1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5  *
6  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
7  *
8  * Some parts derived from wdt.c
9  *
10  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11  *						All Rights Reserved.
12  *
13  *	This program is free software; you can redistribute it and/or
14  *	modify it under the terms of the GNU General Public License
15  *	as published by the Free Software Foundation; either version
16  *	2 of the License, or (at your option) any later version.
17  *
18  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19  *	warranty for any of this software. This material is provided
20  *	"AS-IS" and at no charge.
21  *
22  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
23  *
24  * This file is subject to the terms and conditions of the GNU General Public
25  * License.  See the file "COPYING" in the main directory of this archive
26  * for more details.
27  *
28  *
29  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30  * For most systems this is less than 10 seconds, so to allow for
31  * software to request longer watchdog heartbeats, we maintain software
32  * counters to count multiples of the base rate.  If the system locks
33  * up in such a manner that we can not run the software counters, the
34  * only result is a watchdog reset sooner than was requested.  But
35  * that is OK, because in this case userspace would likely not be able
36  * to do anything anyhow.
37  *
38  * The hardware watchdog interval we call the period.  The OCTEON
39  * watchdog goes through several stages, after the first period an
40  * irq is asserted, then if it is not reset, after the next period NMI
41  * is asserted, then after an additional period a chip wide soft reset.
42  * So for the software counters, we reset watchdog after each period
43  * and decrement the counter.  But for the last two periods we need to
44  * let the watchdog progress to the NMI stage so we disable the irq
45  * and let it proceed.  Once in the NMI, we print the register state
46  * to the serial port and then wait for the reset.
47  *
48  * A watchdog is maintained for each CPU in the system, that way if
49  * one CPU suffers a lockup, we also get a register dump and reset.
50  * The userspace ping resets the watchdog on all CPUs.
51  *
52  * Before userspace opens the watchdog device, we still run the
53  * watchdogs to catch any lockups that may be kernel related.
54  *
55  */
56 
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58 
59 #include <linux/interrupt.h>
60 #include <linux/watchdog.h>
61 #include <linux/cpumask.h>
62 #include <linux/bitops.h>
63 #include <linux/kernel.h>
64 #include <linux/module.h>
65 #include <linux/string.h>
66 #include <linux/delay.h>
67 #include <linux/cpu.h>
68 #include <linux/smp.h>
69 #include <linux/fs.h>
70 #include <linux/irq.h>
71 
72 #include <asm/mipsregs.h>
73 #include <asm/uasm.h>
74 
75 #include <asm/octeon/octeon.h>
76 
77 /* The count needed to achieve timeout_sec. */
78 static unsigned int timeout_cnt;
79 
80 /* The maximum period supported. */
81 static unsigned int max_timeout_sec;
82 
83 /* The current period.  */
84 static unsigned int timeout_sec;
85 
86 /* Set to non-zero when userspace countdown mode active */
87 static int do_coundown;
88 static unsigned int countdown_reset;
89 static unsigned int per_cpu_countdown[NR_CPUS];
90 
91 static cpumask_t irq_enabled_cpus;
92 
93 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
94 
95 static int heartbeat = WD_TIMO;
96 module_param(heartbeat, int, S_IRUGO);
97 MODULE_PARM_DESC(heartbeat,
98 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
99 				__MODULE_STRING(WD_TIMO) ")");
100 
101 static bool nowayout = WATCHDOG_NOWAYOUT;
102 module_param(nowayout, bool, S_IRUGO);
103 MODULE_PARM_DESC(nowayout,
104 	"Watchdog cannot be stopped once started (default="
105 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
106 
107 static u32 nmi_stage1_insns[64] __initdata;
108 /* We need one branch and therefore one relocation per target label. */
109 static struct uasm_label labels[5] __initdata;
110 static struct uasm_reloc relocs[5] __initdata;
111 
112 enum lable_id {
113 	label_enter_bootloader = 1
114 };
115 
116 /* Some CP0 registers */
117 #define K0		26
118 #define C0_CVMMEMCTL 11, 7
119 #define C0_STATUS 12, 0
120 #define C0_EBASE 15, 1
121 #define C0_DESAVE 31, 0
122 
123 void octeon_wdt_nmi_stage2(void);
124 
125 static void __init octeon_wdt_build_stage1(void)
126 {
127 	int i;
128 	int len;
129 	u32 *p = nmi_stage1_insns;
130 #ifdef CONFIG_HOTPLUG_CPU
131 	struct uasm_label *l = labels;
132 	struct uasm_reloc *r = relocs;
133 #endif
134 
135 	/*
136 	 * For the next few instructions running the debugger may
137 	 * cause corruption of k0 in the saved registers. Since we're
138 	 * about to crash, nobody probably cares.
139 	 *
140 	 * Save K0 into the debug scratch register
141 	 */
142 	uasm_i_dmtc0(&p, K0, C0_DESAVE);
143 
144 	uasm_i_mfc0(&p, K0, C0_STATUS);
145 #ifdef CONFIG_HOTPLUG_CPU
146 	if (octeon_bootloader_entry_addr)
147 		uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
148 			      label_enter_bootloader);
149 #endif
150 	/* Force 64-bit addressing enabled */
151 	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
152 	uasm_i_mtc0(&p, K0, C0_STATUS);
153 
154 #ifdef CONFIG_HOTPLUG_CPU
155 	if (octeon_bootloader_entry_addr) {
156 		uasm_i_mfc0(&p, K0, C0_EBASE);
157 		/* Coreid number in K0 */
158 		uasm_i_andi(&p, K0, K0, 0xf);
159 		/* 8 * coreid in bits 16-31 */
160 		uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
161 		uasm_i_ori(&p, K0, K0, 0x8001);
162 		uasm_i_dsll_safe(&p, K0, K0, 16);
163 		uasm_i_ori(&p, K0, K0, 0x0700);
164 		uasm_i_drotr_safe(&p, K0, K0, 32);
165 		/*
166 		 * Should result in: 0x8001,0700,0000,8*coreid which is
167 		 * CVMX_CIU_WDOGX(coreid) - 0x0500
168 		 *
169 		 * Now ld K0, CVMX_CIU_WDOGX(coreid)
170 		 */
171 		uasm_i_ld(&p, K0, 0x500, K0);
172 		/*
173 		 * If bit one set handle the NMI as a watchdog event.
174 		 * otherwise transfer control to bootloader.
175 		 */
176 		uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
177 		uasm_i_nop(&p);
178 	}
179 #endif
180 
181 	/* Clear Dcache so cvmseg works right. */
182 	uasm_i_cache(&p, 1, 0, 0);
183 
184 	/* Use K0 to do a read/modify/write of CVMMEMCTL */
185 	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
186 	/* Clear out the size of CVMSEG	*/
187 	uasm_i_dins(&p, K0, 0, 0, 6);
188 	/* Set CVMSEG to its largest value */
189 	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
190 	/* Store the CVMMEMCTL value */
191 	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
192 
193 	/* Load the address of the second stage handler */
194 	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
195 	uasm_i_jr(&p, K0);
196 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 	if (octeon_bootloader_entry_addr) {
200 		uasm_build_label(&l, p, label_enter_bootloader);
201 		/* Jump to the bootloader and restore K0 */
202 		UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
203 		uasm_i_jr(&p, K0);
204 		uasm_i_dmfc0(&p, K0, C0_DESAVE);
205 	}
206 #endif
207 	uasm_resolve_relocs(relocs, labels);
208 
209 	len = (int)(p - nmi_stage1_insns);
210 	pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
211 
212 	pr_debug("\t.set push\n");
213 	pr_debug("\t.set noreorder\n");
214 	for (i = 0; i < len; i++)
215 		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
216 	pr_debug("\t.set pop\n");
217 
218 	if (len > 32)
219 		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n",
220 		      len);
221 }
222 
223 static int cpu2core(int cpu)
224 {
225 #ifdef CONFIG_SMP
226 	return cpu_logical_map(cpu);
227 #else
228 	return cvmx_get_core_num();
229 #endif
230 }
231 
232 static int core2cpu(int coreid)
233 {
234 #ifdef CONFIG_SMP
235 	return cpu_number_map(coreid);
236 #else
237 	return 0;
238 #endif
239 }
240 
241 /**
242  * Poke the watchdog when an interrupt is received
243  *
244  * @cpl:
245  * @dev_id:
246  *
247  * Returns
248  */
249 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
250 {
251 	unsigned int core = cvmx_get_core_num();
252 	int cpu = core2cpu(core);
253 
254 	if (do_coundown) {
255 		if (per_cpu_countdown[cpu] > 0) {
256 			/* We're alive, poke the watchdog */
257 			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
258 			per_cpu_countdown[cpu]--;
259 		} else {
260 			/* Bad news, you are about to reboot. */
261 			disable_irq_nosync(cpl);
262 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
263 		}
264 	} else {
265 		/* Not open, just ping away... */
266 		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
267 	}
268 	return IRQ_HANDLED;
269 }
270 
271 /* From setup.c */
272 extern int prom_putchar(char c);
273 
274 /**
275  * Write a string to the uart
276  *
277  * @str:        String to write
278  */
279 static void octeon_wdt_write_string(const char *str)
280 {
281 	/* Just loop writing one byte at a time */
282 	while (*str)
283 		prom_putchar(*str++);
284 }
285 
286 /**
287  * Write a hex number out of the uart
288  *
289  * @value:      Number to display
290  * @digits:     Number of digits to print (1 to 16)
291  */
292 static void octeon_wdt_write_hex(u64 value, int digits)
293 {
294 	int d;
295 	int v;
296 
297 	for (d = 0; d < digits; d++) {
298 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
299 		if (v >= 10)
300 			prom_putchar('a' + v - 10);
301 		else
302 			prom_putchar('0' + v);
303 	}
304 }
305 
306 static const char reg_name[][3] = {
307 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
308 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
309 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
310 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
311 };
312 
313 /**
314  * NMI stage 3 handler. NMIs are handled in the following manner:
315  * 1) The first NMI handler enables CVMSEG and transfers from
316  * the bootbus region into normal memory. It is careful to not
317  * destroy any registers.
318  * 2) The second stage handler uses CVMSEG to save the registers
319  * and create a stack for C code. It then calls the third level
320  * handler with one argument, a pointer to the register values.
321  * 3) The third, and final, level handler is the following C
322  * function that prints out some useful infomration.
323  *
324  * @reg:    Pointer to register state before the NMI
325  */
326 void octeon_wdt_nmi_stage3(u64 reg[32])
327 {
328 	u64 i;
329 
330 	unsigned int coreid = cvmx_get_core_num();
331 	/*
332 	 * Save status and cause early to get them before any changes
333 	 * might happen.
334 	 */
335 	u64 cp0_cause = read_c0_cause();
336 	u64 cp0_status = read_c0_status();
337 	u64 cp0_error_epc = read_c0_errorepc();
338 	u64 cp0_epc = read_c0_epc();
339 
340 	/* Delay so output from all cores output is not jumbled together. */
341 	__delay(100000000ull * coreid);
342 
343 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
344 	octeon_wdt_write_hex(coreid, 1);
345 	octeon_wdt_write_string(" ***\r\n");
346 	for (i = 0; i < 32; i++) {
347 		octeon_wdt_write_string("\t");
348 		octeon_wdt_write_string(reg_name[i]);
349 		octeon_wdt_write_string("\t0x");
350 		octeon_wdt_write_hex(reg[i], 16);
351 		if (i & 1)
352 			octeon_wdt_write_string("\r\n");
353 	}
354 	octeon_wdt_write_string("\terr_epc\t0x");
355 	octeon_wdt_write_hex(cp0_error_epc, 16);
356 
357 	octeon_wdt_write_string("\tepc\t0x");
358 	octeon_wdt_write_hex(cp0_epc, 16);
359 	octeon_wdt_write_string("\r\n");
360 
361 	octeon_wdt_write_string("\tstatus\t0x");
362 	octeon_wdt_write_hex(cp0_status, 16);
363 	octeon_wdt_write_string("\tcause\t0x");
364 	octeon_wdt_write_hex(cp0_cause, 16);
365 	octeon_wdt_write_string("\r\n");
366 
367 	octeon_wdt_write_string("\tsum0\t0x");
368 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
369 	octeon_wdt_write_string("\ten0\t0x");
370 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
371 	octeon_wdt_write_string("\r\n");
372 
373 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
374 }
375 
376 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
377 {
378 	unsigned int core;
379 	unsigned int irq;
380 	union cvmx_ciu_wdogx ciu_wdog;
381 
382 	core = cpu2core(cpu);
383 
384 	irq = OCTEON_IRQ_WDOG0 + core;
385 
386 	/* Poke the watchdog to clear out its state */
387 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
388 
389 	/* Disable the hardware. */
390 	ciu_wdog.u64 = 0;
391 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
392 
393 	free_irq(irq, octeon_wdt_poke_irq);
394 	return 0;
395 }
396 
397 static int octeon_wdt_cpu_online(unsigned int cpu)
398 {
399 	unsigned int core;
400 	unsigned int irq;
401 	union cvmx_ciu_wdogx ciu_wdog;
402 
403 	core = cpu2core(cpu);
404 
405 	/* Disable it before doing anything with the interrupts. */
406 	ciu_wdog.u64 = 0;
407 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
408 
409 	per_cpu_countdown[cpu] = countdown_reset;
410 
411 	irq = OCTEON_IRQ_WDOG0 + core;
412 
413 	if (request_irq(irq, octeon_wdt_poke_irq,
414 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
415 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
416 
417 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
418 
419 	/* Poke the watchdog to clear out its state */
420 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
421 
422 	/* Finally enable the watchdog now that all handlers are installed */
423 	ciu_wdog.u64 = 0;
424 	ciu_wdog.s.len = timeout_cnt;
425 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
426 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
427 
428 	return 0;
429 }
430 
431 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
432 {
433 	int cpu;
434 	int coreid;
435 
436 	for_each_online_cpu(cpu) {
437 		coreid = cpu2core(cpu);
438 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
439 		per_cpu_countdown[cpu] = countdown_reset;
440 		if ((countdown_reset || !do_coundown) &&
441 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
442 			/* We have to enable the irq */
443 			int irq = OCTEON_IRQ_WDOG0 + coreid;
444 
445 			enable_irq(irq);
446 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
447 		}
448 	}
449 	return 0;
450 }
451 
452 static void octeon_wdt_calc_parameters(int t)
453 {
454 	unsigned int periods;
455 
456 	timeout_sec = max_timeout_sec;
457 
458 
459 	/*
460 	 * Find the largest interrupt period, that can evenly divide
461 	 * the requested heartbeat time.
462 	 */
463 	while ((t % timeout_sec) != 0)
464 		timeout_sec--;
465 
466 	periods = t / timeout_sec;
467 
468 	/*
469 	 * The last two periods are after the irq is disabled, and
470 	 * then to the nmi, so we subtract them off.
471 	 */
472 
473 	countdown_reset = periods > 2 ? periods - 2 : 0;
474 	heartbeat = t;
475 	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
476 }
477 
478 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
479 				  unsigned int t)
480 {
481 	int cpu;
482 	int coreid;
483 	union cvmx_ciu_wdogx ciu_wdog;
484 
485 	if (t <= 0)
486 		return -1;
487 
488 	octeon_wdt_calc_parameters(t);
489 
490 	for_each_online_cpu(cpu) {
491 		coreid = cpu2core(cpu);
492 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
493 		ciu_wdog.u64 = 0;
494 		ciu_wdog.s.len = timeout_cnt;
495 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
496 		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
497 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
498 	}
499 	octeon_wdt_ping(wdog); /* Get the irqs back on. */
500 	return 0;
501 }
502 
503 static int octeon_wdt_start(struct watchdog_device *wdog)
504 {
505 	octeon_wdt_ping(wdog);
506 	do_coundown = 1;
507 	return 0;
508 }
509 
510 static int octeon_wdt_stop(struct watchdog_device *wdog)
511 {
512 	do_coundown = 0;
513 	octeon_wdt_ping(wdog);
514 	return 0;
515 }
516 
517 static const struct watchdog_info octeon_wdt_info = {
518 	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
519 	.identity = "OCTEON",
520 };
521 
522 static const struct watchdog_ops octeon_wdt_ops = {
523 	.owner		= THIS_MODULE,
524 	.start		= octeon_wdt_start,
525 	.stop		= octeon_wdt_stop,
526 	.ping		= octeon_wdt_ping,
527 	.set_timeout	= octeon_wdt_set_timeout,
528 };
529 
530 static struct watchdog_device octeon_wdt = {
531 	.info	= &octeon_wdt_info,
532 	.ops	= &octeon_wdt_ops,
533 };
534 
535 static enum cpuhp_state octeon_wdt_online;
536 /**
537  * Module/ driver initialization.
538  *
539  * Returns Zero on success
540  */
541 static int __init octeon_wdt_init(void)
542 {
543 	int i;
544 	int ret;
545 	u64 *ptr;
546 
547 	/*
548 	 * Watchdog time expiration length = The 16 bits of LEN
549 	 * represent the most significant bits of a 24 bit decrementer
550 	 * that decrements every 256 cycles.
551 	 *
552 	 * Try for a timeout of 5 sec, if that fails a smaller number
553 	 * of even seconds,
554 	 */
555 	max_timeout_sec = 6;
556 	do {
557 		max_timeout_sec--;
558 		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) *
559 			      max_timeout_sec) >> 8;
560 	} while (timeout_cnt > 65535);
561 
562 	BUG_ON(timeout_cnt == 0);
563 
564 	octeon_wdt_calc_parameters(heartbeat);
565 
566 	pr_info("Initial granularity %d Sec\n", timeout_sec);
567 
568 	octeon_wdt.timeout	= timeout_sec;
569 	octeon_wdt.max_timeout	= UINT_MAX;
570 
571 	watchdog_set_nowayout(&octeon_wdt, nowayout);
572 
573 	ret = watchdog_register_device(&octeon_wdt);
574 	if (ret) {
575 		pr_err("watchdog_register_device() failed: %d\n", ret);
576 		return ret;
577 	}
578 
579 	/* Build the NMI handler ... */
580 	octeon_wdt_build_stage1();
581 
582 	/* ... and install it. */
583 	ptr = (u64 *) nmi_stage1_insns;
584 	for (i = 0; i < 16; i++) {
585 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
586 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
587 	}
588 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
589 
590 	cpumask_clear(&irq_enabled_cpus);
591 
592 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
593 				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
594 	if (ret < 0)
595 		goto err;
596 	octeon_wdt_online = ret;
597 	return 0;
598 err:
599 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
600 	watchdog_unregister_device(&octeon_wdt);
601 	return ret;
602 }
603 
604 /**
605  * Module / driver shutdown
606  */
607 static void __exit octeon_wdt_cleanup(void)
608 {
609 	watchdog_unregister_device(&octeon_wdt);
610 	cpuhp_remove_state(octeon_wdt_online);
611 
612 	/*
613 	 * Disable the boot-bus memory, the code it points to is soon
614 	 * to go missing.
615 	 */
616 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
617 }
618 
619 MODULE_LICENSE("GPL");
620 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
621 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
622 module_init(octeon_wdt_init);
623 module_exit(octeon_wdt_cleanup);
624