xref: /openbmc/linux/drivers/watchdog/octeon-wdt-main.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5  *
6  * Some parts derived from wdt.c
7  *
8  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9  *						All Rights Reserved.
10  *
11  *	This program is free software; you can redistribute it and/or
12  *	modify it under the terms of the GNU General Public License
13  *	as published by the Free Software Foundation; either version
14  *	2 of the License, or (at your option) any later version.
15  *
16  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17  *	warranty for any of this software. This material is provided
18  *	"AS-IS" and at no charge.
19  *
20  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
21  *
22  * This file is subject to the terms and conditions of the GNU General Public
23  * License.  See the file "COPYING" in the main directory of this archive
24  * for more details.
25  *
26  *
27  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28  * For most systems this is less than 10 seconds, so to allow for
29  * software to request longer watchdog heartbeats, we maintain software
30  * counters to count multiples of the base rate.  If the system locks
31  * up in such a manner that we can not run the software counters, the
32  * only result is a watchdog reset sooner than was requested.  But
33  * that is OK, because in this case userspace would likely not be able
34  * to do anything anyhow.
35  *
36  * The hardware watchdog interval we call the period.  The OCTEON
37  * watchdog goes through several stages, after the first period an
38  * irq is asserted, then if it is not reset, after the next period NMI
39  * is asserted, then after an additional period a chip wide soft reset.
40  * So for the software counters, we reset watchdog after each period
41  * and decrement the counter.  But for the last two periods we need to
42  * let the watchdog progress to the NMI stage so we disable the irq
43  * and let it proceed.  Once in the NMI, we print the register state
44  * to the serial port and then wait for the reset.
45  *
46  * A watchdog is maintained for each CPU in the system, that way if
47  * one CPU suffers a lockup, we also get a register dump and reset.
48  * The userspace ping resets the watchdog on all CPUs.
49  *
50  * Before userspace opens the watchdog device, we still run the
51  * watchdogs to catch any lockups that may be kernel related.
52  *
53  */
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/miscdevice.h>
58 #include <linux/interrupt.h>
59 #include <linux/watchdog.h>
60 #include <linux/cpumask.h>
61 #include <linux/bitops.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/delay.h>
66 #include <linux/cpu.h>
67 #include <linux/smp.h>
68 #include <linux/fs.h>
69 #include <linux/irq.h>
70 
71 #include <asm/mipsregs.h>
72 #include <asm/uasm.h>
73 
74 #include <asm/octeon/octeon.h>
75 
76 /* The count needed to achieve timeout_sec. */
77 static unsigned int timeout_cnt;
78 
79 /* The maximum period supported. */
80 static unsigned int max_timeout_sec;
81 
82 /* The current period.  */
83 static unsigned int timeout_sec;
84 
85 /* Set to non-zero when userspace countdown mode active */
86 static int do_coundown;
87 static unsigned int countdown_reset;
88 static unsigned int per_cpu_countdown[NR_CPUS];
89 
90 static cpumask_t irq_enabled_cpus;
91 
92 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
93 
94 static int heartbeat = WD_TIMO;
95 module_param(heartbeat, int, S_IRUGO);
96 MODULE_PARM_DESC(heartbeat,
97 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
98 				__MODULE_STRING(WD_TIMO) ")");
99 
100 static bool nowayout = WATCHDOG_NOWAYOUT;
101 module_param(nowayout, bool, S_IRUGO);
102 MODULE_PARM_DESC(nowayout,
103 	"Watchdog cannot be stopped once started (default="
104 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
105 
106 static unsigned long octeon_wdt_is_open;
107 static char expect_close;
108 
109 static u32 __initdata nmi_stage1_insns[64];
110 /* We need one branch and therefore one relocation per target label. */
111 static struct uasm_label __initdata labels[5];
112 static struct uasm_reloc __initdata relocs[5];
113 
114 enum lable_id {
115 	label_enter_bootloader = 1
116 };
117 
118 /* Some CP0 registers */
119 #define K0		26
120 #define C0_CVMMEMCTL 11, 7
121 #define C0_STATUS 12, 0
122 #define C0_EBASE 15, 1
123 #define C0_DESAVE 31, 0
124 
125 void octeon_wdt_nmi_stage2(void);
126 
127 static void __init octeon_wdt_build_stage1(void)
128 {
129 	int i;
130 	int len;
131 	u32 *p = nmi_stage1_insns;
132 #ifdef CONFIG_HOTPLUG_CPU
133 	struct uasm_label *l = labels;
134 	struct uasm_reloc *r = relocs;
135 #endif
136 
137 	/*
138 	 * For the next few instructions running the debugger may
139 	 * cause corruption of k0 in the saved registers. Since we're
140 	 * about to crash, nobody probably cares.
141 	 *
142 	 * Save K0 into the debug scratch register
143 	 */
144 	uasm_i_dmtc0(&p, K0, C0_DESAVE);
145 
146 	uasm_i_mfc0(&p, K0, C0_STATUS);
147 #ifdef CONFIG_HOTPLUG_CPU
148 	uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
149 #endif
150 	/* Force 64-bit addressing enabled */
151 	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
152 	uasm_i_mtc0(&p, K0, C0_STATUS);
153 
154 #ifdef CONFIG_HOTPLUG_CPU
155 	uasm_i_mfc0(&p, K0, C0_EBASE);
156 	/* Coreid number in K0 */
157 	uasm_i_andi(&p, K0, K0, 0xf);
158 	/* 8 * coreid in bits 16-31 */
159 	uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
160 	uasm_i_ori(&p, K0, K0, 0x8001);
161 	uasm_i_dsll_safe(&p, K0, K0, 16);
162 	uasm_i_ori(&p, K0, K0, 0x0700);
163 	uasm_i_drotr_safe(&p, K0, K0, 32);
164 	/*
165 	 * Should result in: 0x8001,0700,0000,8*coreid which is
166 	 * CVMX_CIU_WDOGX(coreid) - 0x0500
167 	 *
168 	 * Now ld K0, CVMX_CIU_WDOGX(coreid)
169 	 */
170 	uasm_i_ld(&p, K0, 0x500, K0);
171 	/*
172 	 * If bit one set handle the NMI as a watchdog event.
173 	 * otherwise transfer control to bootloader.
174 	 */
175 	uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
176 	uasm_i_nop(&p);
177 #endif
178 
179 	/* Clear Dcache so cvmseg works right. */
180 	uasm_i_cache(&p, 1, 0, 0);
181 
182 	/* Use K0 to do a read/modify/write of CVMMEMCTL */
183 	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
184 	/* Clear out the size of CVMSEG	*/
185 	uasm_i_dins(&p, K0, 0, 0, 6);
186 	/* Set CVMSEG to its largest value */
187 	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
188 	/* Store the CVMMEMCTL value */
189 	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
190 
191 	/* Load the address of the second stage handler */
192 	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
193 	uasm_i_jr(&p, K0);
194 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
195 
196 #ifdef CONFIG_HOTPLUG_CPU
197 	uasm_build_label(&l, p, label_enter_bootloader);
198 	/* Jump to the bootloader and restore K0 */
199 	UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
200 	uasm_i_jr(&p, K0);
201 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
202 #endif
203 	uasm_resolve_relocs(relocs, labels);
204 
205 	len = (int)(p - nmi_stage1_insns);
206 	pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
207 
208 	pr_debug("\t.set push\n");
209 	pr_debug("\t.set noreorder\n");
210 	for (i = 0; i < len; i++)
211 		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
212 	pr_debug("\t.set pop\n");
213 
214 	if (len > 32)
215 		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
216 }
217 
218 static int cpu2core(int cpu)
219 {
220 #ifdef CONFIG_SMP
221 	return cpu_logical_map(cpu);
222 #else
223 	return cvmx_get_core_num();
224 #endif
225 }
226 
227 static int core2cpu(int coreid)
228 {
229 #ifdef CONFIG_SMP
230 	return cpu_number_map(coreid);
231 #else
232 	return 0;
233 #endif
234 }
235 
236 /**
237  * Poke the watchdog when an interrupt is received
238  *
239  * @cpl:
240  * @dev_id:
241  *
242  * Returns
243  */
244 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
245 {
246 	unsigned int core = cvmx_get_core_num();
247 	int cpu = core2cpu(core);
248 
249 	if (do_coundown) {
250 		if (per_cpu_countdown[cpu] > 0) {
251 			/* We're alive, poke the watchdog */
252 			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
253 			per_cpu_countdown[cpu]--;
254 		} else {
255 			/* Bad news, you are about to reboot. */
256 			disable_irq_nosync(cpl);
257 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
258 		}
259 	} else {
260 		/* Not open, just ping away... */
261 		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
262 	}
263 	return IRQ_HANDLED;
264 }
265 
266 /* From setup.c */
267 extern int prom_putchar(char c);
268 
269 /**
270  * Write a string to the uart
271  *
272  * @str:        String to write
273  */
274 static void octeon_wdt_write_string(const char *str)
275 {
276 	/* Just loop writing one byte at a time */
277 	while (*str)
278 		prom_putchar(*str++);
279 }
280 
281 /**
282  * Write a hex number out of the uart
283  *
284  * @value:      Number to display
285  * @digits:     Number of digits to print (1 to 16)
286  */
287 static void octeon_wdt_write_hex(u64 value, int digits)
288 {
289 	int d;
290 	int v;
291 	for (d = 0; d < digits; d++) {
292 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
293 		if (v >= 10)
294 			prom_putchar('a' + v - 10);
295 		else
296 			prom_putchar('0' + v);
297 	}
298 }
299 
300 const char *reg_name[] = {
301 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
302 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
303 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
304 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
305 };
306 
307 /**
308  * NMI stage 3 handler. NMIs are handled in the following manner:
309  * 1) The first NMI handler enables CVMSEG and transfers from
310  * the bootbus region into normal memory. It is careful to not
311  * destroy any registers.
312  * 2) The second stage handler uses CVMSEG to save the registers
313  * and create a stack for C code. It then calls the third level
314  * handler with one argument, a pointer to the register values.
315  * 3) The third, and final, level handler is the following C
316  * function that prints out some useful infomration.
317  *
318  * @reg:    Pointer to register state before the NMI
319  */
320 void octeon_wdt_nmi_stage3(u64 reg[32])
321 {
322 	u64 i;
323 
324 	unsigned int coreid = cvmx_get_core_num();
325 	/*
326 	 * Save status and cause early to get them before any changes
327 	 * might happen.
328 	 */
329 	u64 cp0_cause = read_c0_cause();
330 	u64 cp0_status = read_c0_status();
331 	u64 cp0_error_epc = read_c0_errorepc();
332 	u64 cp0_epc = read_c0_epc();
333 
334 	/* Delay so output from all cores output is not jumbled together. */
335 	__delay(100000000ull * coreid);
336 
337 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
338 	octeon_wdt_write_hex(coreid, 1);
339 	octeon_wdt_write_string(" ***\r\n");
340 	for (i = 0; i < 32; i++) {
341 		octeon_wdt_write_string("\t");
342 		octeon_wdt_write_string(reg_name[i]);
343 		octeon_wdt_write_string("\t0x");
344 		octeon_wdt_write_hex(reg[i], 16);
345 		if (i & 1)
346 			octeon_wdt_write_string("\r\n");
347 	}
348 	octeon_wdt_write_string("\terr_epc\t0x");
349 	octeon_wdt_write_hex(cp0_error_epc, 16);
350 
351 	octeon_wdt_write_string("\tepc\t0x");
352 	octeon_wdt_write_hex(cp0_epc, 16);
353 	octeon_wdt_write_string("\r\n");
354 
355 	octeon_wdt_write_string("\tstatus\t0x");
356 	octeon_wdt_write_hex(cp0_status, 16);
357 	octeon_wdt_write_string("\tcause\t0x");
358 	octeon_wdt_write_hex(cp0_cause, 16);
359 	octeon_wdt_write_string("\r\n");
360 
361 	octeon_wdt_write_string("\tsum0\t0x");
362 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
363 	octeon_wdt_write_string("\ten0\t0x");
364 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
365 	octeon_wdt_write_string("\r\n");
366 
367 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
368 }
369 
370 static void octeon_wdt_disable_interrupt(int cpu)
371 {
372 	unsigned int core;
373 	unsigned int irq;
374 	union cvmx_ciu_wdogx ciu_wdog;
375 
376 	core = cpu2core(cpu);
377 
378 	irq = OCTEON_IRQ_WDOG0 + core;
379 
380 	/* Poke the watchdog to clear out its state */
381 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
382 
383 	/* Disable the hardware. */
384 	ciu_wdog.u64 = 0;
385 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
386 
387 	free_irq(irq, octeon_wdt_poke_irq);
388 }
389 
390 static void octeon_wdt_setup_interrupt(int cpu)
391 {
392 	unsigned int core;
393 	unsigned int irq;
394 	union cvmx_ciu_wdogx ciu_wdog;
395 
396 	core = cpu2core(cpu);
397 
398 	/* Disable it before doing anything with the interrupts. */
399 	ciu_wdog.u64 = 0;
400 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
401 
402 	per_cpu_countdown[cpu] = countdown_reset;
403 
404 	irq = OCTEON_IRQ_WDOG0 + core;
405 
406 	if (request_irq(irq, octeon_wdt_poke_irq,
407 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
408 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
409 
410 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
411 
412 	/* Poke the watchdog to clear out its state */
413 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
414 
415 	/* Finally enable the watchdog now that all handlers are installed */
416 	ciu_wdog.u64 = 0;
417 	ciu_wdog.s.len = timeout_cnt;
418 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
419 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
420 }
421 
422 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
423 					   unsigned long action, void *hcpu)
424 {
425 	unsigned int cpu = (unsigned long)hcpu;
426 
427 	switch (action) {
428 	case CPU_DOWN_PREPARE:
429 		octeon_wdt_disable_interrupt(cpu);
430 		break;
431 	case CPU_ONLINE:
432 	case CPU_DOWN_FAILED:
433 		octeon_wdt_setup_interrupt(cpu);
434 		break;
435 	default:
436 		break;
437 	}
438 	return NOTIFY_OK;
439 }
440 
441 static void octeon_wdt_ping(void)
442 {
443 	int cpu;
444 	int coreid;
445 
446 	for_each_online_cpu(cpu) {
447 		coreid = cpu2core(cpu);
448 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
449 		per_cpu_countdown[cpu] = countdown_reset;
450 		if ((countdown_reset || !do_coundown) &&
451 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
452 			/* We have to enable the irq */
453 			int irq = OCTEON_IRQ_WDOG0 + coreid;
454 			enable_irq(irq);
455 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
456 		}
457 	}
458 }
459 
460 static void octeon_wdt_calc_parameters(int t)
461 {
462 	unsigned int periods;
463 
464 	timeout_sec = max_timeout_sec;
465 
466 
467 	/*
468 	 * Find the largest interrupt period, that can evenly divide
469 	 * the requested heartbeat time.
470 	 */
471 	while ((t % timeout_sec) != 0)
472 		timeout_sec--;
473 
474 	periods = t / timeout_sec;
475 
476 	/*
477 	 * The last two periods are after the irq is disabled, and
478 	 * then to the nmi, so we subtract them off.
479 	 */
480 
481 	countdown_reset = periods > 2 ? periods - 2 : 0;
482 	heartbeat = t;
483 	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
484 }
485 
486 static int octeon_wdt_set_heartbeat(int t)
487 {
488 	int cpu;
489 	int coreid;
490 	union cvmx_ciu_wdogx ciu_wdog;
491 
492 	if (t <= 0)
493 		return -1;
494 
495 	octeon_wdt_calc_parameters(t);
496 
497 	for_each_online_cpu(cpu) {
498 		coreid = cpu2core(cpu);
499 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
500 		ciu_wdog.u64 = 0;
501 		ciu_wdog.s.len = timeout_cnt;
502 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
503 		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
504 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
505 	}
506 	octeon_wdt_ping(); /* Get the irqs back on. */
507 	return 0;
508 }
509 
510 /**
511  *	octeon_wdt_write:
512  *	@file: file handle to the watchdog
513  *	@buf: buffer to write (unused as data does not matter here
514  *	@count: count of bytes
515  *	@ppos: pointer to the position to write. No seeks allowed
516  *
517  *	A write to a watchdog device is defined as a keepalive signal. Any
518  *	write of data will do, as we we don't define content meaning.
519  */
520 
521 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
522 				size_t count, loff_t *ppos)
523 {
524 	if (count) {
525 		if (!nowayout) {
526 			size_t i;
527 
528 			/* In case it was set long ago */
529 			expect_close = 0;
530 
531 			for (i = 0; i != count; i++) {
532 				char c;
533 				if (get_user(c, buf + i))
534 					return -EFAULT;
535 				if (c == 'V')
536 					expect_close = 1;
537 			}
538 		}
539 		octeon_wdt_ping();
540 	}
541 	return count;
542 }
543 
544 /**
545  *	octeon_wdt_ioctl:
546  *	@file: file handle to the device
547  *	@cmd: watchdog command
548  *	@arg: argument pointer
549  *
550  *	The watchdog API defines a common set of functions for all
551  *	watchdogs according to their available features. We only
552  *	actually usefully support querying capabilities and setting
553  *	the timeout.
554  */
555 
556 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
557 			     unsigned long arg)
558 {
559 	void __user *argp = (void __user *)arg;
560 	int __user *p = argp;
561 	int new_heartbeat;
562 
563 	static struct watchdog_info ident = {
564 		.options =		WDIOF_SETTIMEOUT|
565 					WDIOF_MAGICCLOSE|
566 					WDIOF_KEEPALIVEPING,
567 		.firmware_version =	1,
568 		.identity =		"OCTEON",
569 	};
570 
571 	switch (cmd) {
572 	case WDIOC_GETSUPPORT:
573 		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
574 	case WDIOC_GETSTATUS:
575 	case WDIOC_GETBOOTSTATUS:
576 		return put_user(0, p);
577 	case WDIOC_KEEPALIVE:
578 		octeon_wdt_ping();
579 		return 0;
580 	case WDIOC_SETTIMEOUT:
581 		if (get_user(new_heartbeat, p))
582 			return -EFAULT;
583 		if (octeon_wdt_set_heartbeat(new_heartbeat))
584 			return -EINVAL;
585 		/* Fall through. */
586 	case WDIOC_GETTIMEOUT:
587 		return put_user(heartbeat, p);
588 	default:
589 		return -ENOTTY;
590 	}
591 }
592 
593 /**
594  *	octeon_wdt_open:
595  *	@inode: inode of device
596  *	@file: file handle to device
597  *
598  *	The watchdog device has been opened. The watchdog device is single
599  *	open and on opening we do a ping to reset the counters.
600  */
601 
602 static int octeon_wdt_open(struct inode *inode, struct file *file)
603 {
604 	if (test_and_set_bit(0, &octeon_wdt_is_open))
605 		return -EBUSY;
606 	/*
607 	 *	Activate
608 	 */
609 	octeon_wdt_ping();
610 	do_coundown = 1;
611 	return nonseekable_open(inode, file);
612 }
613 
614 /**
615  *	octeon_wdt_release:
616  *	@inode: inode to board
617  *	@file: file handle to board
618  *
619  *	The watchdog has a configurable API. There is a religious dispute
620  *	between people who want their watchdog to be able to shut down and
621  *	those who want to be sure if the watchdog manager dies the machine
622  *	reboots. In the former case we disable the counters, in the latter
623  *	case you have to open it again very soon.
624  */
625 
626 static int octeon_wdt_release(struct inode *inode, struct file *file)
627 {
628 	if (expect_close) {
629 		do_coundown = 0;
630 		octeon_wdt_ping();
631 	} else {
632 		pr_crit("WDT device closed unexpectedly.  WDT will not stop!\n");
633 	}
634 	clear_bit(0, &octeon_wdt_is_open);
635 	expect_close = 0;
636 	return 0;
637 }
638 
639 static const struct file_operations octeon_wdt_fops = {
640 	.owner		= THIS_MODULE,
641 	.llseek		= no_llseek,
642 	.write		= octeon_wdt_write,
643 	.unlocked_ioctl	= octeon_wdt_ioctl,
644 	.open		= octeon_wdt_open,
645 	.release	= octeon_wdt_release,
646 };
647 
648 static struct miscdevice octeon_wdt_miscdev = {
649 	.minor	= WATCHDOG_MINOR,
650 	.name	= "watchdog",
651 	.fops	= &octeon_wdt_fops,
652 };
653 
654 static struct notifier_block octeon_wdt_cpu_notifier = {
655 	.notifier_call = octeon_wdt_cpu_callback,
656 };
657 
658 
659 /**
660  * Module/ driver initialization.
661  *
662  * Returns Zero on success
663  */
664 static int __init octeon_wdt_init(void)
665 {
666 	int i;
667 	int ret;
668 	int cpu;
669 	u64 *ptr;
670 
671 	/*
672 	 * Watchdog time expiration length = The 16 bits of LEN
673 	 * represent the most significant bits of a 24 bit decrementer
674 	 * that decrements every 256 cycles.
675 	 *
676 	 * Try for a timeout of 5 sec, if that fails a smaller number
677 	 * of even seconds,
678 	 */
679 	max_timeout_sec = 6;
680 	do {
681 		max_timeout_sec--;
682 		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
683 	} while (timeout_cnt > 65535);
684 
685 	BUG_ON(timeout_cnt == 0);
686 
687 	octeon_wdt_calc_parameters(heartbeat);
688 
689 	pr_info("Initial granularity %d Sec\n", timeout_sec);
690 
691 	ret = misc_register(&octeon_wdt_miscdev);
692 	if (ret) {
693 		pr_err("cannot register miscdev on minor=%d (err=%d)\n",
694 		       WATCHDOG_MINOR, ret);
695 		goto out;
696 	}
697 
698 	/* Build the NMI handler ... */
699 	octeon_wdt_build_stage1();
700 
701 	/* ... and install it. */
702 	ptr = (u64 *) nmi_stage1_insns;
703 	for (i = 0; i < 16; i++) {
704 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
705 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
706 	}
707 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
708 
709 	cpumask_clear(&irq_enabled_cpus);
710 
711 	for_each_online_cpu(cpu)
712 		octeon_wdt_setup_interrupt(cpu);
713 
714 	register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
715 out:
716 	return ret;
717 }
718 
719 /**
720  * Module / driver shutdown
721  */
722 static void __exit octeon_wdt_cleanup(void)
723 {
724 	int cpu;
725 
726 	misc_deregister(&octeon_wdt_miscdev);
727 
728 	unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
729 
730 	for_each_online_cpu(cpu) {
731 		int core = cpu2core(cpu);
732 		/* Disable the watchdog */
733 		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
734 		/* Free the interrupt handler */
735 		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
736 	}
737 	/*
738 	 * Disable the boot-bus memory, the code it points to is soon
739 	 * to go missing.
740 	 */
741 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
742 }
743 
744 MODULE_LICENSE("GPL");
745 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
746 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
747 module_init(octeon_wdt_init);
748 module_exit(octeon_wdt_cleanup);
749