1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5  *
6  * Some parts derived from wdt.c
7  *
8  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9  *						All Rights Reserved.
10  *
11  *	This program is free software; you can redistribute it and/or
12  *	modify it under the terms of the GNU General Public License
13  *	as published by the Free Software Foundation; either version
14  *	2 of the License, or (at your option) any later version.
15  *
16  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17  *	warranty for any of this software. This material is provided
18  *	"AS-IS" and at no charge.
19  *
20  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
21  *
22  * This file is subject to the terms and conditions of the GNU General Public
23  * License.  See the file "COPYING" in the main directory of this archive
24  * for more details.
25  *
26  *
27  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28  * For most systems this is less than 10 seconds, so to allow for
29  * software to request longer watchdog heartbeats, we maintain software
30  * counters to count multiples of the base rate.  If the system locks
31  * up in such a manner that we can not run the software counters, the
32  * only result is a watchdog reset sooner than was requested.  But
33  * that is OK, because in this case userspace would likely not be able
34  * to do anything anyhow.
35  *
36  * The hardware watchdog interval we call the period.  The OCTEON
37  * watchdog goes through several stages, after the first period an
38  * irq is asserted, then if it is not reset, after the next period NMI
39  * is asserted, then after an additional period a chip wide soft reset.
40  * So for the software counters, we reset watchdog after each period
41  * and decrement the counter.  But for the last two periods we need to
42  * let the watchdog progress to the NMI stage so we disable the irq
43  * and let it proceed.  Once in the NMI, we print the register state
44  * to the serial port and then wait for the reset.
45  *
46  * A watchdog is maintained for each CPU in the system, that way if
47  * one CPU suffers a lockup, we also get a register dump and reset.
48  * The userspace ping resets the watchdog on all CPUs.
49  *
50  * Before userspace opens the watchdog device, we still run the
51  * watchdogs to catch any lockups that may be kernel related.
52  *
53  */
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/miscdevice.h>
58 #include <linux/interrupt.h>
59 #include <linux/watchdog.h>
60 #include <linux/cpumask.h>
61 #include <linux/bitops.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/delay.h>
66 #include <linux/cpu.h>
67 #include <linux/smp.h>
68 #include <linux/fs.h>
69 #include <linux/irq.h>
70 
71 #include <asm/mipsregs.h>
72 #include <asm/uasm.h>
73 
74 #include <asm/octeon/octeon.h>
75 
76 /* The count needed to achieve timeout_sec. */
77 static unsigned int timeout_cnt;
78 
79 /* The maximum period supported. */
80 static unsigned int max_timeout_sec;
81 
82 /* The current period.  */
83 static unsigned int timeout_sec;
84 
85 /* Set to non-zero when userspace countdown mode active */
86 static int do_coundown;
87 static unsigned int countdown_reset;
88 static unsigned int per_cpu_countdown[NR_CPUS];
89 
90 static cpumask_t irq_enabled_cpus;
91 
92 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
93 
94 static int heartbeat = WD_TIMO;
95 module_param(heartbeat, int, S_IRUGO);
96 MODULE_PARM_DESC(heartbeat,
97 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
98 				__MODULE_STRING(WD_TIMO) ")");
99 
100 static bool nowayout = WATCHDOG_NOWAYOUT;
101 module_param(nowayout, bool, S_IRUGO);
102 MODULE_PARM_DESC(nowayout,
103 	"Watchdog cannot be stopped once started (default="
104 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
105 
106 static unsigned long octeon_wdt_is_open;
107 static char expect_close;
108 
109 static u32 __initdata nmi_stage1_insns[64];
110 /* We need one branch and therefore one relocation per target label. */
111 static struct uasm_label __initdata labels[5];
112 static struct uasm_reloc __initdata relocs[5];
113 
114 enum lable_id {
115 	label_enter_bootloader = 1
116 };
117 
118 /* Some CP0 registers */
119 #define K0		26
120 #define C0_CVMMEMCTL 11, 7
121 #define C0_STATUS 12, 0
122 #define C0_EBASE 15, 1
123 #define C0_DESAVE 31, 0
124 
125 void octeon_wdt_nmi_stage2(void);
126 
127 static void __init octeon_wdt_build_stage1(void)
128 {
129 	int i;
130 	int len;
131 	u32 *p = nmi_stage1_insns;
132 #ifdef CONFIG_HOTPLUG_CPU
133 	struct uasm_label *l = labels;
134 	struct uasm_reloc *r = relocs;
135 #endif
136 
137 	/*
138 	 * For the next few instructions running the debugger may
139 	 * cause corruption of k0 in the saved registers. Since we're
140 	 * about to crash, nobody probably cares.
141 	 *
142 	 * Save K0 into the debug scratch register
143 	 */
144 	uasm_i_dmtc0(&p, K0, C0_DESAVE);
145 
146 	uasm_i_mfc0(&p, K0, C0_STATUS);
147 #ifdef CONFIG_HOTPLUG_CPU
148 	if (octeon_bootloader_entry_addr)
149 		uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
150 			      label_enter_bootloader);
151 #endif
152 	/* Force 64-bit addressing enabled */
153 	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
154 	uasm_i_mtc0(&p, K0, C0_STATUS);
155 
156 #ifdef CONFIG_HOTPLUG_CPU
157 	if (octeon_bootloader_entry_addr) {
158 		uasm_i_mfc0(&p, K0, C0_EBASE);
159 		/* Coreid number in K0 */
160 		uasm_i_andi(&p, K0, K0, 0xf);
161 		/* 8 * coreid in bits 16-31 */
162 		uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
163 		uasm_i_ori(&p, K0, K0, 0x8001);
164 		uasm_i_dsll_safe(&p, K0, K0, 16);
165 		uasm_i_ori(&p, K0, K0, 0x0700);
166 		uasm_i_drotr_safe(&p, K0, K0, 32);
167 		/*
168 		 * Should result in: 0x8001,0700,0000,8*coreid which is
169 		 * CVMX_CIU_WDOGX(coreid) - 0x0500
170 		 *
171 		 * Now ld K0, CVMX_CIU_WDOGX(coreid)
172 		 */
173 		uasm_i_ld(&p, K0, 0x500, K0);
174 		/*
175 		 * If bit one set handle the NMI as a watchdog event.
176 		 * otherwise transfer control to bootloader.
177 		 */
178 		uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
179 		uasm_i_nop(&p);
180 	}
181 #endif
182 
183 	/* Clear Dcache so cvmseg works right. */
184 	uasm_i_cache(&p, 1, 0, 0);
185 
186 	/* Use K0 to do a read/modify/write of CVMMEMCTL */
187 	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
188 	/* Clear out the size of CVMSEG	*/
189 	uasm_i_dins(&p, K0, 0, 0, 6);
190 	/* Set CVMSEG to its largest value */
191 	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
192 	/* Store the CVMMEMCTL value */
193 	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
194 
195 	/* Load the address of the second stage handler */
196 	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
197 	uasm_i_jr(&p, K0);
198 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
199 
200 #ifdef CONFIG_HOTPLUG_CPU
201 	if (octeon_bootloader_entry_addr) {
202 		uasm_build_label(&l, p, label_enter_bootloader);
203 		/* Jump to the bootloader and restore K0 */
204 		UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
205 		uasm_i_jr(&p, K0);
206 		uasm_i_dmfc0(&p, K0, C0_DESAVE);
207 	}
208 #endif
209 	uasm_resolve_relocs(relocs, labels);
210 
211 	len = (int)(p - nmi_stage1_insns);
212 	pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
213 
214 	pr_debug("\t.set push\n");
215 	pr_debug("\t.set noreorder\n");
216 	for (i = 0; i < len; i++)
217 		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
218 	pr_debug("\t.set pop\n");
219 
220 	if (len > 32)
221 		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
222 }
223 
224 static int cpu2core(int cpu)
225 {
226 #ifdef CONFIG_SMP
227 	return cpu_logical_map(cpu);
228 #else
229 	return cvmx_get_core_num();
230 #endif
231 }
232 
233 static int core2cpu(int coreid)
234 {
235 #ifdef CONFIG_SMP
236 	return cpu_number_map(coreid);
237 #else
238 	return 0;
239 #endif
240 }
241 
242 /**
243  * Poke the watchdog when an interrupt is received
244  *
245  * @cpl:
246  * @dev_id:
247  *
248  * Returns
249  */
250 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
251 {
252 	unsigned int core = cvmx_get_core_num();
253 	int cpu = core2cpu(core);
254 
255 	if (do_coundown) {
256 		if (per_cpu_countdown[cpu] > 0) {
257 			/* We're alive, poke the watchdog */
258 			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
259 			per_cpu_countdown[cpu]--;
260 		} else {
261 			/* Bad news, you are about to reboot. */
262 			disable_irq_nosync(cpl);
263 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
264 		}
265 	} else {
266 		/* Not open, just ping away... */
267 		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
268 	}
269 	return IRQ_HANDLED;
270 }
271 
272 /* From setup.c */
273 extern int prom_putchar(char c);
274 
275 /**
276  * Write a string to the uart
277  *
278  * @str:        String to write
279  */
280 static void octeon_wdt_write_string(const char *str)
281 {
282 	/* Just loop writing one byte at a time */
283 	while (*str)
284 		prom_putchar(*str++);
285 }
286 
287 /**
288  * Write a hex number out of the uart
289  *
290  * @value:      Number to display
291  * @digits:     Number of digits to print (1 to 16)
292  */
293 static void octeon_wdt_write_hex(u64 value, int digits)
294 {
295 	int d;
296 	int v;
297 	for (d = 0; d < digits; d++) {
298 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
299 		if (v >= 10)
300 			prom_putchar('a' + v - 10);
301 		else
302 			prom_putchar('0' + v);
303 	}
304 }
305 
306 const char *reg_name[] = {
307 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
308 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
309 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
310 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
311 };
312 
313 /**
314  * NMI stage 3 handler. NMIs are handled in the following manner:
315  * 1) The first NMI handler enables CVMSEG and transfers from
316  * the bootbus region into normal memory. It is careful to not
317  * destroy any registers.
318  * 2) The second stage handler uses CVMSEG to save the registers
319  * and create a stack for C code. It then calls the third level
320  * handler with one argument, a pointer to the register values.
321  * 3) The third, and final, level handler is the following C
322  * function that prints out some useful infomration.
323  *
324  * @reg:    Pointer to register state before the NMI
325  */
326 void octeon_wdt_nmi_stage3(u64 reg[32])
327 {
328 	u64 i;
329 
330 	unsigned int coreid = cvmx_get_core_num();
331 	/*
332 	 * Save status and cause early to get them before any changes
333 	 * might happen.
334 	 */
335 	u64 cp0_cause = read_c0_cause();
336 	u64 cp0_status = read_c0_status();
337 	u64 cp0_error_epc = read_c0_errorepc();
338 	u64 cp0_epc = read_c0_epc();
339 
340 	/* Delay so output from all cores output is not jumbled together. */
341 	__delay(100000000ull * coreid);
342 
343 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
344 	octeon_wdt_write_hex(coreid, 1);
345 	octeon_wdt_write_string(" ***\r\n");
346 	for (i = 0; i < 32; i++) {
347 		octeon_wdt_write_string("\t");
348 		octeon_wdt_write_string(reg_name[i]);
349 		octeon_wdt_write_string("\t0x");
350 		octeon_wdt_write_hex(reg[i], 16);
351 		if (i & 1)
352 			octeon_wdt_write_string("\r\n");
353 	}
354 	octeon_wdt_write_string("\terr_epc\t0x");
355 	octeon_wdt_write_hex(cp0_error_epc, 16);
356 
357 	octeon_wdt_write_string("\tepc\t0x");
358 	octeon_wdt_write_hex(cp0_epc, 16);
359 	octeon_wdt_write_string("\r\n");
360 
361 	octeon_wdt_write_string("\tstatus\t0x");
362 	octeon_wdt_write_hex(cp0_status, 16);
363 	octeon_wdt_write_string("\tcause\t0x");
364 	octeon_wdt_write_hex(cp0_cause, 16);
365 	octeon_wdt_write_string("\r\n");
366 
367 	octeon_wdt_write_string("\tsum0\t0x");
368 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
369 	octeon_wdt_write_string("\ten0\t0x");
370 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
371 	octeon_wdt_write_string("\r\n");
372 
373 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
374 }
375 
376 static void octeon_wdt_disable_interrupt(int cpu)
377 {
378 	unsigned int core;
379 	unsigned int irq;
380 	union cvmx_ciu_wdogx ciu_wdog;
381 
382 	core = cpu2core(cpu);
383 
384 	irq = OCTEON_IRQ_WDOG0 + core;
385 
386 	/* Poke the watchdog to clear out its state */
387 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
388 
389 	/* Disable the hardware. */
390 	ciu_wdog.u64 = 0;
391 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
392 
393 	free_irq(irq, octeon_wdt_poke_irq);
394 }
395 
396 static void octeon_wdt_setup_interrupt(int cpu)
397 {
398 	unsigned int core;
399 	unsigned int irq;
400 	union cvmx_ciu_wdogx ciu_wdog;
401 
402 	core = cpu2core(cpu);
403 
404 	/* Disable it before doing anything with the interrupts. */
405 	ciu_wdog.u64 = 0;
406 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
407 
408 	per_cpu_countdown[cpu] = countdown_reset;
409 
410 	irq = OCTEON_IRQ_WDOG0 + core;
411 
412 	if (request_irq(irq, octeon_wdt_poke_irq,
413 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
414 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
415 
416 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
417 
418 	/* Poke the watchdog to clear out its state */
419 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
420 
421 	/* Finally enable the watchdog now that all handlers are installed */
422 	ciu_wdog.u64 = 0;
423 	ciu_wdog.s.len = timeout_cnt;
424 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
425 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
426 }
427 
428 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
429 					   unsigned long action, void *hcpu)
430 {
431 	unsigned int cpu = (unsigned long)hcpu;
432 
433 	switch (action) {
434 	case CPU_DOWN_PREPARE:
435 		octeon_wdt_disable_interrupt(cpu);
436 		break;
437 	case CPU_ONLINE:
438 	case CPU_DOWN_FAILED:
439 		octeon_wdt_setup_interrupt(cpu);
440 		break;
441 	default:
442 		break;
443 	}
444 	return NOTIFY_OK;
445 }
446 
447 static void octeon_wdt_ping(void)
448 {
449 	int cpu;
450 	int coreid;
451 
452 	for_each_online_cpu(cpu) {
453 		coreid = cpu2core(cpu);
454 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
455 		per_cpu_countdown[cpu] = countdown_reset;
456 		if ((countdown_reset || !do_coundown) &&
457 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
458 			/* We have to enable the irq */
459 			int irq = OCTEON_IRQ_WDOG0 + coreid;
460 			enable_irq(irq);
461 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
462 		}
463 	}
464 }
465 
466 static void octeon_wdt_calc_parameters(int t)
467 {
468 	unsigned int periods;
469 
470 	timeout_sec = max_timeout_sec;
471 
472 
473 	/*
474 	 * Find the largest interrupt period, that can evenly divide
475 	 * the requested heartbeat time.
476 	 */
477 	while ((t % timeout_sec) != 0)
478 		timeout_sec--;
479 
480 	periods = t / timeout_sec;
481 
482 	/*
483 	 * The last two periods are after the irq is disabled, and
484 	 * then to the nmi, so we subtract them off.
485 	 */
486 
487 	countdown_reset = periods > 2 ? periods - 2 : 0;
488 	heartbeat = t;
489 	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
490 }
491 
492 static int octeon_wdt_set_heartbeat(int t)
493 {
494 	int cpu;
495 	int coreid;
496 	union cvmx_ciu_wdogx ciu_wdog;
497 
498 	if (t <= 0)
499 		return -1;
500 
501 	octeon_wdt_calc_parameters(t);
502 
503 	for_each_online_cpu(cpu) {
504 		coreid = cpu2core(cpu);
505 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
506 		ciu_wdog.u64 = 0;
507 		ciu_wdog.s.len = timeout_cnt;
508 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
509 		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
510 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
511 	}
512 	octeon_wdt_ping(); /* Get the irqs back on. */
513 	return 0;
514 }
515 
516 /**
517  *	octeon_wdt_write:
518  *	@file: file handle to the watchdog
519  *	@buf: buffer to write (unused as data does not matter here
520  *	@count: count of bytes
521  *	@ppos: pointer to the position to write. No seeks allowed
522  *
523  *	A write to a watchdog device is defined as a keepalive signal. Any
524  *	write of data will do, as we we don't define content meaning.
525  */
526 
527 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
528 				size_t count, loff_t *ppos)
529 {
530 	if (count) {
531 		if (!nowayout) {
532 			size_t i;
533 
534 			/* In case it was set long ago */
535 			expect_close = 0;
536 
537 			for (i = 0; i != count; i++) {
538 				char c;
539 				if (get_user(c, buf + i))
540 					return -EFAULT;
541 				if (c == 'V')
542 					expect_close = 1;
543 			}
544 		}
545 		octeon_wdt_ping();
546 	}
547 	return count;
548 }
549 
550 /**
551  *	octeon_wdt_ioctl:
552  *	@file: file handle to the device
553  *	@cmd: watchdog command
554  *	@arg: argument pointer
555  *
556  *	The watchdog API defines a common set of functions for all
557  *	watchdogs according to their available features. We only
558  *	actually usefully support querying capabilities and setting
559  *	the timeout.
560  */
561 
562 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
563 			     unsigned long arg)
564 {
565 	void __user *argp = (void __user *)arg;
566 	int __user *p = argp;
567 	int new_heartbeat;
568 
569 	static struct watchdog_info ident = {
570 		.options =		WDIOF_SETTIMEOUT|
571 					WDIOF_MAGICCLOSE|
572 					WDIOF_KEEPALIVEPING,
573 		.firmware_version =	1,
574 		.identity =		"OCTEON",
575 	};
576 
577 	switch (cmd) {
578 	case WDIOC_GETSUPPORT:
579 		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
580 	case WDIOC_GETSTATUS:
581 	case WDIOC_GETBOOTSTATUS:
582 		return put_user(0, p);
583 	case WDIOC_KEEPALIVE:
584 		octeon_wdt_ping();
585 		return 0;
586 	case WDIOC_SETTIMEOUT:
587 		if (get_user(new_heartbeat, p))
588 			return -EFAULT;
589 		if (octeon_wdt_set_heartbeat(new_heartbeat))
590 			return -EINVAL;
591 		/* Fall through. */
592 	case WDIOC_GETTIMEOUT:
593 		return put_user(heartbeat, p);
594 	default:
595 		return -ENOTTY;
596 	}
597 }
598 
599 /**
600  *	octeon_wdt_open:
601  *	@inode: inode of device
602  *	@file: file handle to device
603  *
604  *	The watchdog device has been opened. The watchdog device is single
605  *	open and on opening we do a ping to reset the counters.
606  */
607 
608 static int octeon_wdt_open(struct inode *inode, struct file *file)
609 {
610 	if (test_and_set_bit(0, &octeon_wdt_is_open))
611 		return -EBUSY;
612 	/*
613 	 *	Activate
614 	 */
615 	octeon_wdt_ping();
616 	do_coundown = 1;
617 	return nonseekable_open(inode, file);
618 }
619 
620 /**
621  *	octeon_wdt_release:
622  *	@inode: inode to board
623  *	@file: file handle to board
624  *
625  *	The watchdog has a configurable API. There is a religious dispute
626  *	between people who want their watchdog to be able to shut down and
627  *	those who want to be sure if the watchdog manager dies the machine
628  *	reboots. In the former case we disable the counters, in the latter
629  *	case you have to open it again very soon.
630  */
631 
632 static int octeon_wdt_release(struct inode *inode, struct file *file)
633 {
634 	if (expect_close) {
635 		do_coundown = 0;
636 		octeon_wdt_ping();
637 	} else {
638 		pr_crit("WDT device closed unexpectedly.  WDT will not stop!\n");
639 	}
640 	clear_bit(0, &octeon_wdt_is_open);
641 	expect_close = 0;
642 	return 0;
643 }
644 
645 static const struct file_operations octeon_wdt_fops = {
646 	.owner		= THIS_MODULE,
647 	.llseek		= no_llseek,
648 	.write		= octeon_wdt_write,
649 	.unlocked_ioctl	= octeon_wdt_ioctl,
650 	.open		= octeon_wdt_open,
651 	.release	= octeon_wdt_release,
652 };
653 
654 static struct miscdevice octeon_wdt_miscdev = {
655 	.minor	= WATCHDOG_MINOR,
656 	.name	= "watchdog",
657 	.fops	= &octeon_wdt_fops,
658 };
659 
660 static struct notifier_block octeon_wdt_cpu_notifier = {
661 	.notifier_call = octeon_wdt_cpu_callback,
662 };
663 
664 
665 /**
666  * Module/ driver initialization.
667  *
668  * Returns Zero on success
669  */
670 static int __init octeon_wdt_init(void)
671 {
672 	int i;
673 	int ret;
674 	int cpu;
675 	u64 *ptr;
676 
677 	/*
678 	 * Watchdog time expiration length = The 16 bits of LEN
679 	 * represent the most significant bits of a 24 bit decrementer
680 	 * that decrements every 256 cycles.
681 	 *
682 	 * Try for a timeout of 5 sec, if that fails a smaller number
683 	 * of even seconds,
684 	 */
685 	max_timeout_sec = 6;
686 	do {
687 		max_timeout_sec--;
688 		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
689 	} while (timeout_cnt > 65535);
690 
691 	BUG_ON(timeout_cnt == 0);
692 
693 	octeon_wdt_calc_parameters(heartbeat);
694 
695 	pr_info("Initial granularity %d Sec\n", timeout_sec);
696 
697 	ret = misc_register(&octeon_wdt_miscdev);
698 	if (ret) {
699 		pr_err("cannot register miscdev on minor=%d (err=%d)\n",
700 		       WATCHDOG_MINOR, ret);
701 		goto out;
702 	}
703 
704 	/* Build the NMI handler ... */
705 	octeon_wdt_build_stage1();
706 
707 	/* ... and install it. */
708 	ptr = (u64 *) nmi_stage1_insns;
709 	for (i = 0; i < 16; i++) {
710 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
711 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
712 	}
713 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
714 
715 	cpumask_clear(&irq_enabled_cpus);
716 
717 	cpu_notifier_register_begin();
718 	for_each_online_cpu(cpu)
719 		octeon_wdt_setup_interrupt(cpu);
720 
721 	__register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
722 	cpu_notifier_register_done();
723 
724 out:
725 	return ret;
726 }
727 
728 /**
729  * Module / driver shutdown
730  */
731 static void __exit octeon_wdt_cleanup(void)
732 {
733 	int cpu;
734 
735 	misc_deregister(&octeon_wdt_miscdev);
736 
737 	cpu_notifier_register_begin();
738 	__unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
739 
740 	for_each_online_cpu(cpu) {
741 		int core = cpu2core(cpu);
742 		/* Disable the watchdog */
743 		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
744 		/* Free the interrupt handler */
745 		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
746 	}
747 
748 	cpu_notifier_register_done();
749 
750 	/*
751 	 * Disable the boot-bus memory, the code it points to is soon
752 	 * to go missing.
753 	 */
754 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
755 }
756 
757 MODULE_LICENSE("GPL");
758 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
759 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
760 module_init(octeon_wdt_init);
761 module_exit(octeon_wdt_cleanup);
762