396 	ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
397 	if (ret < 0) {
398 		sock_release(sock);
399 		goto out;
400 	}
401 
402 	map = pvcalls_new_active_socket(fedata,
403 					req->u.connect.id,
404 					req->u.connect.ref,
405 					req->u.connect.evtchn,
406 					sock);
407 	if (!map) {
408 		ret = -EFAULT;
409 		sock_release(sock);
410 	}
411 
412 out:
413 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
414 	rsp->req_id = req->req_id;
415 	rsp->cmd = req->cmd;
416 	rsp->u.connect.id = req->u.connect.id;
417 	rsp->ret = ret;
418 
419 	return 0;
420 }
421 
422 static int pvcalls_back_release_active(struct xenbus_device *dev,
423 				       struct pvcalls_fedata *fedata,
424 				       struct sock_mapping *map)
425 {
426 	disable_irq(map->irq);
427 	if (map->sock->sk != NULL) {
428 		write_lock_bh(&map->sock->sk->sk_callback_lock);
429 		map->sock->sk->sk_user_data = NULL;
430 		map->sock->sk->sk_data_ready = map->saved_data_ready;
431 		write_unlock_bh(&map->sock->sk->sk_callback_lock);
432 	}
433 
434 	atomic_set(&map->release, 1);
435 	flush_work(&map->ioworker.register_work);
436 
437 	xenbus_unmap_ring_vfree(dev, map->bytes);
438 	xenbus_unmap_ring_vfree(dev, (void *)map->ring);
439 	unbind_from_irqhandler(map->irq, map);
440 
441 	sock_release(map->sock);
442 	kfree(map);
443 
444 	return 0;
445 }
446 
447 static int pvcalls_back_release_passive(struct xenbus_device *dev,
448 					struct pvcalls_fedata *fedata,
449 					struct sockpass_mapping *mappass)
450 {
451 	if (mappass->sock->sk != NULL) {
452 		write_lock_bh(&mappass->sock->sk->sk_callback_lock);
453 		mappass->sock->sk->sk_user_data = NULL;
454 		mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
455 		write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
456 	}
457 	sock_release(mappass->sock);
458 	flush_workqueue(mappass->wq);
459 	destroy_workqueue(mappass->wq);
460 	kfree(mappass);
461 
462 	return 0;
463 }
464 
465 static int pvcalls_back_release(struct xenbus_device *dev,
466 				struct xen_pvcalls_request *req)
467 {
468 	struct pvcalls_fedata *fedata;
469 	struct sock_mapping *map, *n;
470 	struct sockpass_mapping *mappass;
471 	int ret = 0;
472 	struct xen_pvcalls_response *rsp;
473 
474 	fedata = dev_get_drvdata(&dev->dev);
475 
476 	down(&fedata->socket_lock);
477 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
478 		if (map->id == req->u.release.id) {
479 			list_del(&map->list);
480 			up(&fedata->socket_lock);
481 			ret = pvcalls_back_release_active(dev, fedata, map);
482 			goto out;
483 		}
484 	}
485 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
486 				    req->u.release.id);
487 	if (mappass != NULL) {
488 		radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
489 		up(&fedata->socket_lock);
490 		ret = pvcalls_back_release_passive(dev, fedata, mappass);
491 	} else
492 		up(&fedata->socket_lock);
493 
494 out:
495 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
496 	rsp->req_id = req->req_id;
497 	rsp->u.release.id = req->u.release.id;
498 	rsp->cmd = req->cmd;
499 	rsp->ret = ret;
500 	return 0;
501 }
502 
503 static void __pvcalls_back_accept(struct work_struct *work)
504 {
505 	struct sockpass_mapping *mappass = container_of(
506 		work, struct sockpass_mapping, register_work);
507 	struct sock_mapping *map;
508 	struct pvcalls_ioworker *iow;
509 	struct pvcalls_fedata *fedata;
510 	struct socket *sock;
511 	struct xen_pvcalls_response *rsp;
512 	struct xen_pvcalls_request *req;
513 	int notify;
514 	int ret = -EINVAL;
515 	unsigned long flags;
516 
517 	fedata = mappass->fedata;
518 	/*
519 	 * __pvcalls_back_accept can race against pvcalls_back_accept.
520 	 * We only need to check the value of "cmd" on read. It could be
521 	 * done atomically, but to simplify the code on the write side, we
522 	 * use a spinlock.
523 	 */
524 	spin_lock_irqsave(&mappass->copy_lock, flags);
525 	req = &mappass->reqcopy;
526 	if (req->cmd != PVCALLS_ACCEPT) {
527 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
528 		return;
529 	}
530 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
531 
532 	sock = sock_alloc();
533 	if (sock == NULL)
534 		goto out_error;
535 	sock->type = mappass->sock->type;
536 	sock->ops = mappass->sock->ops;
537 
538 	ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true);
539 	if (ret == -EAGAIN) {
540 		sock_release(sock);
541 		return;
542 	}
543 
544 	map = pvcalls_new_active_socket(fedata,
545 					req->u.accept.id_new,
546 					req->u.accept.ref,
547 					req->u.accept.evtchn,
548 					sock);
549 	if (!map) {
550 		ret = -EFAULT;
551 		sock_release(sock);
552 		goto out_error;
553 	}
554 
555 	map->sockpass = mappass;
556 	iow = &map->ioworker;
557 	atomic_inc(&map->read);
558 	atomic_inc(&map->io);
559 	queue_work(iow->wq, &iow->register_work);
560 
561 out_error:
562 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
563 	rsp->req_id = req->req_id;
564 	rsp->cmd = req->cmd;
565 	rsp->u.accept.id = req->u.accept.id;
566 	rsp->ret = ret;
567 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
568 	if (notify)
569 		notify_remote_via_irq(fedata->irq);
570 
571 	mappass->reqcopy.cmd = 0;
572 }
573 
574 static void pvcalls_pass_sk_data_ready(struct sock *sock)
575 {
576 	struct sockpass_mapping *mappass = sock->sk_user_data;
577 	struct pvcalls_fedata *fedata;
578 	struct xen_pvcalls_response *rsp;
579 	unsigned long flags;
580 	int notify;
581 
582 	if (mappass == NULL)
583 		return;
584 
585 	fedata = mappass->fedata;
586 	spin_lock_irqsave(&mappass->copy_lock, flags);
587 	if (mappass->reqcopy.cmd == PVCALLS_POLL) {
588 		rsp = RING_GET_RESPONSE(&fedata->ring,
589 					fedata->ring.rsp_prod_pvt++);
590 		rsp->req_id = mappass->reqcopy.req_id;
591 		rsp->u.poll.id = mappass->reqcopy.u.poll.id;
592 		rsp->cmd = mappass->reqcopy.cmd;
593 		rsp->ret = 0;
594 
595 		mappass->reqcopy.cmd = 0;
596 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
597 
598 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
599 		if (notify)
600 			notify_remote_via_irq(mappass->fedata->irq);
601 	} else {
602 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
603 		queue_work(mappass->wq, &mappass->register_work);
604 	}
605 }
606 
607 static int pvcalls_back_bind(struct xenbus_device *dev,
608 			     struct xen_pvcalls_request *req)
609 {
610 	struct pvcalls_fedata *fedata;
611 	int ret;
612 	struct sockpass_mapping *map;
613 	struct xen_pvcalls_response *rsp;
614 
615 	fedata = dev_get_drvdata(&dev->dev);
616 
617 	map = kzalloc(sizeof(*map), GFP_KERNEL);
618 	if (map == NULL) {
619 		ret = -ENOMEM;
620 		goto out;
621 	}
622 
623 	INIT_WORK(&map->register_work, __pvcalls_back_accept);
624 	spin_lock_init(&map->copy_lock);
625 	map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1);
626 	if (!map->wq) {
627 		ret = -ENOMEM;
628 		goto out;
629 	}
630 
631 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
632 	if (ret < 0)
633 		goto out;
634 
635 	ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
636 			req->u.bind.len);
637 	if (ret < 0)
638 		goto out;
639 
640 	map->fedata = fedata;
641 	map->id = req->u.bind.id;
642 
643 	down(&fedata->socket_lock);
644 	ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
645 				map);
646 	up(&fedata->socket_lock);
647 	if (ret)
648 		goto out;
649 
650 	write_lock_bh(&map->sock->sk->sk_callback_lock);
651 	map->saved_data_ready = map->sock->sk->sk_data_ready;
652 	map->sock->sk->sk_user_data = map;
653 	map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
654 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
655 
656 out:
657 	if (ret) {
658 		if (map && map->sock)
659 			sock_release(map->sock);
660 		if (map && map->wq)
661 			destroy_workqueue(map->wq);
662 		kfree(map);
663 	}
664 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
665 	rsp->req_id = req->req_id;
666 	rsp->cmd = req->cmd;
667 	rsp->u.bind.id = req->u.bind.id;
668 	rsp->ret = ret;
669 	return 0;
670 }
671 
672 static int pvcalls_back_listen(struct xenbus_device *dev,
673 			       struct xen_pvcalls_request *req)
674 {
675 	struct pvcalls_fedata *fedata;
676 	int ret = -EINVAL;
677 	struct sockpass_mapping *map;
678 	struct xen_pvcalls_response *rsp;
679 
680 	fedata = dev_get_drvdata(&dev->dev);
681 
682 	down(&fedata->socket_lock);
683 	map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
684 	up(&fedata->socket_lock);
685 	if (map == NULL)
686 		goto out;
687 
688 	ret = inet_listen(map->sock, req->u.listen.backlog);
689 
690 out:
691 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
692 	rsp->req_id = req->req_id;
693 	rsp->cmd = req->cmd;
694 	rsp->u.listen.id = req->u.listen.id;
695 	rsp->ret = ret;
696 	return 0;
697 }
698 
699 static int pvcalls_back_accept(struct xenbus_device *dev,
700 			       struct xen_pvcalls_request *req)
701 {
702 	struct pvcalls_fedata *fedata;
703 	struct sockpass_mapping *mappass;
704 	int ret = -EINVAL;
705 	struct xen_pvcalls_response *rsp;
706 	unsigned long flags;
707 
708 	fedata = dev_get_drvdata(&dev->dev);
709 
710 	down(&fedata->socket_lock);
711 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
712 		req->u.accept.id);
713 	up(&fedata->socket_lock);
714 	if (mappass == NULL)
715 		goto out_error;
716 
717 	/*
718 	 * Limitation of the current implementation: only support one
719 	 * concurrent accept or poll call on one socket.
720 	 */
721 	spin_lock_irqsave(&mappass->copy_lock, flags);
722 	if (mappass->reqcopy.cmd != 0) {
723 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
724 		ret = -EINTR;
725 		goto out_error;
726 	}
727 
728 	mappass->reqcopy = *req;
729 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
730 	queue_work(mappass->wq, &mappass->register_work);
731 
732 	/* Tell the caller we don't need to send back a notification yet */
733 	return -1;
734 
735 out_error:
736 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
737 	rsp->req_id = req->req_id;
738 	rsp->cmd = req->cmd;
739 	rsp->u.accept.id = req->u.accept.id;
740 	rsp->ret = ret;
741 	return 0;
742 }
743 
744 static int pvcalls_back_poll(struct xenbus_device *dev,
745 			     struct xen_pvcalls_request *req)
746 {
747 	struct pvcalls_fedata *fedata;
748 	struct sockpass_mapping *mappass;
749 	struct xen_pvcalls_response *rsp;
750 	struct inet_connection_sock *icsk;
751 	struct request_sock_queue *queue;
752 	unsigned long flags;
753 	int ret;
754 	bool data;
755 
756 	fedata = dev_get_drvdata(&dev->dev);
757 
758 	down(&fedata->socket_lock);
759 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
760 				    req->u.poll.id);
761 	up(&fedata->socket_lock);
762 	if (mappass == NULL)
763 		return -EINVAL;
764 
765 	/*
766 	 * Limitation of the current implementation: only support one
767 	 * concurrent accept or poll call on one socket.
768 	 */
769 	spin_lock_irqsave(&mappass->copy_lock, flags);
770 	if (mappass->reqcopy.cmd != 0) {
771 		ret = -EINTR;
772 		goto out;
773 	}
774 
775 	mappass->reqcopy = *req;
776 	icsk = inet_csk(mappass->sock->sk);
777 	queue = &icsk->icsk_accept_queue;
778 	data = READ_ONCE(queue->rskq_accept_head) != NULL;
779 	if (data) {
780 		mappass->reqcopy.cmd = 0;
781 		ret = 0;
782 		goto out;
783 	}
784 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
785 
786 	/* Tell the caller we don't need to send back a notification yet */
787 	return -1;
788 
789 out:
790 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
791 
792 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
793 	rsp->req_id = req->req_id;
794 	rsp->cmd = req->cmd;
795 	rsp->u.poll.id = req->u.poll.id;
796 	rsp->ret = ret;
797 	return 0;
798 }
799 
800 static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
801 				   struct xen_pvcalls_request *req)
802 {
803 	int ret = 0;
804 
805 	switch (req->cmd) {
806 	case PVCALLS_SOCKET:
807 		ret = pvcalls_back_socket(dev, req);
808 		break;
809 	case PVCALLS_CONNECT:
810 		ret = pvcalls_back_connect(dev, req);
811 		break;
812 	case PVCALLS_RELEASE:
813 		ret = pvcalls_back_release(dev, req);
814 		break;
815 	case PVCALLS_BIND:
816 		ret = pvcalls_back_bind(dev, req);
817 		break;
818 	case PVCALLS_LISTEN:
819 		ret = pvcalls_back_listen(dev, req);
820 		break;
821 	case PVCALLS_ACCEPT:
822 		ret = pvcalls_back_accept(dev, req);
823 		break;
824 	case PVCALLS_POLL:
825 		ret = pvcalls_back_poll(dev, req);
826 		break;
827 	default:
828 	{
829 		struct pvcalls_fedata *fedata;
830 		struct xen_pvcalls_response *rsp;
831 
832 		fedata = dev_get_drvdata(&dev->dev);
833 		rsp = RING_GET_RESPONSE(
834 				&fedata->ring, fedata->ring.rsp_prod_pvt++);
835 		rsp->req_id = req->req_id;
836 		rsp->cmd = req->cmd;
837 		rsp->ret = -ENOTSUPP;
838 		break;
839 	}
840 	}
841 	return ret;
842 }
843 
844 static void pvcalls_back_work(struct pvcalls_fedata *fedata)
845 {
846 	int notify, notify_all = 0, more = 1;
847 	struct xen_pvcalls_request req;
848 	struct xenbus_device *dev = fedata->dev;
849 
850 	while (more) {
851 		while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
852 			RING_COPY_REQUEST(&fedata->ring,
853 					  fedata->ring.req_cons++,
854 					  &req);
855 
856 			if (!pvcalls_back_handle_cmd(dev, &req)) {
857 				RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
858 					&fedata->ring, notify);
859 				notify_all += notify;
860 			}
861 		}
862 
863 		if (notify_all) {
864 			notify_remote_via_irq(fedata->irq);
865 			notify_all = 0;
866 		}
867 
868 		RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
869 	}
870 }
871 
872 static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
873 {
874 	struct xenbus_device *dev = dev_id;
875 	struct pvcalls_fedata *fedata = NULL;
876 
877 	if (dev == NULL)
878 		return IRQ_HANDLED;
879 
880 	fedata = dev_get_drvdata(&dev->dev);
881 	if (fedata == NULL)
882 		return IRQ_HANDLED;
883 
884 	pvcalls_back_work(fedata);
885 	return IRQ_HANDLED;
886 }
887 
888 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
889 {
890 	struct sock_mapping *map = sock_map;
891 	struct pvcalls_ioworker *iow;
892 
893 	if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
894 		map->sock->sk->sk_user_data != map)
895 		return IRQ_HANDLED;
896 
897 	iow = &map->ioworker;
898 
899 	atomic_inc(&map->write);
900 	atomic_inc(&map->io);
901 	queue_work(iow->wq, &iow->register_work);
902 
903 	return IRQ_HANDLED;
904 }
905 
906 static int backend_connect(struct xenbus_device *dev)
907 {
908 	int err;
909 	evtchn_port_t evtchn;
910 	grant_ref_t ring_ref;
911 	struct pvcalls_fedata *fedata = NULL;
912 
913 	fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
914 	if (!fedata)
915 		return -ENOMEM;
916 
917 	fedata->irq = -1;
918 	err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
919 			   &evtchn);
920 	if (err != 1) {
921 		err = -EINVAL;
922 		xenbus_dev_fatal(dev, err, "reading %s/event-channel",
923 				 dev->otherend);
924 		goto error;
925 	}
926 
927 	err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
928 	if (err != 1) {
929 		err = -EINVAL;
930 		xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
931 				 dev->otherend);
932 		goto error;
933 	}
934 
935 	err = bind_interdomain_evtchn_to_irq(dev->otherend_id, evtchn);
936 	if (err < 0)
937 		goto error;
938 	fedata->irq = err;
939 
940 	err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
941 				   IRQF_ONESHOT, "pvcalls-back", dev);
942 	if (err < 0)
943 		goto error;
944 
945 	err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
946 				     (void **)&fedata->sring);
947 	if (err < 0)
948 		goto error;
949 
950 	BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
951 	fedata->dev = dev;
952 
953 	INIT_LIST_HEAD(&fedata->socket_mappings);
954 	INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
955 	sema_init(&fedata->socket_lock, 1);
956 	dev_set_drvdata(&dev->dev, fedata);
957 
958 	down(&pvcalls_back_global.frontends_lock);
959 	list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
960 	up(&pvcalls_back_global.frontends_lock);
961 
962 	return 0;
963 
964  error:
965 	if (fedata->irq >= 0)
966 		unbind_from_irqhandler(fedata->irq, dev);
967 	if (fedata->sring != NULL)
968 		xenbus_unmap_ring_vfree(dev, fedata->sring);
969 	kfree(fedata);
970 	return err;
971 }
972 
973 static int backend_disconnect(struct xenbus_device *dev)
974 {
975 	struct pvcalls_fedata *fedata;
976 	struct sock_mapping *map, *n;
977 	struct sockpass_mapping *mappass;
978 	struct radix_tree_iter iter;
979 	void **slot;
980 
981 
982 	fedata = dev_get_drvdata(&dev->dev);
983 
984 	down(&fedata->socket_lock);
985 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
986 		list_del(&map->list);
987 		pvcalls_back_release_active(dev, fedata, map);
988 	}
989 
990 	radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
991 		mappass = radix_tree_deref_slot(slot);
992 		if (!mappass)
993 			continue;
994 		if (radix_tree_exception(mappass)) {
995 			if (radix_tree_deref_retry(mappass))
996 				slot = radix_tree_iter_retry(&iter);
997 		} else {
998 			radix_tree_delete(&fedata->socketpass_mappings,
999 					  mappass->id);
1000 			pvcalls_back_release_passive(dev, fedata, mappass);
1001 		}
1002 	}
1003 	up(&fedata->socket_lock);
1004 
1005 	unbind_from_irqhandler(fedata->irq, dev);
1006 	xenbus_unmap_ring_vfree(dev, fedata->sring);
1007 
1008 	list_del(&fedata->list);
1009 	kfree(fedata);
1010 	dev_set_drvdata(&dev->dev, NULL);
1011 
1012 	return 0;
1013 }
1014 
1015 static int pvcalls_back_probe(struct xenbus_device *dev,
1016 			      const struct xenbus_device_id *id)
1017 {
1018 	int err, abort;
1019 	struct xenbus_transaction xbt;
1020 
1021 again:
1022 	abort = 1;
1023 
1024 	err = xenbus_transaction_start(&xbt);
1025 	if (err) {
1026 		pr_warn("%s cannot create xenstore transaction\n", __func__);
1027 		return err;
1028 	}
1029 
1030 	err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
1031 			    PVCALLS_VERSIONS);
1032 	if (err) {
1033 		pr_warn("%s write out 'versions' failed\n", __func__);
1034 		goto abort;
1035 	}
1036 
1037 	err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
1038 			    MAX_RING_ORDER);
1039 	if (err) {
1040 		pr_warn("%s write out 'max-page-order' failed\n", __func__);
1041 		goto abort;
1042 	}
1043 
1044 	err = xenbus_printf(xbt, dev->nodename, "function-calls",
1045 			    XENBUS_FUNCTIONS_CALLS);
1046 	if (err) {
1047 		pr_warn("%s write out 'function-calls' failed\n", __func__);
1048 		goto abort;
1049 	}
1050 
1051 	abort = 0;
1052 abort:
1053 	err = xenbus_transaction_end(xbt, abort);
1054 	if (err) {
1055 		if (err == -EAGAIN && !abort)
1056 			goto again;
1057 		pr_warn("%s cannot complete xenstore transaction\n", __func__);
1058 		return err;
1059 	}
1060 
1061 	if (abort)
1062 		return -EFAULT;
1063 
1064 	xenbus_switch_state(dev, XenbusStateInitWait);
1065 
1066 	return 0;
1067 }
1068 
1069 static void set_backend_state(struct xenbus_device *dev,
1070 			      enum xenbus_state state)
1071 {
1072 	while (dev->state != state) {
1073 		switch (dev->state) {
1074 		case XenbusStateClosed:
1075 			switch (state) {
1076 			case XenbusStateInitWait:
1077 			case XenbusStateConnected:
1078 				xenbus_switch_state(dev, XenbusStateInitWait);
1079 				break;
1080 			case XenbusStateClosing:
1081 				xenbus_switch_state(dev, XenbusStateClosing);
1082 				break;
1083 			default:
1084 				WARN_ON(1);
1085 			}
1086 			break;
1087 		case XenbusStateInitWait:
1088 		case XenbusStateInitialised:
1089 			switch (state) {
1090 			case XenbusStateConnected:
1091 				if (backend_connect(dev))
1092 					return;
1093 				xenbus_switch_state(dev, XenbusStateConnected);
1094 				break;
1095 			case XenbusStateClosing:
1096 			case XenbusStateClosed:
1097 				xenbus_switch_state(dev, XenbusStateClosing);
1098 				break;
1099 			default:
1100 				WARN_ON(1);
1101 			}
1102 			break;
1103 		case XenbusStateConnected:
1104 			switch (state) {
1105 			case XenbusStateInitWait:
1106 			case XenbusStateClosing:
1107 			case XenbusStateClosed:
1108 				down(&pvcalls_back_global.frontends_lock);
1109 				backend_disconnect(dev);
1110 				up(&pvcalls_back_global.frontends_lock);
1111 				xenbus_switch_state(dev, XenbusStateClosing);
1112 				break;
1113 			default:
1114 				WARN_ON(1);
1115 			}
1116 			break;
1117 		case XenbusStateClosing:
1118 			switch (state) {
1119 			case XenbusStateInitWait:
1120 			case XenbusStateConnected:
1121 			case XenbusStateClosed:
1122 				xenbus_switch_state(dev, XenbusStateClosed);
1123 				break;
1124 			default:
1125 				WARN_ON(1);
1126 			}
1127 			break;
1128 		default:
1129 			WARN_ON(1);
1130 		}
1131 	}
1132 }
1133 
1134 static void pvcalls_back_changed(struct xenbus_device *dev,
1135 				 enum xenbus_state frontend_state)
1136 {
1137 	switch (frontend_state) {
1138 	case XenbusStateInitialising:
1139 		set_backend_state(dev, XenbusStateInitWait);
1140 		break;
1141 
1142 	case XenbusStateInitialised:
1143 	case XenbusStateConnected:
1144 		set_backend_state(dev, XenbusStateConnected);
1145 		break;
1146 
1147 	case XenbusStateClosing:
1148 		set_backend_state(dev, XenbusStateClosing);
1149 		break;
1150 
1151 	case XenbusStateClosed:
1152 		set_backend_state(dev, XenbusStateClosed);
1153 		if (xenbus_dev_is_online(dev))
1154 			break;
1155 		device_unregister(&dev->dev);
1156 		break;
1157 	case XenbusStateUnknown:
1158 		set_backend_state(dev, XenbusStateClosed);
1159 		device_unregister(&dev->dev);
1160 		break;
1161 
1162 	default:
1163 		xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
1164 				 frontend_state);
1165 		break;
1166 	}
1167 }
1168 
1169 static int pvcalls_back_remove(struct xenbus_device *dev)
1170 {
1171 	return 0;
1172 }
1173 
1174 static int pvcalls_back_uevent(struct xenbus_device *xdev,
1175 			       struct kobj_uevent_env *env)
1176 {
1177 	return 0;
1178 }
1179 
1180 static const struct xenbus_device_id pvcalls_back_ids[] = {
1181 	{ "pvcalls" },
1182 	{ "" }
1183 };
1184 
1185 static struct xenbus_driver pvcalls_back_driver = {
1186 	.ids = pvcalls_back_ids,
1187 	.probe = pvcalls_back_probe,
1188 	.remove = pvcalls_back_remove,
1189 	.uevent = pvcalls_back_uevent,
1190 	.otherend_changed = pvcalls_back_changed,
1191 };
1192 
1193 static int __init pvcalls_back_init(void)
1194 {
1195 	int ret;
1196 
1197 	if (!xen_domain())
1198 		return -ENODEV;
1199 
1200 	ret = xenbus_register_backend(&pvcalls_back_driver);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	sema_init(&pvcalls_back_global.frontends_lock, 1);
1205 	INIT_LIST_HEAD(&pvcalls_back_global.frontends);
1206 	return 0;
1207 }
1208 module_init(pvcalls_back_init);
1209 
1210 static void __exit pvcalls_back_fin(void)
1211 {
1212 	struct pvcalls_fedata *fedata, *nfedata;
1213 
1214 	down(&pvcalls_back_global.frontends_lock);
1215 	list_for_each_entry_safe(fedata, nfedata,
1216 				 &pvcalls_back_global.frontends, list) {
1217 		backend_disconnect(fedata->dev);
1218 	}
1219 	up(&pvcalls_back_global.frontends_lock);
1220 
1221 	xenbus_unregister_driver(&pvcalls_back_driver);
1222 }
1223 
1224 module_exit(pvcalls_back_fin);
1225 
1226 MODULE_DESCRIPTION("Xen PV Calls backend driver");
1227 MODULE_AUTHOR("Stefano Stabellini <sstabellini@kernel.org>");
1228 MODULE_LICENSE("GPL");
1229