xref: /openbmc/linux/drivers/watchdog/octeon-wdt-main.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5  *
6  * Some parts derived from wdt.c
7  *
8  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9  *						All Rights Reserved.
10  *
11  *	This program is free software; you can redistribute it and/or
12  *	modify it under the terms of the GNU General Public License
13  *	as published by the Free Software Foundation; either version
14  *	2 of the License, or (at your option) any later version.
15  *
16  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17  *	warranty for any of this software. This material is provided
18  *	"AS-IS" and at no charge.
19  *
20  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
21  *
22  * This file is subject to the terms and conditions of the GNU General Public
23  * License.  See the file "COPYING" in the main directory of this archive
24  * for more details.
25  *
26  *
27  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28  * For most systems this is less than 10 seconds, so to allow for
29  * software to request longer watchdog heartbeats, we maintain software
30  * counters to count multiples of the base rate.  If the system locks
31  * up in such a manner that we can not run the software counters, the
32  * only result is a watchdog reset sooner than was requested.  But
33  * that is OK, because in this case userspace would likely not be able
34  * to do anything anyhow.
35  *
36  * The hardware watchdog interval we call the period.  The OCTEON
37  * watchdog goes through several stages, after the first period an
38  * irq is asserted, then if it is not reset, after the next period NMI
39  * is asserted, then after an additional period a chip wide soft reset.
40  * So for the software counters, we reset watchdog after each period
41  * and decrement the counter.  But for the last two periods we need to
42  * let the watchdog progress to the NMI stage so we disable the irq
43  * and let it proceed.  Once in the NMI, we print the register state
44  * to the serial port and then wait for the reset.
45  *
46  * A watchdog is maintained for each CPU in the system, that way if
47  * one CPU suffers a lockup, we also get a register dump and reset.
48  * The userspace ping resets the watchdog on all CPUs.
49  *
50  * Before userspace opens the watchdog device, we still run the
51  * watchdogs to catch any lockups that may be kernel related.
52  *
53  */
54 
55 #include <linux/miscdevice.h>
56 #include <linux/interrupt.h>
57 #include <linux/watchdog.h>
58 #include <linux/cpumask.h>
59 #include <linux/bitops.h>
60 #include <linux/kernel.h>
61 #include <linux/module.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/cpu.h>
65 #include <linux/smp.h>
66 #include <linux/fs.h>
67 #include <linux/irq.h>
68 
69 #include <asm/mipsregs.h>
70 #include <asm/uasm.h>
71 
72 #include <asm/octeon/octeon.h>
73 
74 /* The count needed to achieve timeout_sec. */
75 static unsigned int timeout_cnt;
76 
77 /* The maximum period supported. */
78 static unsigned int max_timeout_sec;
79 
80 /* The current period.  */
81 static unsigned int timeout_sec;
82 
83 /* Set to non-zero when userspace countdown mode active */
84 static int do_coundown;
85 static unsigned int countdown_reset;
86 static unsigned int per_cpu_countdown[NR_CPUS];
87 
88 static cpumask_t irq_enabled_cpus;
89 
90 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
91 
92 static int heartbeat = WD_TIMO;
93 module_param(heartbeat, int, S_IRUGO);
94 MODULE_PARM_DESC(heartbeat,
95 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
96 				__MODULE_STRING(WD_TIMO) ")");
97 
98 static int nowayout = WATCHDOG_NOWAYOUT;
99 module_param(nowayout, int, S_IRUGO);
100 MODULE_PARM_DESC(nowayout,
101 	"Watchdog cannot be stopped once started (default="
102 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103 
104 static unsigned long octeon_wdt_is_open;
105 static char expect_close;
106 
107 static u32 __initdata nmi_stage1_insns[64];
108 /* We need one branch and therefore one relocation per target label. */
109 static struct uasm_label __initdata labels[5];
110 static struct uasm_reloc __initdata relocs[5];
111 
112 enum lable_id {
113 	label_enter_bootloader = 1
114 };
115 
116 /* Some CP0 registers */
117 #define K0		26
118 #define C0_CVMMEMCTL 11, 7
119 #define C0_STATUS 12, 0
120 #define C0_EBASE 15, 1
121 #define C0_DESAVE 31, 0
122 
123 void octeon_wdt_nmi_stage2(void);
124 
125 static void __init octeon_wdt_build_stage1(void)
126 {
127 	int i;
128 	int len;
129 	u32 *p = nmi_stage1_insns;
130 #ifdef CONFIG_HOTPLUG_CPU
131 	struct uasm_label *l = labels;
132 	struct uasm_reloc *r = relocs;
133 #endif
134 
135 	/*
136 	 * For the next few instructions running the debugger may
137 	 * cause corruption of k0 in the saved registers. Since we're
138 	 * about to crash, nobody probably cares.
139 	 *
140 	 * Save K0 into the debug scratch register
141 	 */
142 	uasm_i_dmtc0(&p, K0, C0_DESAVE);
143 
144 	uasm_i_mfc0(&p, K0, C0_STATUS);
145 #ifdef CONFIG_HOTPLUG_CPU
146 	uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
147 #endif
148 	/* Force 64-bit addressing enabled */
149 	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
150 	uasm_i_mtc0(&p, K0, C0_STATUS);
151 
152 #ifdef CONFIG_HOTPLUG_CPU
153 	uasm_i_mfc0(&p, K0, C0_EBASE);
154 	/* Coreid number in K0 */
155 	uasm_i_andi(&p, K0, K0, 0xf);
156 	/* 8 * coreid in bits 16-31 */
157 	uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
158 	uasm_i_ori(&p, K0, K0, 0x8001);
159 	uasm_i_dsll_safe(&p, K0, K0, 16);
160 	uasm_i_ori(&p, K0, K0, 0x0700);
161 	uasm_i_drotr_safe(&p, K0, K0, 32);
162 	/*
163 	 * Should result in: 0x8001,0700,0000,8*coreid which is
164 	 * CVMX_CIU_WDOGX(coreid) - 0x0500
165 	 *
166 	 * Now ld K0, CVMX_CIU_WDOGX(coreid)
167 	 */
168 	uasm_i_ld(&p, K0, 0x500, K0);
169 	/*
170 	 * If bit one set handle the NMI as a watchdog event.
171 	 * otherwise transfer control to bootloader.
172 	 */
173 	uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
174 	uasm_i_nop(&p);
175 #endif
176 
177 	/* Clear Dcache so cvmseg works right. */
178 	uasm_i_cache(&p, 1, 0, 0);
179 
180 	/* Use K0 to do a read/modify/write of CVMMEMCTL */
181 	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
182 	/* Clear out the size of CVMSEG	*/
183 	uasm_i_dins(&p, K0, 0, 0, 6);
184 	/* Set CVMSEG to its largest value */
185 	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
186 	/* Store the CVMMEMCTL value */
187 	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
188 
189 	/* Load the address of the second stage handler */
190 	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
191 	uasm_i_jr(&p, K0);
192 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
193 
194 #ifdef CONFIG_HOTPLUG_CPU
195 	uasm_build_label(&l, p, label_enter_bootloader);
196 	/* Jump to the bootloader and restore K0 */
197 	UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
198 	uasm_i_jr(&p, K0);
199 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
200 #endif
201 	uasm_resolve_relocs(relocs, labels);
202 
203 	len = (int)(p - nmi_stage1_insns);
204 	pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
205 
206 	pr_debug("\t.set push\n");
207 	pr_debug("\t.set noreorder\n");
208 	for (i = 0; i < len; i++)
209 		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
210 	pr_debug("\t.set pop\n");
211 
212 	if (len > 32)
213 		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
214 }
215 
216 static int cpu2core(int cpu)
217 {
218 #ifdef CONFIG_SMP
219 	return cpu_logical_map(cpu);
220 #else
221 	return cvmx_get_core_num();
222 #endif
223 }
224 
225 static int core2cpu(int coreid)
226 {
227 #ifdef CONFIG_SMP
228 	return cpu_number_map(coreid);
229 #else
230 	return 0;
231 #endif
232 }
233 
234 /**
235  * Poke the watchdog when an interrupt is received
236  *
237  * @cpl:
238  * @dev_id:
239  *
240  * Returns
241  */
242 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
243 {
244 	unsigned int core = cvmx_get_core_num();
245 	int cpu = core2cpu(core);
246 
247 	if (do_coundown) {
248 		if (per_cpu_countdown[cpu] > 0) {
249 			/* We're alive, poke the watchdog */
250 			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
251 			per_cpu_countdown[cpu]--;
252 		} else {
253 			/* Bad news, you are about to reboot. */
254 			disable_irq_nosync(cpl);
255 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
256 		}
257 	} else {
258 		/* Not open, just ping away... */
259 		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
260 	}
261 	return IRQ_HANDLED;
262 }
263 
264 /* From setup.c */
265 extern int prom_putchar(char c);
266 
267 /**
268  * Write a string to the uart
269  *
270  * @str:        String to write
271  */
272 static void octeon_wdt_write_string(const char *str)
273 {
274 	/* Just loop writing one byte at a time */
275 	while (*str)
276 		prom_putchar(*str++);
277 }
278 
279 /**
280  * Write a hex number out of the uart
281  *
282  * @value:      Number to display
283  * @digits:     Number of digits to print (1 to 16)
284  */
285 static void octeon_wdt_write_hex(u64 value, int digits)
286 {
287 	int d;
288 	int v;
289 	for (d = 0; d < digits; d++) {
290 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
291 		if (v >= 10)
292 			prom_putchar('a' + v - 10);
293 		else
294 			prom_putchar('0' + v);
295 	}
296 }
297 
298 const char *reg_name[] = {
299 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
300 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
301 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
302 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
303 };
304 
305 /**
306  * NMI stage 3 handler. NMIs are handled in the following manner:
307  * 1) The first NMI handler enables CVMSEG and transfers from
308  * the bootbus region into normal memory. It is careful to not
309  * destroy any registers.
310  * 2) The second stage handler uses CVMSEG to save the registers
311  * and create a stack for C code. It then calls the third level
312  * handler with one argument, a pointer to the register values.
313  * 3) The third, and final, level handler is the following C
314  * function that prints out some useful infomration.
315  *
316  * @reg:    Pointer to register state before the NMI
317  */
318 void octeon_wdt_nmi_stage3(u64 reg[32])
319 {
320 	u64 i;
321 
322 	unsigned int coreid = cvmx_get_core_num();
323 	/*
324 	 * Save status and cause early to get them before any changes
325 	 * might happen.
326 	 */
327 	u64 cp0_cause = read_c0_cause();
328 	u64 cp0_status = read_c0_status();
329 	u64 cp0_error_epc = read_c0_errorepc();
330 	u64 cp0_epc = read_c0_epc();
331 
332 	/* Delay so output from all cores output is not jumbled together. */
333 	__delay(100000000ull * coreid);
334 
335 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
336 	octeon_wdt_write_hex(coreid, 1);
337 	octeon_wdt_write_string(" ***\r\n");
338 	for (i = 0; i < 32; i++) {
339 		octeon_wdt_write_string("\t");
340 		octeon_wdt_write_string(reg_name[i]);
341 		octeon_wdt_write_string("\t0x");
342 		octeon_wdt_write_hex(reg[i], 16);
343 		if (i & 1)
344 			octeon_wdt_write_string("\r\n");
345 	}
346 	octeon_wdt_write_string("\terr_epc\t0x");
347 	octeon_wdt_write_hex(cp0_error_epc, 16);
348 
349 	octeon_wdt_write_string("\tepc\t0x");
350 	octeon_wdt_write_hex(cp0_epc, 16);
351 	octeon_wdt_write_string("\r\n");
352 
353 	octeon_wdt_write_string("\tstatus\t0x");
354 	octeon_wdt_write_hex(cp0_status, 16);
355 	octeon_wdt_write_string("\tcause\t0x");
356 	octeon_wdt_write_hex(cp0_cause, 16);
357 	octeon_wdt_write_string("\r\n");
358 
359 	octeon_wdt_write_string("\tsum0\t0x");
360 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
361 	octeon_wdt_write_string("\ten0\t0x");
362 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
363 	octeon_wdt_write_string("\r\n");
364 
365 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
366 }
367 
368 static void octeon_wdt_disable_interrupt(int cpu)
369 {
370 	unsigned int core;
371 	unsigned int irq;
372 	union cvmx_ciu_wdogx ciu_wdog;
373 
374 	core = cpu2core(cpu);
375 
376 	irq = OCTEON_IRQ_WDOG0 + core;
377 
378 	/* Poke the watchdog to clear out its state */
379 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
380 
381 	/* Disable the hardware. */
382 	ciu_wdog.u64 = 0;
383 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
384 
385 	free_irq(irq, octeon_wdt_poke_irq);
386 }
387 
388 static void octeon_wdt_setup_interrupt(int cpu)
389 {
390 	unsigned int core;
391 	unsigned int irq;
392 	union cvmx_ciu_wdogx ciu_wdog;
393 
394 	core = cpu2core(cpu);
395 
396 	/* Disable it before doing anything with the interrupts. */
397 	ciu_wdog.u64 = 0;
398 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
399 
400 	per_cpu_countdown[cpu] = countdown_reset;
401 
402 	irq = OCTEON_IRQ_WDOG0 + core;
403 
404 	if (request_irq(irq, octeon_wdt_poke_irq,
405 			IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
406 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
407 
408 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
409 
410 	/* Poke the watchdog to clear out its state */
411 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
412 
413 	/* Finally enable the watchdog now that all handlers are installed */
414 	ciu_wdog.u64 = 0;
415 	ciu_wdog.s.len = timeout_cnt;
416 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
417 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
418 }
419 
420 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
421 					   unsigned long action, void *hcpu)
422 {
423 	unsigned int cpu = (unsigned long)hcpu;
424 
425 	switch (action) {
426 	case CPU_DOWN_PREPARE:
427 		octeon_wdt_disable_interrupt(cpu);
428 		break;
429 	case CPU_ONLINE:
430 	case CPU_DOWN_FAILED:
431 		octeon_wdt_setup_interrupt(cpu);
432 		break;
433 	default:
434 		break;
435 	}
436 	return NOTIFY_OK;
437 }
438 
439 static void octeon_wdt_ping(void)
440 {
441 	int cpu;
442 	int coreid;
443 
444 	for_each_online_cpu(cpu) {
445 		coreid = cpu2core(cpu);
446 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
447 		per_cpu_countdown[cpu] = countdown_reset;
448 		if ((countdown_reset || !do_coundown) &&
449 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
450 			/* We have to enable the irq */
451 			int irq = OCTEON_IRQ_WDOG0 + coreid;
452 			enable_irq(irq);
453 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
454 		}
455 	}
456 }
457 
458 static void octeon_wdt_calc_parameters(int t)
459 {
460 	unsigned int periods;
461 
462 	timeout_sec = max_timeout_sec;
463 
464 
465 	/*
466 	 * Find the largest interrupt period, that can evenly divide
467 	 * the requested heartbeat time.
468 	 */
469 	while ((t % timeout_sec) != 0)
470 		timeout_sec--;
471 
472 	periods = t / timeout_sec;
473 
474 	/*
475 	 * The last two periods are after the irq is disabled, and
476 	 * then to the nmi, so we subtract them off.
477 	 */
478 
479 	countdown_reset = periods > 2 ? periods - 2 : 0;
480 	heartbeat = t;
481 	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
482 }
483 
484 static int octeon_wdt_set_heartbeat(int t)
485 {
486 	int cpu;
487 	int coreid;
488 	union cvmx_ciu_wdogx ciu_wdog;
489 
490 	if (t <= 0)
491 		return -1;
492 
493 	octeon_wdt_calc_parameters(t);
494 
495 	for_each_online_cpu(cpu) {
496 		coreid = cpu2core(cpu);
497 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
498 		ciu_wdog.u64 = 0;
499 		ciu_wdog.s.len = timeout_cnt;
500 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
501 		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
502 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
503 	}
504 	octeon_wdt_ping(); /* Get the irqs back on. */
505 	return 0;
506 }
507 
508 /**
509  *	octeon_wdt_write:
510  *	@file: file handle to the watchdog
511  *	@buf: buffer to write (unused as data does not matter here
512  *	@count: count of bytes
513  *	@ppos: pointer to the position to write. No seeks allowed
514  *
515  *	A write to a watchdog device is defined as a keepalive signal. Any
516  *	write of data will do, as we we don't define content meaning.
517  */
518 
519 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
520 				size_t count, loff_t *ppos)
521 {
522 	if (count) {
523 		if (!nowayout) {
524 			size_t i;
525 
526 			/* In case it was set long ago */
527 			expect_close = 0;
528 
529 			for (i = 0; i != count; i++) {
530 				char c;
531 				if (get_user(c, buf + i))
532 					return -EFAULT;
533 				if (c == 'V')
534 					expect_close = 1;
535 			}
536 		}
537 		octeon_wdt_ping();
538 	}
539 	return count;
540 }
541 
542 /**
543  *	octeon_wdt_ioctl:
544  *	@file: file handle to the device
545  *	@cmd: watchdog command
546  *	@arg: argument pointer
547  *
548  *	The watchdog API defines a common set of functions for all
549  *	watchdogs according to their available features. We only
550  *	actually usefully support querying capabilities and setting
551  *	the timeout.
552  */
553 
554 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
555 			     unsigned long arg)
556 {
557 	void __user *argp = (void __user *)arg;
558 	int __user *p = argp;
559 	int new_heartbeat;
560 
561 	static struct watchdog_info ident = {
562 		.options =		WDIOF_SETTIMEOUT|
563 					WDIOF_MAGICCLOSE|
564 					WDIOF_KEEPALIVEPING,
565 		.firmware_version =	1,
566 		.identity =		"OCTEON",
567 	};
568 
569 	switch (cmd) {
570 	case WDIOC_GETSUPPORT:
571 		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
572 	case WDIOC_GETSTATUS:
573 	case WDIOC_GETBOOTSTATUS:
574 		return put_user(0, p);
575 	case WDIOC_KEEPALIVE:
576 		octeon_wdt_ping();
577 		return 0;
578 	case WDIOC_SETTIMEOUT:
579 		if (get_user(new_heartbeat, p))
580 			return -EFAULT;
581 		if (octeon_wdt_set_heartbeat(new_heartbeat))
582 			return -EINVAL;
583 		/* Fall through. */
584 	case WDIOC_GETTIMEOUT:
585 		return put_user(heartbeat, p);
586 	default:
587 		return -ENOTTY;
588 	}
589 }
590 
591 /**
592  *	octeon_wdt_open:
593  *	@inode: inode of device
594  *	@file: file handle to device
595  *
596  *	The watchdog device has been opened. The watchdog device is single
597  *	open and on opening we do a ping to reset the counters.
598  */
599 
600 static int octeon_wdt_open(struct inode *inode, struct file *file)
601 {
602 	if (test_and_set_bit(0, &octeon_wdt_is_open))
603 		return -EBUSY;
604 	/*
605 	 *	Activate
606 	 */
607 	octeon_wdt_ping();
608 	do_coundown = 1;
609 	return nonseekable_open(inode, file);
610 }
611 
612 /**
613  *	octeon_wdt_release:
614  *	@inode: inode to board
615  *	@file: file handle to board
616  *
617  *	The watchdog has a configurable API. There is a religious dispute
618  *	between people who want their watchdog to be able to shut down and
619  *	those who want to be sure if the watchdog manager dies the machine
620  *	reboots. In the former case we disable the counters, in the latter
621  *	case you have to open it again very soon.
622  */
623 
624 static int octeon_wdt_release(struct inode *inode, struct file *file)
625 {
626 	if (expect_close) {
627 		do_coundown = 0;
628 		octeon_wdt_ping();
629 	} else {
630 		pr_crit("octeon_wdt: WDT device closed unexpectedly.  WDT will not stop!\n");
631 	}
632 	clear_bit(0, &octeon_wdt_is_open);
633 	expect_close = 0;
634 	return 0;
635 }
636 
637 static const struct file_operations octeon_wdt_fops = {
638 	.owner		= THIS_MODULE,
639 	.llseek		= no_llseek,
640 	.write		= octeon_wdt_write,
641 	.unlocked_ioctl	= octeon_wdt_ioctl,
642 	.open		= octeon_wdt_open,
643 	.release	= octeon_wdt_release,
644 };
645 
646 static struct miscdevice octeon_wdt_miscdev = {
647 	.minor	= WATCHDOG_MINOR,
648 	.name	= "watchdog",
649 	.fops	= &octeon_wdt_fops,
650 };
651 
652 static struct notifier_block octeon_wdt_cpu_notifier = {
653 	.notifier_call = octeon_wdt_cpu_callback,
654 };
655 
656 
657 /**
658  * Module/ driver initialization.
659  *
660  * Returns Zero on success
661  */
662 static int __init octeon_wdt_init(void)
663 {
664 	int i;
665 	int ret;
666 	int cpu;
667 	u64 *ptr;
668 
669 	/*
670 	 * Watchdog time expiration length = The 16 bits of LEN
671 	 * represent the most significant bits of a 24 bit decrementer
672 	 * that decrements every 256 cycles.
673 	 *
674 	 * Try for a timeout of 5 sec, if that fails a smaller number
675 	 * of even seconds,
676 	 */
677 	max_timeout_sec = 6;
678 	do {
679 		max_timeout_sec--;
680 		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
681 	} while (timeout_cnt > 65535);
682 
683 	BUG_ON(timeout_cnt == 0);
684 
685 	octeon_wdt_calc_parameters(heartbeat);
686 
687 	pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
688 
689 	ret = misc_register(&octeon_wdt_miscdev);
690 	if (ret) {
691 		pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
692 			WATCHDOG_MINOR, ret);
693 		goto out;
694 	}
695 
696 	/* Build the NMI handler ... */
697 	octeon_wdt_build_stage1();
698 
699 	/* ... and install it. */
700 	ptr = (u64 *) nmi_stage1_insns;
701 	for (i = 0; i < 16; i++) {
702 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
703 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
704 	}
705 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
706 
707 	cpumask_clear(&irq_enabled_cpus);
708 
709 	for_each_online_cpu(cpu)
710 		octeon_wdt_setup_interrupt(cpu);
711 
712 	register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
713 out:
714 	return ret;
715 }
716 
717 /**
718  * Module / driver shutdown
719  */
720 static void __exit octeon_wdt_cleanup(void)
721 {
722 	int cpu;
723 
724 	misc_deregister(&octeon_wdt_miscdev);
725 
726 	unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
727 
728 	for_each_online_cpu(cpu) {
729 		int core = cpu2core(cpu);
730 		/* Disable the watchdog */
731 		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
732 		/* Free the interrupt handler */
733 		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
734 	}
735 	/*
736 	 * Disable the boot-bus memory, the code it points to is soon
737 	 * to go missing.
738 	 */
739 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
740 }
741 
742 MODULE_LICENSE("GPL");
743 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
744 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
745 module_init(octeon_wdt_init);
746 module_exit(octeon_wdt_cleanup);
747