1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xen event channels 4 * 5 * Xen models interrupts with abstract event channels. Because each 6 * domain gets 1024 event channels, but NR_IRQ is not that large, we 7 * must dynamically map irqs<->event channels. The event channels 8 * interface with the rest of the kernel by defining a xen interrupt 9 * chip. When an event is received, it is mapped to an irq and sent 10 * through the normal interrupt processing path. 11 * 12 * There are four kinds of events which can be mapped to an event 13 * channel: 14 * 15 * 1. Inter-domain notifications. This includes all the virtual 16 * device events, since they're driven by front-ends in another domain 17 * (typically dom0). 18 * 2. VIRQs, typically used for timers. These are per-cpu events. 19 * 3. IPIs. 20 * 4. PIRQs - Hardware interrupts. 21 * 22 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 23 */ 24 25 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 26 27 #include <linux/linkage.h> 28 #include <linux/interrupt.h> 29 #include <linux/irq.h> 30 #include <linux/moduleparam.h> 31 #include <linux/string.h> 32 #include <linux/memblock.h> 33 #include <linux/slab.h> 34 #include <linux/irqnr.h> 35 #include <linux/pci.h> 36 #include <linux/rcupdate.h> 37 #include <linux/spinlock.h> 38 #include <linux/cpuhotplug.h> 39 #include <linux/atomic.h> 40 #include <linux/ktime.h> 41 42 #ifdef CONFIG_X86 43 #include <asm/desc.h> 44 #include <asm/ptrace.h> 45 #include <asm/idtentry.h> 46 #include <asm/irq.h> 47 #include <asm/io_apic.h> 48 #include <asm/i8259.h> 49 #include <asm/xen/cpuid.h> 50 #include <asm/xen/pci.h> 51 #endif 52 #include <asm/sync_bitops.h> 53 #include <asm/xen/hypercall.h> 54 #include <asm/xen/hypervisor.h> 55 #include <xen/page.h> 56 57 #include <xen/xen.h> 58 #include <xen/hvm.h> 59 #include <xen/xen-ops.h> 60 #include <xen/events.h> 61 #include <xen/interface/xen.h> 62 #include <xen/interface/event_channel.h> 63 #include <xen/interface/hvm/hvm_op.h> 64 #include <xen/interface/hvm/params.h> 65 #include <xen/interface/physdev.h> 66 #include <xen/interface/sched.h> 67 #include <xen/interface/vcpu.h> 68 #include <xen/xenbus.h> 69 #include <asm/hw_irq.h> 70 71 #include "events_internal.h" 72 73 #undef MODULE_PARAM_PREFIX 74 #define MODULE_PARAM_PREFIX "xen." 75 76 /* Interrupt types. */ 77 enum xen_irq_type { 78 IRQT_UNBOUND = 0, 79 IRQT_PIRQ, 80 IRQT_VIRQ, 81 IRQT_IPI, 82 IRQT_EVTCHN 83 }; 84 85 /* 86 * Packed IRQ information: 87 * type - enum xen_irq_type 88 * event channel - irq->event channel mapping 89 * cpu - cpu this event channel is bound to 90 * index - type-specific information: 91 * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM 92 * guest, or GSI (real passthrough IRQ) of the device. 93 * VIRQ - virq number 94 * IPI - IPI vector 95 * EVTCHN - 96 */ 97 struct irq_info { 98 struct list_head list; 99 struct list_head eoi_list; 100 struct rcu_work rwork; 101 short refcnt; 102 u8 spurious_cnt; 103 u8 is_accounted; 104 short type; /* type: IRQT_* */ 105 u8 mask_reason; /* Why is event channel masked */ 106 #define EVT_MASK_REASON_EXPLICIT 0x01 107 #define EVT_MASK_REASON_TEMPORARY 0x02 108 #define EVT_MASK_REASON_EOI_PENDING 0x04 109 u8 is_active; /* Is event just being handled? */ 110 unsigned irq; 111 evtchn_port_t evtchn; /* event channel */ 112 unsigned short cpu; /* cpu bound */ 113 unsigned short eoi_cpu; /* EOI must happen on this cpu-1 */ 114 unsigned int irq_epoch; /* If eoi_cpu valid: irq_epoch of event */ 115 u64 eoi_time; /* Time in jiffies when to EOI. */ 116 raw_spinlock_t lock; 117 bool is_static; /* Is event channel static */ 118 119 union { 120 unsigned short virq; 121 enum ipi_vector ipi; 122 struct { 123 unsigned short pirq; 124 unsigned short gsi; 125 unsigned char vector; 126 unsigned char flags; 127 uint16_t domid; 128 } pirq; 129 struct xenbus_device *interdomain; 130 } u; 131 }; 132 133 #define PIRQ_NEEDS_EOI (1 << 0) 134 #define PIRQ_SHAREABLE (1 << 1) 135 #define PIRQ_MSI_GROUP (1 << 2) 136 137 static uint __read_mostly event_loop_timeout = 2; 138 module_param(event_loop_timeout, uint, 0644); 139 140 static uint __read_mostly event_eoi_delay = 10; 141 module_param(event_eoi_delay, uint, 0644); 142 143 const struct evtchn_ops *evtchn_ops; 144 145 /* 146 * This lock protects updates to the following mapping and reference-count 147 * arrays. The lock does not need to be acquired to read the mapping tables. 148 */ 149 static DEFINE_MUTEX(irq_mapping_update_lock); 150 151 /* 152 * Lock hierarchy: 153 * 154 * irq_mapping_update_lock 155 * IRQ-desc lock 156 * percpu eoi_list_lock 157 * irq_info->lock 158 */ 159 160 static LIST_HEAD(xen_irq_list_head); 161 162 /* IRQ <-> VIRQ mapping. */ 163 static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1}; 164 165 /* IRQ <-> IPI mapping */ 166 static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1}; 167 /* Cache for IPI event channels - needed for hot cpu unplug (avoid RCU usage). */ 168 static DEFINE_PER_CPU(evtchn_port_t [XEN_NR_IPIS], ipi_to_evtchn) = {[0 ... XEN_NR_IPIS-1] = 0}; 169 170 /* Event channel distribution data */ 171 static atomic_t channels_on_cpu[NR_CPUS]; 172 173 static int **evtchn_to_irq; 174 #ifdef CONFIG_X86 175 static unsigned long *pirq_eoi_map; 176 #endif 177 static bool (*pirq_needs_eoi)(unsigned irq); 178 179 #define EVTCHN_ROW(e) (e / (PAGE_SIZE/sizeof(**evtchn_to_irq))) 180 #define EVTCHN_COL(e) (e % (PAGE_SIZE/sizeof(**evtchn_to_irq))) 181 #define EVTCHN_PER_ROW (PAGE_SIZE / sizeof(**evtchn_to_irq)) 182 183 /* Xen will never allocate port zero for any purpose. */ 184 #define VALID_EVTCHN(chn) ((chn) != 0) 185 186 static struct irq_info *legacy_info_ptrs[NR_IRQS_LEGACY]; 187 188 static struct irq_chip xen_dynamic_chip; 189 static struct irq_chip xen_lateeoi_chip; 190 static struct irq_chip xen_percpu_chip; 191 static struct irq_chip xen_pirq_chip; 192 static void enable_dynirq(struct irq_data *data); 193 static void disable_dynirq(struct irq_data *data); 194 195 static DEFINE_PER_CPU(unsigned int, irq_epoch); 196 197 static void clear_evtchn_to_irq_row(int *evtchn_row) 198 { 199 unsigned col; 200 201 for (col = 0; col < EVTCHN_PER_ROW; col++) 202 WRITE_ONCE(evtchn_row[col], -1); 203 } 204 205 static void clear_evtchn_to_irq_all(void) 206 { 207 unsigned row; 208 209 for (row = 0; row < EVTCHN_ROW(xen_evtchn_max_channels()); row++) { 210 if (evtchn_to_irq[row] == NULL) 211 continue; 212 clear_evtchn_to_irq_row(evtchn_to_irq[row]); 213 } 214 } 215 216 static int set_evtchn_to_irq(evtchn_port_t evtchn, unsigned int irq) 217 { 218 unsigned row; 219 unsigned col; 220 int *evtchn_row; 221 222 if (evtchn >= xen_evtchn_max_channels()) 223 return -EINVAL; 224 225 row = EVTCHN_ROW(evtchn); 226 col = EVTCHN_COL(evtchn); 227 228 if (evtchn_to_irq[row] == NULL) { 229 /* Unallocated irq entries return -1 anyway */ 230 if (irq == -1) 231 return 0; 232 233 evtchn_row = (int *) __get_free_pages(GFP_KERNEL, 0); 234 if (evtchn_row == NULL) 235 return -ENOMEM; 236 237 clear_evtchn_to_irq_row(evtchn_row); 238 239 /* 240 * We've prepared an empty row for the mapping. If a different 241 * thread was faster inserting it, we can drop ours. 242 */ 243 if (cmpxchg(&evtchn_to_irq[row], NULL, evtchn_row) != NULL) 244 free_page((unsigned long) evtchn_row); 245 } 246 247 WRITE_ONCE(evtchn_to_irq[row][col], irq); 248 return 0; 249 } 250 251 /* Get info for IRQ */ 252 static struct irq_info *info_for_irq(unsigned irq) 253 { 254 if (irq < nr_legacy_irqs()) 255 return legacy_info_ptrs[irq]; 256 else 257 return irq_get_chip_data(irq); 258 } 259 260 static void set_info_for_irq(unsigned int irq, struct irq_info *info) 261 { 262 if (irq < nr_legacy_irqs()) 263 legacy_info_ptrs[irq] = info; 264 else 265 irq_set_chip_data(irq, info); 266 } 267 268 static struct irq_info *evtchn_to_info(evtchn_port_t evtchn) 269 { 270 int irq; 271 272 if (evtchn >= xen_evtchn_max_channels()) 273 return NULL; 274 if (evtchn_to_irq[EVTCHN_ROW(evtchn)] == NULL) 275 return NULL; 276 irq = READ_ONCE(evtchn_to_irq[EVTCHN_ROW(evtchn)][EVTCHN_COL(evtchn)]); 277 278 return (irq < 0) ? NULL : info_for_irq(irq); 279 } 280 281 /* Per CPU channel accounting */ 282 static void channels_on_cpu_dec(struct irq_info *info) 283 { 284 if (!info->is_accounted) 285 return; 286 287 info->is_accounted = 0; 288 289 if (WARN_ON_ONCE(info->cpu >= nr_cpu_ids)) 290 return; 291 292 WARN_ON_ONCE(!atomic_add_unless(&channels_on_cpu[info->cpu], -1 , 0)); 293 } 294 295 static void channels_on_cpu_inc(struct irq_info *info) 296 { 297 if (WARN_ON_ONCE(info->cpu >= nr_cpu_ids)) 298 return; 299 300 if (WARN_ON_ONCE(!atomic_add_unless(&channels_on_cpu[info->cpu], 1, 301 INT_MAX))) 302 return; 303 304 info->is_accounted = 1; 305 } 306 307 static void xen_irq_free_desc(unsigned int irq) 308 { 309 /* Legacy IRQ descriptors are managed by the arch. */ 310 if (irq >= nr_legacy_irqs()) 311 irq_free_desc(irq); 312 } 313 314 static void delayed_free_irq(struct work_struct *work) 315 { 316 struct irq_info *info = container_of(to_rcu_work(work), struct irq_info, 317 rwork); 318 unsigned int irq = info->irq; 319 320 /* Remove the info pointer only now, with no potential users left. */ 321 set_info_for_irq(irq, NULL); 322 323 kfree(info); 324 325 xen_irq_free_desc(irq); 326 } 327 328 /* Constructors for packed IRQ information. */ 329 static int xen_irq_info_common_setup(struct irq_info *info, 330 enum xen_irq_type type, 331 evtchn_port_t evtchn, 332 unsigned short cpu) 333 { 334 int ret; 335 336 BUG_ON(info->type != IRQT_UNBOUND && info->type != type); 337 338 info->type = type; 339 info->evtchn = evtchn; 340 info->cpu = cpu; 341 info->mask_reason = EVT_MASK_REASON_EXPLICIT; 342 raw_spin_lock_init(&info->lock); 343 344 ret = set_evtchn_to_irq(evtchn, info->irq); 345 if (ret < 0) 346 return ret; 347 348 irq_clear_status_flags(info->irq, IRQ_NOREQUEST | IRQ_NOAUTOEN); 349 350 return xen_evtchn_port_setup(evtchn); 351 } 352 353 static int xen_irq_info_evtchn_setup(struct irq_info *info, 354 evtchn_port_t evtchn, 355 struct xenbus_device *dev) 356 { 357 int ret; 358 359 ret = xen_irq_info_common_setup(info, IRQT_EVTCHN, evtchn, 0); 360 info->u.interdomain = dev; 361 if (dev) 362 atomic_inc(&dev->event_channels); 363 364 return ret; 365 } 366 367 static int xen_irq_info_ipi_setup(struct irq_info *info, unsigned int cpu, 368 evtchn_port_t evtchn, enum ipi_vector ipi) 369 { 370 info->u.ipi = ipi; 371 372 per_cpu(ipi_to_irq, cpu)[ipi] = info->irq; 373 per_cpu(ipi_to_evtchn, cpu)[ipi] = evtchn; 374 375 return xen_irq_info_common_setup(info, IRQT_IPI, evtchn, 0); 376 } 377 378 static int xen_irq_info_virq_setup(struct irq_info *info, unsigned int cpu, 379 evtchn_port_t evtchn, unsigned int virq) 380 { 381 info->u.virq = virq; 382 383 per_cpu(virq_to_irq, cpu)[virq] = info->irq; 384 385 return xen_irq_info_common_setup(info, IRQT_VIRQ, evtchn, 0); 386 } 387 388 static int xen_irq_info_pirq_setup(struct irq_info *info, evtchn_port_t evtchn, 389 unsigned int pirq, unsigned int gsi, 390 uint16_t domid, unsigned char flags) 391 { 392 info->u.pirq.pirq = pirq; 393 info->u.pirq.gsi = gsi; 394 info->u.pirq.domid = domid; 395 info->u.pirq.flags = flags; 396 397 return xen_irq_info_common_setup(info, IRQT_PIRQ, evtchn, 0); 398 } 399 400 static void xen_irq_info_cleanup(struct irq_info *info) 401 { 402 set_evtchn_to_irq(info->evtchn, -1); 403 xen_evtchn_port_remove(info->evtchn, info->cpu); 404 info->evtchn = 0; 405 channels_on_cpu_dec(info); 406 } 407 408 /* 409 * Accessors for packed IRQ information. 410 */ 411 static evtchn_port_t evtchn_from_irq(unsigned int irq) 412 { 413 const struct irq_info *info = NULL; 414 415 if (likely(irq < nr_irqs)) 416 info = info_for_irq(irq); 417 if (!info) 418 return 0; 419 420 return info->evtchn; 421 } 422 423 unsigned int irq_from_evtchn(evtchn_port_t evtchn) 424 { 425 struct irq_info *info = evtchn_to_info(evtchn); 426 427 return info ? info->irq : -1; 428 } 429 EXPORT_SYMBOL_GPL(irq_from_evtchn); 430 431 int irq_evtchn_from_virq(unsigned int cpu, unsigned int virq, 432 evtchn_port_t *evtchn) 433 { 434 int irq = per_cpu(virq_to_irq, cpu)[virq]; 435 436 *evtchn = evtchn_from_irq(irq); 437 438 return irq; 439 } 440 441 static enum ipi_vector ipi_from_irq(struct irq_info *info) 442 { 443 BUG_ON(info == NULL); 444 BUG_ON(info->type != IRQT_IPI); 445 446 return info->u.ipi; 447 } 448 449 static unsigned int virq_from_irq(struct irq_info *info) 450 { 451 BUG_ON(info == NULL); 452 BUG_ON(info->type != IRQT_VIRQ); 453 454 return info->u.virq; 455 } 456 457 static unsigned pirq_from_irq(unsigned irq) 458 { 459 struct irq_info *info = info_for_irq(irq); 460 461 BUG_ON(info == NULL); 462 BUG_ON(info->type != IRQT_PIRQ); 463 464 return info->u.pirq.pirq; 465 } 466 467 unsigned int cpu_from_evtchn(evtchn_port_t evtchn) 468 { 469 struct irq_info *info = evtchn_to_info(evtchn); 470 471 return info ? info->cpu : 0; 472 } 473 474 static void do_mask(struct irq_info *info, u8 reason) 475 { 476 unsigned long flags; 477 478 raw_spin_lock_irqsave(&info->lock, flags); 479 480 if (!info->mask_reason) 481 mask_evtchn(info->evtchn); 482 483 info->mask_reason |= reason; 484 485 raw_spin_unlock_irqrestore(&info->lock, flags); 486 } 487 488 static void do_unmask(struct irq_info *info, u8 reason) 489 { 490 unsigned long flags; 491 492 raw_spin_lock_irqsave(&info->lock, flags); 493 494 info->mask_reason &= ~reason; 495 496 if (!info->mask_reason) 497 unmask_evtchn(info->evtchn); 498 499 raw_spin_unlock_irqrestore(&info->lock, flags); 500 } 501 502 #ifdef CONFIG_X86 503 static bool pirq_check_eoi_map(unsigned irq) 504 { 505 return test_bit(pirq_from_irq(irq), pirq_eoi_map); 506 } 507 #endif 508 509 static bool pirq_needs_eoi_flag(unsigned irq) 510 { 511 struct irq_info *info = info_for_irq(irq); 512 BUG_ON(info->type != IRQT_PIRQ); 513 514 return info->u.pirq.flags & PIRQ_NEEDS_EOI; 515 } 516 517 static void bind_evtchn_to_cpu(struct irq_info *info, unsigned int cpu, 518 bool force_affinity) 519 { 520 if (IS_ENABLED(CONFIG_SMP) && force_affinity) { 521 struct irq_data *data = irq_get_irq_data(info->irq); 522 523 irq_data_update_affinity(data, cpumask_of(cpu)); 524 irq_data_update_effective_affinity(data, cpumask_of(cpu)); 525 } 526 527 xen_evtchn_port_bind_to_cpu(info->evtchn, cpu, info->cpu); 528 529 channels_on_cpu_dec(info); 530 info->cpu = cpu; 531 channels_on_cpu_inc(info); 532 } 533 534 /** 535 * notify_remote_via_irq - send event to remote end of event channel via irq 536 * @irq: irq of event channel to send event to 537 * 538 * Unlike notify_remote_via_evtchn(), this is safe to use across 539 * save/restore. Notifications on a broken connection are silently 540 * dropped. 541 */ 542 void notify_remote_via_irq(int irq) 543 { 544 evtchn_port_t evtchn = evtchn_from_irq(irq); 545 546 if (VALID_EVTCHN(evtchn)) 547 notify_remote_via_evtchn(evtchn); 548 } 549 EXPORT_SYMBOL_GPL(notify_remote_via_irq); 550 551 struct lateeoi_work { 552 struct delayed_work delayed; 553 spinlock_t eoi_list_lock; 554 struct list_head eoi_list; 555 }; 556 557 static DEFINE_PER_CPU(struct lateeoi_work, lateeoi); 558 559 static void lateeoi_list_del(struct irq_info *info) 560 { 561 struct lateeoi_work *eoi = &per_cpu(lateeoi, info->eoi_cpu); 562 unsigned long flags; 563 564 spin_lock_irqsave(&eoi->eoi_list_lock, flags); 565 list_del_init(&info->eoi_list); 566 spin_unlock_irqrestore(&eoi->eoi_list_lock, flags); 567 } 568 569 static void lateeoi_list_add(struct irq_info *info) 570 { 571 struct lateeoi_work *eoi = &per_cpu(lateeoi, info->eoi_cpu); 572 struct irq_info *elem; 573 u64 now = get_jiffies_64(); 574 unsigned long delay; 575 unsigned long flags; 576 577 if (now < info->eoi_time) 578 delay = info->eoi_time - now; 579 else 580 delay = 1; 581 582 spin_lock_irqsave(&eoi->eoi_list_lock, flags); 583 584 elem = list_first_entry_or_null(&eoi->eoi_list, struct irq_info, 585 eoi_list); 586 if (!elem || info->eoi_time < elem->eoi_time) { 587 list_add(&info->eoi_list, &eoi->eoi_list); 588 mod_delayed_work_on(info->eoi_cpu, system_wq, 589 &eoi->delayed, delay); 590 } else { 591 list_for_each_entry_reverse(elem, &eoi->eoi_list, eoi_list) { 592 if (elem->eoi_time <= info->eoi_time) 593 break; 594 } 595 list_add(&info->eoi_list, &elem->eoi_list); 596 } 597 598 spin_unlock_irqrestore(&eoi->eoi_list_lock, flags); 599 } 600 601 static void xen_irq_lateeoi_locked(struct irq_info *info, bool spurious) 602 { 603 evtchn_port_t evtchn; 604 unsigned int cpu; 605 unsigned int delay = 0; 606 607 evtchn = info->evtchn; 608 if (!VALID_EVTCHN(evtchn) || !list_empty(&info->eoi_list)) 609 return; 610 611 if (spurious) { 612 struct xenbus_device *dev = info->u.interdomain; 613 unsigned int threshold = 1; 614 615 if (dev && dev->spurious_threshold) 616 threshold = dev->spurious_threshold; 617 618 if ((1 << info->spurious_cnt) < (HZ << 2)) { 619 if (info->spurious_cnt != 0xFF) 620 info->spurious_cnt++; 621 } 622 if (info->spurious_cnt > threshold) { 623 delay = 1 << (info->spurious_cnt - 1 - threshold); 624 if (delay > HZ) 625 delay = HZ; 626 if (!info->eoi_time) 627 info->eoi_cpu = smp_processor_id(); 628 info->eoi_time = get_jiffies_64() + delay; 629 if (dev) 630 atomic_add(delay, &dev->jiffies_eoi_delayed); 631 } 632 if (dev) 633 atomic_inc(&dev->spurious_events); 634 } else { 635 info->spurious_cnt = 0; 636 } 637 638 cpu = info->eoi_cpu; 639 if (info->eoi_time && 640 (info->irq_epoch == per_cpu(irq_epoch, cpu) || delay)) { 641 lateeoi_list_add(info); 642 return; 643 } 644 645 info->eoi_time = 0; 646 647 /* is_active hasn't been reset yet, do it now. */ 648 smp_store_release(&info->is_active, 0); 649 do_unmask(info, EVT_MASK_REASON_EOI_PENDING); 650 } 651 652 static void xen_irq_lateeoi_worker(struct work_struct *work) 653 { 654 struct lateeoi_work *eoi; 655 struct irq_info *info; 656 u64 now = get_jiffies_64(); 657 unsigned long flags; 658 659 eoi = container_of(to_delayed_work(work), struct lateeoi_work, delayed); 660 661 rcu_read_lock(); 662 663 while (true) { 664 spin_lock_irqsave(&eoi->eoi_list_lock, flags); 665 666 info = list_first_entry_or_null(&eoi->eoi_list, struct irq_info, 667 eoi_list); 668 669 if (info == NULL) 670 break; 671 672 if (now < info->eoi_time) { 673 mod_delayed_work_on(info->eoi_cpu, system_wq, 674 &eoi->delayed, 675 info->eoi_time - now); 676 break; 677 } 678 679 list_del_init(&info->eoi_list); 680 681 spin_unlock_irqrestore(&eoi->eoi_list_lock, flags); 682 683 info->eoi_time = 0; 684 685 xen_irq_lateeoi_locked(info, false); 686 } 687 688 spin_unlock_irqrestore(&eoi->eoi_list_lock, flags); 689 690 rcu_read_unlock(); 691 } 692 693 static void xen_cpu_init_eoi(unsigned int cpu) 694 { 695 struct lateeoi_work *eoi = &per_cpu(lateeoi, cpu); 696 697 INIT_DELAYED_WORK(&eoi->delayed, xen_irq_lateeoi_worker); 698 spin_lock_init(&eoi->eoi_list_lock); 699 INIT_LIST_HEAD(&eoi->eoi_list); 700 } 701 702 void xen_irq_lateeoi(unsigned int irq, unsigned int eoi_flags) 703 { 704 struct irq_info *info; 705 706 rcu_read_lock(); 707 708 info = info_for_irq(irq); 709 710 if (info) 711 xen_irq_lateeoi_locked(info, eoi_flags & XEN_EOI_FLAG_SPURIOUS); 712 713 rcu_read_unlock(); 714 } 715 EXPORT_SYMBOL_GPL(xen_irq_lateeoi); 716 717 static struct irq_info *xen_irq_init(unsigned int irq) 718 { 719 struct irq_info *info; 720 721 info = kzalloc(sizeof(*info), GFP_KERNEL); 722 if (info) { 723 info->irq = irq; 724 info->type = IRQT_UNBOUND; 725 info->refcnt = -1; 726 INIT_RCU_WORK(&info->rwork, delayed_free_irq); 727 728 set_info_for_irq(irq, info); 729 /* 730 * Interrupt affinity setting can be immediate. No point 731 * in delaying it until an interrupt is handled. 732 */ 733 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT); 734 735 INIT_LIST_HEAD(&info->eoi_list); 736 list_add_tail(&info->list, &xen_irq_list_head); 737 } 738 739 return info; 740 } 741 742 static struct irq_info *xen_allocate_irq_dynamic(void) 743 { 744 int irq = irq_alloc_desc_from(0, -1); 745 struct irq_info *info = NULL; 746 747 if (irq >= 0) { 748 info = xen_irq_init(irq); 749 if (!info) 750 xen_irq_free_desc(irq); 751 } 752 753 return info; 754 } 755 756 static struct irq_info *xen_allocate_irq_gsi(unsigned int gsi) 757 { 758 int irq; 759 struct irq_info *info; 760 761 /* 762 * A PV guest has no concept of a GSI (since it has no ACPI 763 * nor access to/knowledge of the physical APICs). Therefore 764 * all IRQs are dynamically allocated from the entire IRQ 765 * space. 766 */ 767 if (xen_pv_domain() && !xen_initial_domain()) 768 return xen_allocate_irq_dynamic(); 769 770 /* Legacy IRQ descriptors are already allocated by the arch. */ 771 if (gsi < nr_legacy_irqs()) 772 irq = gsi; 773 else 774 irq = irq_alloc_desc_at(gsi, -1); 775 776 info = xen_irq_init(irq); 777 if (!info) 778 xen_irq_free_desc(irq); 779 780 return info; 781 } 782 783 static void xen_free_irq(struct irq_info *info) 784 { 785 if (WARN_ON(!info)) 786 return; 787 788 if (!list_empty(&info->eoi_list)) 789 lateeoi_list_del(info); 790 791 list_del(&info->list); 792 793 WARN_ON(info->refcnt > 0); 794 795 queue_rcu_work(system_wq, &info->rwork); 796 } 797 798 /* Not called for lateeoi events. */ 799 static void event_handler_exit(struct irq_info *info) 800 { 801 smp_store_release(&info->is_active, 0); 802 clear_evtchn(info->evtchn); 803 } 804 805 static void pirq_query_unmask(int irq) 806 { 807 struct physdev_irq_status_query irq_status; 808 struct irq_info *info = info_for_irq(irq); 809 810 BUG_ON(info->type != IRQT_PIRQ); 811 812 irq_status.irq = pirq_from_irq(irq); 813 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status)) 814 irq_status.flags = 0; 815 816 info->u.pirq.flags &= ~PIRQ_NEEDS_EOI; 817 if (irq_status.flags & XENIRQSTAT_needs_eoi) 818 info->u.pirq.flags |= PIRQ_NEEDS_EOI; 819 } 820 821 static void eoi_pirq(struct irq_data *data) 822 { 823 struct irq_info *info = info_for_irq(data->irq); 824 evtchn_port_t evtchn = info ? info->evtchn : 0; 825 struct physdev_eoi eoi = { .irq = pirq_from_irq(data->irq) }; 826 int rc = 0; 827 828 if (!VALID_EVTCHN(evtchn)) 829 return; 830 831 event_handler_exit(info); 832 833 if (pirq_needs_eoi(data->irq)) { 834 rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi); 835 WARN_ON(rc); 836 } 837 } 838 839 static void mask_ack_pirq(struct irq_data *data) 840 { 841 disable_dynirq(data); 842 eoi_pirq(data); 843 } 844 845 static unsigned int __startup_pirq(unsigned int irq) 846 { 847 struct evtchn_bind_pirq bind_pirq; 848 struct irq_info *info = info_for_irq(irq); 849 evtchn_port_t evtchn = evtchn_from_irq(irq); 850 int rc; 851 852 BUG_ON(info->type != IRQT_PIRQ); 853 854 if (VALID_EVTCHN(evtchn)) 855 goto out; 856 857 bind_pirq.pirq = pirq_from_irq(irq); 858 /* NB. We are happy to share unless we are probing. */ 859 bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ? 860 BIND_PIRQ__WILL_SHARE : 0; 861 rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq); 862 if (rc != 0) { 863 pr_warn("Failed to obtain physical IRQ %d\n", irq); 864 return 0; 865 } 866 evtchn = bind_pirq.port; 867 868 pirq_query_unmask(irq); 869 870 rc = set_evtchn_to_irq(evtchn, irq); 871 if (rc) 872 goto err; 873 874 info->evtchn = evtchn; 875 bind_evtchn_to_cpu(info, 0, false); 876 877 rc = xen_evtchn_port_setup(evtchn); 878 if (rc) 879 goto err; 880 881 out: 882 do_unmask(info, EVT_MASK_REASON_EXPLICIT); 883 884 eoi_pirq(irq_get_irq_data(irq)); 885 886 return 0; 887 888 err: 889 pr_err("irq%d: Failed to set port to irq mapping (%d)\n", irq, rc); 890 xen_evtchn_close(evtchn); 891 return 0; 892 } 893 894 static unsigned int startup_pirq(struct irq_data *data) 895 { 896 return __startup_pirq(data->irq); 897 } 898 899 static void shutdown_pirq(struct irq_data *data) 900 { 901 unsigned int irq = data->irq; 902 struct irq_info *info = info_for_irq(irq); 903 evtchn_port_t evtchn = evtchn_from_irq(irq); 904 905 BUG_ON(info->type != IRQT_PIRQ); 906 907 if (!VALID_EVTCHN(evtchn)) 908 return; 909 910 do_mask(info, EVT_MASK_REASON_EXPLICIT); 911 xen_irq_info_cleanup(info); 912 xen_evtchn_close(evtchn); 913 } 914 915 static void enable_pirq(struct irq_data *data) 916 { 917 enable_dynirq(data); 918 } 919 920 static void disable_pirq(struct irq_data *data) 921 { 922 disable_dynirq(data); 923 } 924 925 int xen_irq_from_gsi(unsigned gsi) 926 { 927 struct irq_info *info; 928 929 list_for_each_entry(info, &xen_irq_list_head, list) { 930 if (info->type != IRQT_PIRQ) 931 continue; 932 933 if (info->u.pirq.gsi == gsi) 934 return info->irq; 935 } 936 937 return -1; 938 } 939 EXPORT_SYMBOL_GPL(xen_irq_from_gsi); 940 941 static void __unbind_from_irq(struct irq_info *info, unsigned int irq) 942 { 943 evtchn_port_t evtchn; 944 bool close_evtchn = false; 945 946 if (!info) { 947 xen_irq_free_desc(irq); 948 return; 949 } 950 951 if (info->refcnt > 0) { 952 info->refcnt--; 953 if (info->refcnt != 0) 954 return; 955 } 956 957 evtchn = info->evtchn; 958 959 if (VALID_EVTCHN(evtchn)) { 960 unsigned int cpu = info->cpu; 961 struct xenbus_device *dev; 962 963 if (!info->is_static) 964 close_evtchn = true; 965 966 switch (info->type) { 967 case IRQT_VIRQ: 968 per_cpu(virq_to_irq, cpu)[virq_from_irq(info)] = -1; 969 break; 970 case IRQT_IPI: 971 per_cpu(ipi_to_irq, cpu)[ipi_from_irq(info)] = -1; 972 per_cpu(ipi_to_evtchn, cpu)[ipi_from_irq(info)] = 0; 973 break; 974 case IRQT_EVTCHN: 975 dev = info->u.interdomain; 976 if (dev) 977 atomic_dec(&dev->event_channels); 978 break; 979 default: 980 break; 981 } 982 983 xen_irq_info_cleanup(info); 984 985 if (close_evtchn) 986 xen_evtchn_close(evtchn); 987 } 988 989 xen_free_irq(info); 990 } 991 992 /* 993 * Do not make any assumptions regarding the relationship between the 994 * IRQ number returned here and the Xen pirq argument. 995 * 996 * Note: We don't assign an event channel until the irq actually started 997 * up. Return an existing irq if we've already got one for the gsi. 998 * 999 * Shareable implies level triggered, not shareable implies edge 1000 * triggered here. 1001 */ 1002 int xen_bind_pirq_gsi_to_irq(unsigned gsi, 1003 unsigned pirq, int shareable, char *name) 1004 { 1005 struct irq_info *info; 1006 struct physdev_irq irq_op; 1007 int ret; 1008 1009 mutex_lock(&irq_mapping_update_lock); 1010 1011 ret = xen_irq_from_gsi(gsi); 1012 if (ret != -1) { 1013 pr_info("%s: returning irq %d for gsi %u\n", 1014 __func__, ret, gsi); 1015 goto out; 1016 } 1017 1018 info = xen_allocate_irq_gsi(gsi); 1019 if (!info) 1020 goto out; 1021 1022 irq_op.irq = info->irq; 1023 irq_op.vector = 0; 1024 1025 /* Only the privileged domain can do this. For non-priv, the pcifront 1026 * driver provides a PCI bus that does the call to do exactly 1027 * this in the priv domain. */ 1028 if (xen_initial_domain() && 1029 HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) { 1030 xen_free_irq(info); 1031 ret = -ENOSPC; 1032 goto out; 1033 } 1034 1035 ret = xen_irq_info_pirq_setup(info, 0, pirq, gsi, DOMID_SELF, 1036 shareable ? PIRQ_SHAREABLE : 0); 1037 if (ret < 0) { 1038 __unbind_from_irq(info, info->irq); 1039 goto out; 1040 } 1041 1042 pirq_query_unmask(info->irq); 1043 /* We try to use the handler with the appropriate semantic for the 1044 * type of interrupt: if the interrupt is an edge triggered 1045 * interrupt we use handle_edge_irq. 1046 * 1047 * On the other hand if the interrupt is level triggered we use 1048 * handle_fasteoi_irq like the native code does for this kind of 1049 * interrupts. 1050 * 1051 * Depending on the Xen version, pirq_needs_eoi might return true 1052 * not only for level triggered interrupts but for edge triggered 1053 * interrupts too. In any case Xen always honors the eoi mechanism, 1054 * not injecting any more pirqs of the same kind if the first one 1055 * hasn't received an eoi yet. Therefore using the fasteoi handler 1056 * is the right choice either way. 1057 */ 1058 if (shareable) 1059 irq_set_chip_and_handler_name(info->irq, &xen_pirq_chip, 1060 handle_fasteoi_irq, name); 1061 else 1062 irq_set_chip_and_handler_name(info->irq, &xen_pirq_chip, 1063 handle_edge_irq, name); 1064 1065 ret = info->irq; 1066 1067 out: 1068 mutex_unlock(&irq_mapping_update_lock); 1069 1070 return ret; 1071 } 1072 1073 #ifdef CONFIG_PCI_MSI 1074 int xen_allocate_pirq_msi(struct pci_dev *dev, struct msi_desc *msidesc) 1075 { 1076 int rc; 1077 struct physdev_get_free_pirq op_get_free_pirq; 1078 1079 op_get_free_pirq.type = MAP_PIRQ_TYPE_MSI; 1080 rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq); 1081 1082 WARN_ONCE(rc == -ENOSYS, 1083 "hypervisor does not support the PHYSDEVOP_get_free_pirq interface\n"); 1084 1085 return rc ? -1 : op_get_free_pirq.pirq; 1086 } 1087 1088 int xen_bind_pirq_msi_to_irq(struct pci_dev *dev, struct msi_desc *msidesc, 1089 int pirq, int nvec, const char *name, domid_t domid) 1090 { 1091 int i, irq, ret; 1092 struct irq_info *info; 1093 1094 mutex_lock(&irq_mapping_update_lock); 1095 1096 irq = irq_alloc_descs(-1, 0, nvec, -1); 1097 if (irq < 0) 1098 goto out; 1099 1100 for (i = 0; i < nvec; i++) { 1101 info = xen_irq_init(irq + i); 1102 if (!info) { 1103 ret = -ENOMEM; 1104 goto error_irq; 1105 } 1106 1107 irq_set_chip_and_handler_name(irq + i, &xen_pirq_chip, handle_edge_irq, name); 1108 1109 ret = xen_irq_info_pirq_setup(info, 0, pirq + i, 0, domid, 1110 i == 0 ? 0 : PIRQ_MSI_GROUP); 1111 if (ret < 0) 1112 goto error_irq; 1113 } 1114 1115 ret = irq_set_msi_desc(irq, msidesc); 1116 if (ret < 0) 1117 goto error_irq; 1118 out: 1119 mutex_unlock(&irq_mapping_update_lock); 1120 return irq; 1121 1122 error_irq: 1123 while (nvec--) { 1124 info = info_for_irq(irq + nvec); 1125 __unbind_from_irq(info, irq + nvec); 1126 } 1127 mutex_unlock(&irq_mapping_update_lock); 1128 return ret; 1129 } 1130 #endif 1131 1132 int xen_destroy_irq(int irq) 1133 { 1134 struct physdev_unmap_pirq unmap_irq; 1135 struct irq_info *info = info_for_irq(irq); 1136 int rc = -ENOENT; 1137 1138 mutex_lock(&irq_mapping_update_lock); 1139 1140 /* 1141 * If trying to remove a vector in a MSI group different 1142 * than the first one skip the PIRQ unmap unless this vector 1143 * is the first one in the group. 1144 */ 1145 if (xen_initial_domain() && !(info->u.pirq.flags & PIRQ_MSI_GROUP)) { 1146 unmap_irq.pirq = info->u.pirq.pirq; 1147 unmap_irq.domid = info->u.pirq.domid; 1148 rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq); 1149 /* If another domain quits without making the pci_disable_msix 1150 * call, the Xen hypervisor takes care of freeing the PIRQs 1151 * (free_domain_pirqs). 1152 */ 1153 if ((rc == -ESRCH && info->u.pirq.domid != DOMID_SELF)) 1154 pr_info("domain %d does not have %d anymore\n", 1155 info->u.pirq.domid, info->u.pirq.pirq); 1156 else if (rc) { 1157 pr_warn("unmap irq failed %d\n", rc); 1158 goto out; 1159 } 1160 } 1161 1162 xen_free_irq(info); 1163 1164 out: 1165 mutex_unlock(&irq_mapping_update_lock); 1166 return rc; 1167 } 1168 1169 int xen_irq_from_pirq(unsigned pirq) 1170 { 1171 int irq; 1172 1173 struct irq_info *info; 1174 1175 mutex_lock(&irq_mapping_update_lock); 1176 1177 list_for_each_entry(info, &xen_irq_list_head, list) { 1178 if (info->type != IRQT_PIRQ) 1179 continue; 1180 irq = info->irq; 1181 if (info->u.pirq.pirq == pirq) 1182 goto out; 1183 } 1184 irq = -1; 1185 out: 1186 mutex_unlock(&irq_mapping_update_lock); 1187 1188 return irq; 1189 } 1190 1191 1192 int xen_pirq_from_irq(unsigned irq) 1193 { 1194 return pirq_from_irq(irq); 1195 } 1196 EXPORT_SYMBOL_GPL(xen_pirq_from_irq); 1197 1198 static int bind_evtchn_to_irq_chip(evtchn_port_t evtchn, struct irq_chip *chip, 1199 struct xenbus_device *dev, bool shared) 1200 { 1201 int ret = -ENOMEM; 1202 struct irq_info *info; 1203 1204 if (evtchn >= xen_evtchn_max_channels()) 1205 return -ENOMEM; 1206 1207 mutex_lock(&irq_mapping_update_lock); 1208 1209 info = evtchn_to_info(evtchn); 1210 1211 if (!info) { 1212 info = xen_allocate_irq_dynamic(); 1213 if (!info) 1214 goto out; 1215 1216 irq_set_chip_and_handler_name(info->irq, chip, 1217 handle_edge_irq, "event"); 1218 1219 ret = xen_irq_info_evtchn_setup(info, evtchn, dev); 1220 if (ret < 0) { 1221 __unbind_from_irq(info, info->irq); 1222 goto out; 1223 } 1224 /* 1225 * New interdomain events are initially bound to vCPU0 This 1226 * is required to setup the event channel in the first 1227 * place and also important for UP guests because the 1228 * affinity setting is not invoked on them so nothing would 1229 * bind the channel. 1230 */ 1231 bind_evtchn_to_cpu(info, 0, false); 1232 } else if (!WARN_ON(info->type != IRQT_EVTCHN)) { 1233 if (shared && !WARN_ON(info->refcnt < 0)) 1234 info->refcnt++; 1235 } 1236 1237 ret = info->irq; 1238 1239 out: 1240 mutex_unlock(&irq_mapping_update_lock); 1241 1242 return ret; 1243 } 1244 1245 int bind_evtchn_to_irq(evtchn_port_t evtchn) 1246 { 1247 return bind_evtchn_to_irq_chip(evtchn, &xen_dynamic_chip, NULL, false); 1248 } 1249 EXPORT_SYMBOL_GPL(bind_evtchn_to_irq); 1250 1251 int bind_evtchn_to_irq_lateeoi(evtchn_port_t evtchn) 1252 { 1253 return bind_evtchn_to_irq_chip(evtchn, &xen_lateeoi_chip, NULL, false); 1254 } 1255 EXPORT_SYMBOL_GPL(bind_evtchn_to_irq_lateeoi); 1256 1257 static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu) 1258 { 1259 struct evtchn_bind_ipi bind_ipi; 1260 evtchn_port_t evtchn; 1261 struct irq_info *info; 1262 int ret; 1263 1264 mutex_lock(&irq_mapping_update_lock); 1265 1266 ret = per_cpu(ipi_to_irq, cpu)[ipi]; 1267 1268 if (ret == -1) { 1269 info = xen_allocate_irq_dynamic(); 1270 if (!info) 1271 goto out; 1272 1273 irq_set_chip_and_handler_name(info->irq, &xen_percpu_chip, 1274 handle_percpu_irq, "ipi"); 1275 1276 bind_ipi.vcpu = xen_vcpu_nr(cpu); 1277 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi, 1278 &bind_ipi) != 0) 1279 BUG(); 1280 evtchn = bind_ipi.port; 1281 1282 ret = xen_irq_info_ipi_setup(info, cpu, evtchn, ipi); 1283 if (ret < 0) { 1284 __unbind_from_irq(info, info->irq); 1285 goto out; 1286 } 1287 /* 1288 * Force the affinity mask to the target CPU so proc shows 1289 * the correct target. 1290 */ 1291 bind_evtchn_to_cpu(info, cpu, true); 1292 ret = info->irq; 1293 } else { 1294 info = info_for_irq(ret); 1295 WARN_ON(info == NULL || info->type != IRQT_IPI); 1296 } 1297 1298 out: 1299 mutex_unlock(&irq_mapping_update_lock); 1300 return ret; 1301 } 1302 1303 static int bind_interdomain_evtchn_to_irq_chip(struct xenbus_device *dev, 1304 evtchn_port_t remote_port, 1305 struct irq_chip *chip, 1306 bool shared) 1307 { 1308 struct evtchn_bind_interdomain bind_interdomain; 1309 int err; 1310 1311 bind_interdomain.remote_dom = dev->otherend_id; 1312 bind_interdomain.remote_port = remote_port; 1313 1314 err = HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain, 1315 &bind_interdomain); 1316 1317 return err ? : bind_evtchn_to_irq_chip(bind_interdomain.local_port, 1318 chip, dev, shared); 1319 } 1320 1321 int bind_interdomain_evtchn_to_irq_lateeoi(struct xenbus_device *dev, 1322 evtchn_port_t remote_port) 1323 { 1324 return bind_interdomain_evtchn_to_irq_chip(dev, remote_port, 1325 &xen_lateeoi_chip, false); 1326 } 1327 EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irq_lateeoi); 1328 1329 static int find_virq(unsigned int virq, unsigned int cpu, evtchn_port_t *evtchn) 1330 { 1331 struct evtchn_status status; 1332 evtchn_port_t port; 1333 int rc = -ENOENT; 1334 1335 memset(&status, 0, sizeof(status)); 1336 for (port = 0; port < xen_evtchn_max_channels(); port++) { 1337 status.dom = DOMID_SELF; 1338 status.port = port; 1339 rc = HYPERVISOR_event_channel_op(EVTCHNOP_status, &status); 1340 if (rc < 0) 1341 continue; 1342 if (status.status != EVTCHNSTAT_virq) 1343 continue; 1344 if (status.u.virq == virq && status.vcpu == xen_vcpu_nr(cpu)) { 1345 *evtchn = port; 1346 break; 1347 } 1348 } 1349 return rc; 1350 } 1351 1352 /** 1353 * xen_evtchn_nr_channels - number of usable event channel ports 1354 * 1355 * This may be less than the maximum supported by the current 1356 * hypervisor ABI. Use xen_evtchn_max_channels() for the maximum 1357 * supported. 1358 */ 1359 unsigned xen_evtchn_nr_channels(void) 1360 { 1361 return evtchn_ops->nr_channels(); 1362 } 1363 EXPORT_SYMBOL_GPL(xen_evtchn_nr_channels); 1364 1365 int bind_virq_to_irq(unsigned int virq, unsigned int cpu, bool percpu) 1366 { 1367 struct evtchn_bind_virq bind_virq; 1368 evtchn_port_t evtchn = 0; 1369 struct irq_info *info; 1370 int ret; 1371 1372 mutex_lock(&irq_mapping_update_lock); 1373 1374 ret = per_cpu(virq_to_irq, cpu)[virq]; 1375 1376 if (ret == -1) { 1377 info = xen_allocate_irq_dynamic(); 1378 if (!info) 1379 goto out; 1380 1381 if (percpu) 1382 irq_set_chip_and_handler_name(info->irq, &xen_percpu_chip, 1383 handle_percpu_irq, "virq"); 1384 else 1385 irq_set_chip_and_handler_name(info->irq, &xen_dynamic_chip, 1386 handle_edge_irq, "virq"); 1387 1388 bind_virq.virq = virq; 1389 bind_virq.vcpu = xen_vcpu_nr(cpu); 1390 ret = HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq, 1391 &bind_virq); 1392 if (ret == 0) 1393 evtchn = bind_virq.port; 1394 else { 1395 if (ret == -EEXIST) 1396 ret = find_virq(virq, cpu, &evtchn); 1397 BUG_ON(ret < 0); 1398 } 1399 1400 ret = xen_irq_info_virq_setup(info, cpu, evtchn, virq); 1401 if (ret < 0) { 1402 __unbind_from_irq(info, info->irq); 1403 goto out; 1404 } 1405 1406 /* 1407 * Force the affinity mask for percpu interrupts so proc 1408 * shows the correct target. 1409 */ 1410 bind_evtchn_to_cpu(info, cpu, percpu); 1411 ret = info->irq; 1412 } else { 1413 info = info_for_irq(ret); 1414 WARN_ON(info == NULL || info->type != IRQT_VIRQ); 1415 } 1416 1417 out: 1418 mutex_unlock(&irq_mapping_update_lock); 1419 1420 return ret; 1421 } 1422 1423 static void unbind_from_irq(unsigned int irq) 1424 { 1425 struct irq_info *info; 1426 1427 mutex_lock(&irq_mapping_update_lock); 1428 info = info_for_irq(irq); 1429 __unbind_from_irq(info, irq); 1430 mutex_unlock(&irq_mapping_update_lock); 1431 } 1432 1433 static int bind_evtchn_to_irqhandler_chip(evtchn_port_t evtchn, 1434 irq_handler_t handler, 1435 unsigned long irqflags, 1436 const char *devname, void *dev_id, 1437 struct irq_chip *chip) 1438 { 1439 int irq, retval; 1440 1441 irq = bind_evtchn_to_irq_chip(evtchn, chip, NULL, 1442 irqflags & IRQF_SHARED); 1443 if (irq < 0) 1444 return irq; 1445 retval = request_irq(irq, handler, irqflags, devname, dev_id); 1446 if (retval != 0) { 1447 unbind_from_irq(irq); 1448 return retval; 1449 } 1450 1451 return irq; 1452 } 1453 1454 int bind_evtchn_to_irqhandler(evtchn_port_t evtchn, 1455 irq_handler_t handler, 1456 unsigned long irqflags, 1457 const char *devname, void *dev_id) 1458 { 1459 return bind_evtchn_to_irqhandler_chip(evtchn, handler, irqflags, 1460 devname, dev_id, 1461 &xen_dynamic_chip); 1462 } 1463 EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler); 1464 1465 int bind_evtchn_to_irqhandler_lateeoi(evtchn_port_t evtchn, 1466 irq_handler_t handler, 1467 unsigned long irqflags, 1468 const char *devname, void *dev_id) 1469 { 1470 return bind_evtchn_to_irqhandler_chip(evtchn, handler, irqflags, 1471 devname, dev_id, 1472 &xen_lateeoi_chip); 1473 } 1474 EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler_lateeoi); 1475 1476 static int bind_interdomain_evtchn_to_irqhandler_chip( 1477 struct xenbus_device *dev, evtchn_port_t remote_port, 1478 irq_handler_t handler, unsigned long irqflags, 1479 const char *devname, void *dev_id, struct irq_chip *chip) 1480 { 1481 int irq, retval; 1482 1483 irq = bind_interdomain_evtchn_to_irq_chip(dev, remote_port, chip, 1484 irqflags & IRQF_SHARED); 1485 if (irq < 0) 1486 return irq; 1487 1488 retval = request_irq(irq, handler, irqflags, devname, dev_id); 1489 if (retval != 0) { 1490 unbind_from_irq(irq); 1491 return retval; 1492 } 1493 1494 return irq; 1495 } 1496 1497 int bind_interdomain_evtchn_to_irqhandler_lateeoi(struct xenbus_device *dev, 1498 evtchn_port_t remote_port, 1499 irq_handler_t handler, 1500 unsigned long irqflags, 1501 const char *devname, 1502 void *dev_id) 1503 { 1504 return bind_interdomain_evtchn_to_irqhandler_chip(dev, 1505 remote_port, handler, irqflags, devname, 1506 dev_id, &xen_lateeoi_chip); 1507 } 1508 EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler_lateeoi); 1509 1510 int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu, 1511 irq_handler_t handler, 1512 unsigned long irqflags, const char *devname, void *dev_id) 1513 { 1514 int irq, retval; 1515 1516 irq = bind_virq_to_irq(virq, cpu, irqflags & IRQF_PERCPU); 1517 if (irq < 0) 1518 return irq; 1519 retval = request_irq(irq, handler, irqflags, devname, dev_id); 1520 if (retval != 0) { 1521 unbind_from_irq(irq); 1522 return retval; 1523 } 1524 1525 return irq; 1526 } 1527 EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler); 1528 1529 int bind_ipi_to_irqhandler(enum ipi_vector ipi, 1530 unsigned int cpu, 1531 irq_handler_t handler, 1532 unsigned long irqflags, 1533 const char *devname, 1534 void *dev_id) 1535 { 1536 int irq, retval; 1537 1538 irq = bind_ipi_to_irq(ipi, cpu); 1539 if (irq < 0) 1540 return irq; 1541 1542 irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME | IRQF_EARLY_RESUME; 1543 retval = request_irq(irq, handler, irqflags, devname, dev_id); 1544 if (retval != 0) { 1545 unbind_from_irq(irq); 1546 return retval; 1547 } 1548 1549 return irq; 1550 } 1551 1552 void unbind_from_irqhandler(unsigned int irq, void *dev_id) 1553 { 1554 struct irq_info *info = info_for_irq(irq); 1555 1556 if (WARN_ON(!info)) 1557 return; 1558 free_irq(irq, dev_id); 1559 unbind_from_irq(irq); 1560 } 1561 EXPORT_SYMBOL_GPL(unbind_from_irqhandler); 1562 1563 /** 1564 * xen_set_irq_priority() - set an event channel priority. 1565 * @irq:irq bound to an event channel. 1566 * @priority: priority between XEN_IRQ_PRIORITY_MAX and XEN_IRQ_PRIORITY_MIN. 1567 */ 1568 int xen_set_irq_priority(unsigned irq, unsigned priority) 1569 { 1570 struct evtchn_set_priority set_priority; 1571 1572 set_priority.port = evtchn_from_irq(irq); 1573 set_priority.priority = priority; 1574 1575 return HYPERVISOR_event_channel_op(EVTCHNOP_set_priority, 1576 &set_priority); 1577 } 1578 EXPORT_SYMBOL_GPL(xen_set_irq_priority); 1579 1580 int evtchn_make_refcounted(evtchn_port_t evtchn, bool is_static) 1581 { 1582 struct irq_info *info = evtchn_to_info(evtchn); 1583 1584 if (!info) 1585 return -ENOENT; 1586 1587 WARN_ON(info->refcnt != -1); 1588 1589 info->refcnt = 1; 1590 info->is_static = is_static; 1591 1592 return 0; 1593 } 1594 EXPORT_SYMBOL_GPL(evtchn_make_refcounted); 1595 1596 int evtchn_get(evtchn_port_t evtchn) 1597 { 1598 struct irq_info *info; 1599 int err = -ENOENT; 1600 1601 if (evtchn >= xen_evtchn_max_channels()) 1602 return -EINVAL; 1603 1604 mutex_lock(&irq_mapping_update_lock); 1605 1606 info = evtchn_to_info(evtchn); 1607 1608 if (!info) 1609 goto done; 1610 1611 err = -EINVAL; 1612 if (info->refcnt <= 0 || info->refcnt == SHRT_MAX) 1613 goto done; 1614 1615 info->refcnt++; 1616 err = 0; 1617 done: 1618 mutex_unlock(&irq_mapping_update_lock); 1619 1620 return err; 1621 } 1622 EXPORT_SYMBOL_GPL(evtchn_get); 1623 1624 void evtchn_put(evtchn_port_t evtchn) 1625 { 1626 struct irq_info *info = evtchn_to_info(evtchn); 1627 1628 if (WARN_ON(!info)) 1629 return; 1630 unbind_from_irq(info->irq); 1631 } 1632 EXPORT_SYMBOL_GPL(evtchn_put); 1633 1634 void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector) 1635 { 1636 evtchn_port_t evtchn; 1637 1638 #ifdef CONFIG_X86 1639 if (unlikely(vector == XEN_NMI_VECTOR)) { 1640 int rc = HYPERVISOR_vcpu_op(VCPUOP_send_nmi, xen_vcpu_nr(cpu), 1641 NULL); 1642 if (rc < 0) 1643 printk(KERN_WARNING "Sending nmi to CPU%d failed (rc:%d)\n", cpu, rc); 1644 return; 1645 } 1646 #endif 1647 evtchn = per_cpu(ipi_to_evtchn, cpu)[vector]; 1648 BUG_ON(evtchn == 0); 1649 notify_remote_via_evtchn(evtchn); 1650 } 1651 1652 struct evtchn_loop_ctrl { 1653 ktime_t timeout; 1654 unsigned count; 1655 bool defer_eoi; 1656 }; 1657 1658 void handle_irq_for_port(evtchn_port_t port, struct evtchn_loop_ctrl *ctrl) 1659 { 1660 struct irq_info *info = evtchn_to_info(port); 1661 struct xenbus_device *dev; 1662 1663 if (!info) 1664 return; 1665 1666 /* 1667 * Check for timeout every 256 events. 1668 * We are setting the timeout value only after the first 256 1669 * events in order to not hurt the common case of few loop 1670 * iterations. The 256 is basically an arbitrary value. 1671 * 1672 * In case we are hitting the timeout we need to defer all further 1673 * EOIs in order to ensure to leave the event handling loop rather 1674 * sooner than later. 1675 */ 1676 if (!ctrl->defer_eoi && !(++ctrl->count & 0xff)) { 1677 ktime_t kt = ktime_get(); 1678 1679 if (!ctrl->timeout) { 1680 kt = ktime_add_ms(kt, 1681 jiffies_to_msecs(event_loop_timeout)); 1682 ctrl->timeout = kt; 1683 } else if (kt > ctrl->timeout) { 1684 ctrl->defer_eoi = true; 1685 } 1686 } 1687 1688 if (xchg_acquire(&info->is_active, 1)) 1689 return; 1690 1691 dev = (info->type == IRQT_EVTCHN) ? info->u.interdomain : NULL; 1692 if (dev) 1693 atomic_inc(&dev->events); 1694 1695 if (ctrl->defer_eoi) { 1696 info->eoi_cpu = smp_processor_id(); 1697 info->irq_epoch = __this_cpu_read(irq_epoch); 1698 info->eoi_time = get_jiffies_64() + event_eoi_delay; 1699 } 1700 1701 generic_handle_irq(info->irq); 1702 } 1703 1704 int xen_evtchn_do_upcall(void) 1705 { 1706 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu); 1707 int ret = vcpu_info->evtchn_upcall_pending ? IRQ_HANDLED : IRQ_NONE; 1708 int cpu = smp_processor_id(); 1709 struct evtchn_loop_ctrl ctrl = { 0 }; 1710 1711 /* 1712 * When closing an event channel the associated IRQ must not be freed 1713 * until all cpus have left the event handling loop. This is ensured 1714 * by taking the rcu_read_lock() while handling events, as freeing of 1715 * the IRQ is handled via queue_rcu_work() _after_ closing the event 1716 * channel. 1717 */ 1718 rcu_read_lock(); 1719 1720 do { 1721 vcpu_info->evtchn_upcall_pending = 0; 1722 1723 xen_evtchn_handle_events(cpu, &ctrl); 1724 1725 BUG_ON(!irqs_disabled()); 1726 1727 virt_rmb(); /* Hypervisor can set upcall pending. */ 1728 1729 } while (vcpu_info->evtchn_upcall_pending); 1730 1731 rcu_read_unlock(); 1732 1733 /* 1734 * Increment irq_epoch only now to defer EOIs only for 1735 * xen_irq_lateeoi() invocations occurring from inside the loop 1736 * above. 1737 */ 1738 __this_cpu_inc(irq_epoch); 1739 1740 return ret; 1741 } 1742 EXPORT_SYMBOL_GPL(xen_evtchn_do_upcall); 1743 1744 /* Rebind a new event channel to an existing irq. */ 1745 void rebind_evtchn_irq(evtchn_port_t evtchn, int irq) 1746 { 1747 struct irq_info *info = info_for_irq(irq); 1748 1749 if (WARN_ON(!info)) 1750 return; 1751 1752 /* Make sure the irq is masked, since the new event channel 1753 will also be masked. */ 1754 disable_irq(irq); 1755 1756 mutex_lock(&irq_mapping_update_lock); 1757 1758 /* After resume the irq<->evtchn mappings are all cleared out */ 1759 BUG_ON(evtchn_to_info(evtchn)); 1760 /* Expect irq to have been bound before, 1761 so there should be a proper type */ 1762 BUG_ON(info->type == IRQT_UNBOUND); 1763 1764 info->irq = irq; 1765 (void)xen_irq_info_evtchn_setup(info, evtchn, NULL); 1766 1767 mutex_unlock(&irq_mapping_update_lock); 1768 1769 bind_evtchn_to_cpu(info, info->cpu, false); 1770 1771 /* Unmask the event channel. */ 1772 enable_irq(irq); 1773 } 1774 1775 /* Rebind an evtchn so that it gets delivered to a specific cpu */ 1776 static int xen_rebind_evtchn_to_cpu(struct irq_info *info, unsigned int tcpu) 1777 { 1778 struct evtchn_bind_vcpu bind_vcpu; 1779 evtchn_port_t evtchn = info ? info->evtchn : 0; 1780 1781 if (!VALID_EVTCHN(evtchn)) 1782 return -1; 1783 1784 if (!xen_support_evtchn_rebind()) 1785 return -1; 1786 1787 /* Send future instances of this interrupt to other vcpu. */ 1788 bind_vcpu.port = evtchn; 1789 bind_vcpu.vcpu = xen_vcpu_nr(tcpu); 1790 1791 /* 1792 * Mask the event while changing the VCPU binding to prevent 1793 * it being delivered on an unexpected VCPU. 1794 */ 1795 do_mask(info, EVT_MASK_REASON_TEMPORARY); 1796 1797 /* 1798 * If this fails, it usually just indicates that we're dealing with a 1799 * virq or IPI channel, which don't actually need to be rebound. Ignore 1800 * it, but don't do the xenlinux-level rebind in that case. 1801 */ 1802 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0) 1803 bind_evtchn_to_cpu(info, tcpu, false); 1804 1805 do_unmask(info, EVT_MASK_REASON_TEMPORARY); 1806 1807 return 0; 1808 } 1809 1810 /* 1811 * Find the CPU within @dest mask which has the least number of channels 1812 * assigned. This is not precise as the per cpu counts can be modified 1813 * concurrently. 1814 */ 1815 static unsigned int select_target_cpu(const struct cpumask *dest) 1816 { 1817 unsigned int cpu, best_cpu = UINT_MAX, minch = UINT_MAX; 1818 1819 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1820 unsigned int curch = atomic_read(&channels_on_cpu[cpu]); 1821 1822 if (curch < minch) { 1823 minch = curch; 1824 best_cpu = cpu; 1825 } 1826 } 1827 1828 /* 1829 * Catch the unlikely case that dest contains no online CPUs. Can't 1830 * recurse. 1831 */ 1832 if (best_cpu == UINT_MAX) 1833 return select_target_cpu(cpu_online_mask); 1834 1835 return best_cpu; 1836 } 1837 1838 static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest, 1839 bool force) 1840 { 1841 unsigned int tcpu = select_target_cpu(dest); 1842 int ret; 1843 1844 ret = xen_rebind_evtchn_to_cpu(info_for_irq(data->irq), tcpu); 1845 if (!ret) 1846 irq_data_update_effective_affinity(data, cpumask_of(tcpu)); 1847 1848 return ret; 1849 } 1850 1851 static void enable_dynirq(struct irq_data *data) 1852 { 1853 struct irq_info *info = info_for_irq(data->irq); 1854 evtchn_port_t evtchn = info ? info->evtchn : 0; 1855 1856 if (VALID_EVTCHN(evtchn)) 1857 do_unmask(info, EVT_MASK_REASON_EXPLICIT); 1858 } 1859 1860 static void disable_dynirq(struct irq_data *data) 1861 { 1862 struct irq_info *info = info_for_irq(data->irq); 1863 evtchn_port_t evtchn = info ? info->evtchn : 0; 1864 1865 if (VALID_EVTCHN(evtchn)) 1866 do_mask(info, EVT_MASK_REASON_EXPLICIT); 1867 } 1868 1869 static void ack_dynirq(struct irq_data *data) 1870 { 1871 struct irq_info *info = info_for_irq(data->irq); 1872 evtchn_port_t evtchn = info ? info->evtchn : 0; 1873 1874 if (VALID_EVTCHN(evtchn)) 1875 event_handler_exit(info); 1876 } 1877 1878 static void mask_ack_dynirq(struct irq_data *data) 1879 { 1880 disable_dynirq(data); 1881 ack_dynirq(data); 1882 } 1883 1884 static void lateeoi_ack_dynirq(struct irq_data *data) 1885 { 1886 struct irq_info *info = info_for_irq(data->irq); 1887 evtchn_port_t evtchn = info ? info->evtchn : 0; 1888 1889 if (VALID_EVTCHN(evtchn)) { 1890 do_mask(info, EVT_MASK_REASON_EOI_PENDING); 1891 /* 1892 * Don't call event_handler_exit(). 1893 * Need to keep is_active non-zero in order to ignore re-raised 1894 * events after cpu affinity changes while a lateeoi is pending. 1895 */ 1896 clear_evtchn(evtchn); 1897 } 1898 } 1899 1900 static void lateeoi_mask_ack_dynirq(struct irq_data *data) 1901 { 1902 struct irq_info *info = info_for_irq(data->irq); 1903 evtchn_port_t evtchn = info ? info->evtchn : 0; 1904 1905 if (VALID_EVTCHN(evtchn)) { 1906 do_mask(info, EVT_MASK_REASON_EXPLICIT); 1907 event_handler_exit(info); 1908 } 1909 } 1910 1911 static int retrigger_dynirq(struct irq_data *data) 1912 { 1913 struct irq_info *info = info_for_irq(data->irq); 1914 evtchn_port_t evtchn = info ? info->evtchn : 0; 1915 1916 if (!VALID_EVTCHN(evtchn)) 1917 return 0; 1918 1919 do_mask(info, EVT_MASK_REASON_TEMPORARY); 1920 set_evtchn(evtchn); 1921 do_unmask(info, EVT_MASK_REASON_TEMPORARY); 1922 1923 return 1; 1924 } 1925 1926 static void restore_pirqs(void) 1927 { 1928 int pirq, rc, irq, gsi; 1929 struct physdev_map_pirq map_irq; 1930 struct irq_info *info; 1931 1932 list_for_each_entry(info, &xen_irq_list_head, list) { 1933 if (info->type != IRQT_PIRQ) 1934 continue; 1935 1936 pirq = info->u.pirq.pirq; 1937 gsi = info->u.pirq.gsi; 1938 irq = info->irq; 1939 1940 /* save/restore of PT devices doesn't work, so at this point the 1941 * only devices present are GSI based emulated devices */ 1942 if (!gsi) 1943 continue; 1944 1945 map_irq.domid = DOMID_SELF; 1946 map_irq.type = MAP_PIRQ_TYPE_GSI; 1947 map_irq.index = gsi; 1948 map_irq.pirq = pirq; 1949 1950 rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq); 1951 if (rc) { 1952 pr_warn("xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n", 1953 gsi, irq, pirq, rc); 1954 xen_free_irq(info); 1955 continue; 1956 } 1957 1958 printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq); 1959 1960 __startup_pirq(irq); 1961 } 1962 } 1963 1964 static void restore_cpu_virqs(unsigned int cpu) 1965 { 1966 struct evtchn_bind_virq bind_virq; 1967 evtchn_port_t evtchn; 1968 struct irq_info *info; 1969 int virq, irq; 1970 1971 for (virq = 0; virq < NR_VIRQS; virq++) { 1972 if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1) 1973 continue; 1974 info = info_for_irq(irq); 1975 1976 BUG_ON(virq_from_irq(info) != virq); 1977 1978 /* Get a new binding from Xen. */ 1979 bind_virq.virq = virq; 1980 bind_virq.vcpu = xen_vcpu_nr(cpu); 1981 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq, 1982 &bind_virq) != 0) 1983 BUG(); 1984 evtchn = bind_virq.port; 1985 1986 /* Record the new mapping. */ 1987 xen_irq_info_virq_setup(info, cpu, evtchn, virq); 1988 /* The affinity mask is still valid */ 1989 bind_evtchn_to_cpu(info, cpu, false); 1990 } 1991 } 1992 1993 static void restore_cpu_ipis(unsigned int cpu) 1994 { 1995 struct evtchn_bind_ipi bind_ipi; 1996 evtchn_port_t evtchn; 1997 struct irq_info *info; 1998 int ipi, irq; 1999 2000 for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) { 2001 if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1) 2002 continue; 2003 info = info_for_irq(irq); 2004 2005 BUG_ON(ipi_from_irq(info) != ipi); 2006 2007 /* Get a new binding from Xen. */ 2008 bind_ipi.vcpu = xen_vcpu_nr(cpu); 2009 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi, 2010 &bind_ipi) != 0) 2011 BUG(); 2012 evtchn = bind_ipi.port; 2013 2014 /* Record the new mapping. */ 2015 xen_irq_info_ipi_setup(info, cpu, evtchn, ipi); 2016 /* The affinity mask is still valid */ 2017 bind_evtchn_to_cpu(info, cpu, false); 2018 } 2019 } 2020 2021 /* Clear an irq's pending state, in preparation for polling on it */ 2022 void xen_clear_irq_pending(int irq) 2023 { 2024 struct irq_info *info = info_for_irq(irq); 2025 evtchn_port_t evtchn = info ? info->evtchn : 0; 2026 2027 if (VALID_EVTCHN(evtchn)) 2028 event_handler_exit(info); 2029 } 2030 EXPORT_SYMBOL(xen_clear_irq_pending); 2031 void xen_set_irq_pending(int irq) 2032 { 2033 evtchn_port_t evtchn = evtchn_from_irq(irq); 2034 2035 if (VALID_EVTCHN(evtchn)) 2036 set_evtchn(evtchn); 2037 } 2038 2039 bool xen_test_irq_pending(int irq) 2040 { 2041 evtchn_port_t evtchn = evtchn_from_irq(irq); 2042 bool ret = false; 2043 2044 if (VALID_EVTCHN(evtchn)) 2045 ret = test_evtchn(evtchn); 2046 2047 return ret; 2048 } 2049 2050 /* Poll waiting for an irq to become pending with timeout. In the usual case, 2051 * the irq will be disabled so it won't deliver an interrupt. */ 2052 void xen_poll_irq_timeout(int irq, u64 timeout) 2053 { 2054 evtchn_port_t evtchn = evtchn_from_irq(irq); 2055 2056 if (VALID_EVTCHN(evtchn)) { 2057 struct sched_poll poll; 2058 2059 poll.nr_ports = 1; 2060 poll.timeout = timeout; 2061 set_xen_guest_handle(poll.ports, &evtchn); 2062 2063 if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0) 2064 BUG(); 2065 } 2066 } 2067 EXPORT_SYMBOL(xen_poll_irq_timeout); 2068 /* Poll waiting for an irq to become pending. In the usual case, the 2069 * irq will be disabled so it won't deliver an interrupt. */ 2070 void xen_poll_irq(int irq) 2071 { 2072 xen_poll_irq_timeout(irq, 0 /* no timeout */); 2073 } 2074 2075 /* Check whether the IRQ line is shared with other guests. */ 2076 int xen_test_irq_shared(int irq) 2077 { 2078 struct irq_info *info = info_for_irq(irq); 2079 struct physdev_irq_status_query irq_status; 2080 2081 if (WARN_ON(!info)) 2082 return -ENOENT; 2083 2084 irq_status.irq = info->u.pirq.pirq; 2085 2086 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status)) 2087 return 0; 2088 return !(irq_status.flags & XENIRQSTAT_shared); 2089 } 2090 EXPORT_SYMBOL_GPL(xen_test_irq_shared); 2091 2092 void xen_irq_resume(void) 2093 { 2094 unsigned int cpu; 2095 struct irq_info *info; 2096 2097 /* New event-channel space is not 'live' yet. */ 2098 xen_evtchn_resume(); 2099 2100 /* No IRQ <-> event-channel mappings. */ 2101 list_for_each_entry(info, &xen_irq_list_head, list) { 2102 /* Zap event-channel binding */ 2103 info->evtchn = 0; 2104 /* Adjust accounting */ 2105 channels_on_cpu_dec(info); 2106 } 2107 2108 clear_evtchn_to_irq_all(); 2109 2110 for_each_possible_cpu(cpu) { 2111 restore_cpu_virqs(cpu); 2112 restore_cpu_ipis(cpu); 2113 } 2114 2115 restore_pirqs(); 2116 } 2117 2118 static struct irq_chip xen_dynamic_chip __read_mostly = { 2119 .name = "xen-dyn", 2120 2121 .irq_disable = disable_dynirq, 2122 .irq_mask = disable_dynirq, 2123 .irq_unmask = enable_dynirq, 2124 2125 .irq_ack = ack_dynirq, 2126 .irq_mask_ack = mask_ack_dynirq, 2127 2128 .irq_set_affinity = set_affinity_irq, 2129 .irq_retrigger = retrigger_dynirq, 2130 }; 2131 2132 static struct irq_chip xen_lateeoi_chip __read_mostly = { 2133 /* The chip name needs to contain "xen-dyn" for irqbalance to work. */ 2134 .name = "xen-dyn-lateeoi", 2135 2136 .irq_disable = disable_dynirq, 2137 .irq_mask = disable_dynirq, 2138 .irq_unmask = enable_dynirq, 2139 2140 .irq_ack = lateeoi_ack_dynirq, 2141 .irq_mask_ack = lateeoi_mask_ack_dynirq, 2142 2143 .irq_set_affinity = set_affinity_irq, 2144 .irq_retrigger = retrigger_dynirq, 2145 }; 2146 2147 static struct irq_chip xen_pirq_chip __read_mostly = { 2148 .name = "xen-pirq", 2149 2150 .irq_startup = startup_pirq, 2151 .irq_shutdown = shutdown_pirq, 2152 .irq_enable = enable_pirq, 2153 .irq_disable = disable_pirq, 2154 2155 .irq_mask = disable_dynirq, 2156 .irq_unmask = enable_dynirq, 2157 2158 .irq_ack = eoi_pirq, 2159 .irq_eoi = eoi_pirq, 2160 .irq_mask_ack = mask_ack_pirq, 2161 2162 .irq_set_affinity = set_affinity_irq, 2163 2164 .irq_retrigger = retrigger_dynirq, 2165 }; 2166 2167 static struct irq_chip xen_percpu_chip __read_mostly = { 2168 .name = "xen-percpu", 2169 2170 .irq_disable = disable_dynirq, 2171 .irq_mask = disable_dynirq, 2172 .irq_unmask = enable_dynirq, 2173 2174 .irq_ack = ack_dynirq, 2175 }; 2176 2177 #ifdef CONFIG_X86 2178 #ifdef CONFIG_XEN_PVHVM 2179 /* Vector callbacks are better than PCI interrupts to receive event 2180 * channel notifications because we can receive vector callbacks on any 2181 * vcpu and we don't need PCI support or APIC interactions. */ 2182 void xen_setup_callback_vector(void) 2183 { 2184 uint64_t callback_via; 2185 2186 if (xen_have_vector_callback) { 2187 callback_via = HVM_CALLBACK_VECTOR(HYPERVISOR_CALLBACK_VECTOR); 2188 if (xen_set_callback_via(callback_via)) { 2189 pr_err("Request for Xen HVM callback vector failed\n"); 2190 xen_have_vector_callback = false; 2191 } 2192 } 2193 } 2194 2195 /* 2196 * Setup per-vCPU vector-type callbacks. If this setup is unavailable, 2197 * fallback to the global vector-type callback. 2198 */ 2199 static __init void xen_init_setup_upcall_vector(void) 2200 { 2201 if (!xen_have_vector_callback) 2202 return; 2203 2204 if ((cpuid_eax(xen_cpuid_base() + 4) & XEN_HVM_CPUID_UPCALL_VECTOR) && 2205 !xen_set_upcall_vector(0)) 2206 xen_percpu_upcall = true; 2207 else if (xen_feature(XENFEAT_hvm_callback_vector)) 2208 xen_setup_callback_vector(); 2209 else 2210 xen_have_vector_callback = false; 2211 } 2212 2213 int xen_set_upcall_vector(unsigned int cpu) 2214 { 2215 int rc; 2216 xen_hvm_evtchn_upcall_vector_t op = { 2217 .vector = HYPERVISOR_CALLBACK_VECTOR, 2218 .vcpu = per_cpu(xen_vcpu_id, cpu), 2219 }; 2220 2221 rc = HYPERVISOR_hvm_op(HVMOP_set_evtchn_upcall_vector, &op); 2222 if (rc) 2223 return rc; 2224 2225 /* Trick toolstack to think we are enlightened. */ 2226 if (!cpu) 2227 rc = xen_set_callback_via(1); 2228 2229 return rc; 2230 } 2231 2232 static __init void xen_alloc_callback_vector(void) 2233 { 2234 if (!xen_have_vector_callback) 2235 return; 2236 2237 pr_info("Xen HVM callback vector for event delivery is enabled\n"); 2238 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_xen_hvm_callback); 2239 } 2240 #else 2241 void xen_setup_callback_vector(void) {} 2242 static inline void xen_init_setup_upcall_vector(void) {} 2243 int xen_set_upcall_vector(unsigned int cpu) {} 2244 static inline void xen_alloc_callback_vector(void) {} 2245 #endif /* CONFIG_XEN_PVHVM */ 2246 #endif /* CONFIG_X86 */ 2247 2248 bool xen_fifo_events = true; 2249 module_param_named(fifo_events, xen_fifo_events, bool, 0); 2250 2251 static int xen_evtchn_cpu_prepare(unsigned int cpu) 2252 { 2253 int ret = 0; 2254 2255 xen_cpu_init_eoi(cpu); 2256 2257 if (evtchn_ops->percpu_init) 2258 ret = evtchn_ops->percpu_init(cpu); 2259 2260 return ret; 2261 } 2262 2263 static int xen_evtchn_cpu_dead(unsigned int cpu) 2264 { 2265 int ret = 0; 2266 2267 if (evtchn_ops->percpu_deinit) 2268 ret = evtchn_ops->percpu_deinit(cpu); 2269 2270 return ret; 2271 } 2272 2273 void __init xen_init_IRQ(void) 2274 { 2275 int ret = -EINVAL; 2276 evtchn_port_t evtchn; 2277 2278 if (xen_fifo_events) 2279 ret = xen_evtchn_fifo_init(); 2280 if (ret < 0) { 2281 xen_evtchn_2l_init(); 2282 xen_fifo_events = false; 2283 } 2284 2285 xen_cpu_init_eoi(smp_processor_id()); 2286 2287 cpuhp_setup_state_nocalls(CPUHP_XEN_EVTCHN_PREPARE, 2288 "xen/evtchn:prepare", 2289 xen_evtchn_cpu_prepare, xen_evtchn_cpu_dead); 2290 2291 evtchn_to_irq = kcalloc(EVTCHN_ROW(xen_evtchn_max_channels()), 2292 sizeof(*evtchn_to_irq), GFP_KERNEL); 2293 BUG_ON(!evtchn_to_irq); 2294 2295 /* No event channels are 'live' right now. */ 2296 for (evtchn = 0; evtchn < xen_evtchn_nr_channels(); evtchn++) 2297 mask_evtchn(evtchn); 2298 2299 pirq_needs_eoi = pirq_needs_eoi_flag; 2300 2301 #ifdef CONFIG_X86 2302 if (xen_pv_domain()) { 2303 if (xen_initial_domain()) 2304 pci_xen_initial_domain(); 2305 } 2306 xen_init_setup_upcall_vector(); 2307 xen_alloc_callback_vector(); 2308 2309 2310 if (xen_hvm_domain()) { 2311 native_init_IRQ(); 2312 /* pci_xen_hvm_init must be called after native_init_IRQ so that 2313 * __acpi_register_gsi can point at the right function */ 2314 pci_xen_hvm_init(); 2315 } else { 2316 int rc; 2317 struct physdev_pirq_eoi_gmfn eoi_gmfn; 2318 2319 pirq_eoi_map = (void *)__get_free_page(GFP_KERNEL|__GFP_ZERO); 2320 eoi_gmfn.gmfn = virt_to_gfn(pirq_eoi_map); 2321 rc = HYPERVISOR_physdev_op(PHYSDEVOP_pirq_eoi_gmfn_v2, &eoi_gmfn); 2322 if (rc != 0) { 2323 free_page((unsigned long) pirq_eoi_map); 2324 pirq_eoi_map = NULL; 2325 } else 2326 pirq_needs_eoi = pirq_check_eoi_map; 2327 } 2328 #endif 2329 } 2330