1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Octeon Watchdog driver
4  *
5  * Copyright (C) 2007-2017 Cavium, Inc.
6  *
7  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8  *
9  * Some parts derived from wdt.c
10  *
11  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
12  *						All Rights Reserved.
13  *
14  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
15  *	warranty for any of this software. This material is provided
16  *	"AS-IS" and at no charge.
17  *
18  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
19  *
20  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
21  * For most systems this is less than 10 seconds, so to allow for
22  * software to request longer watchdog heartbeats, we maintain software
23  * counters to count multiples of the base rate.  If the system locks
24  * up in such a manner that we can not run the software counters, the
25  * only result is a watchdog reset sooner than was requested.  But
26  * that is OK, because in this case userspace would likely not be able
27  * to do anything anyhow.
28  *
29  * The hardware watchdog interval we call the period.  The OCTEON
30  * watchdog goes through several stages, after the first period an
31  * irq is asserted, then if it is not reset, after the next period NMI
32  * is asserted, then after an additional period a chip wide soft reset.
33  * So for the software counters, we reset watchdog after each period
34  * and decrement the counter.  But for the last two periods we need to
35  * let the watchdog progress to the NMI stage so we disable the irq
36  * and let it proceed.  Once in the NMI, we print the register state
37  * to the serial port and then wait for the reset.
38  *
39  * A watchdog is maintained for each CPU in the system, that way if
40  * one CPU suffers a lockup, we also get a register dump and reset.
41  * The userspace ping resets the watchdog on all CPUs.
42  *
43  * Before userspace opens the watchdog device, we still run the
44  * watchdogs to catch any lockups that may be kernel related.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/interrupt.h>
51 #include <linux/watchdog.h>
52 #include <linux/cpumask.h>
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/cpu.h>
56 #include <linux/irq.h>
57 
58 #include <asm/mipsregs.h>
59 #include <asm/uasm.h>
60 
61 #include <asm/octeon/octeon.h>
62 #include <asm/octeon/cvmx-boot-vector.h>
63 #include <asm/octeon/cvmx-ciu2-defs.h>
64 #include <asm/octeon/cvmx-rst-defs.h>
65 
66 /* Watchdog interrupt major block number (8 MSBs of intsn) */
67 #define WD_BLOCK_NUMBER		0x01
68 
69 static int divisor;
70 
71 /* The count needed to achieve timeout_sec. */
72 static unsigned int timeout_cnt;
73 
74 /* The maximum period supported. */
75 static unsigned int max_timeout_sec;
76 
77 /* The current period.  */
78 static unsigned int timeout_sec;
79 
80 /* Set to non-zero when userspace countdown mode active */
81 static bool do_countdown;
82 static unsigned int countdown_reset;
83 static unsigned int per_cpu_countdown[NR_CPUS];
84 
85 static cpumask_t irq_enabled_cpus;
86 
87 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
88 
89 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
90 
91 static int heartbeat = WD_TIMO;
92 module_param(heartbeat, int, 0444);
93 MODULE_PARM_DESC(heartbeat,
94 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
95 				__MODULE_STRING(WD_TIMO) ")");
96 
97 static bool nowayout = WATCHDOG_NOWAYOUT;
98 module_param(nowayout, bool, 0444);
99 MODULE_PARM_DESC(nowayout,
100 	"Watchdog cannot be stopped once started (default="
101 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
102 
103 static int disable;
104 module_param(disable, int, 0444);
105 MODULE_PARM_DESC(disable,
106 	"Disable the watchdog entirely (default=0)");
107 
108 static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
109 
110 void octeon_wdt_nmi_stage2(void);
111 
112 static int cpu2core(int cpu)
113 {
114 #ifdef CONFIG_SMP
115 	return cpu_logical_map(cpu) & 0x3f;
116 #else
117 	return cvmx_get_core_num();
118 #endif
119 }
120 
121 /**
122  * Poke the watchdog when an interrupt is received
123  *
124  * @cpl:
125  * @dev_id:
126  *
127  * Returns
128  */
129 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
130 {
131 	int cpu = raw_smp_processor_id();
132 	unsigned int core = cpu2core(cpu);
133 	int node = cpu_to_node(cpu);
134 
135 	if (do_countdown) {
136 		if (per_cpu_countdown[cpu] > 0) {
137 			/* We're alive, poke the watchdog */
138 			cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
139 			per_cpu_countdown[cpu]--;
140 		} else {
141 			/* Bad news, you are about to reboot. */
142 			disable_irq_nosync(cpl);
143 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
144 		}
145 	} else {
146 		/* Not open, just ping away... */
147 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
148 	}
149 	return IRQ_HANDLED;
150 }
151 
152 /* From setup.c */
153 extern int prom_putchar(char c);
154 
155 /**
156  * Write a string to the uart
157  *
158  * @str:        String to write
159  */
160 static void octeon_wdt_write_string(const char *str)
161 {
162 	/* Just loop writing one byte at a time */
163 	while (*str)
164 		prom_putchar(*str++);
165 }
166 
167 /**
168  * Write a hex number out of the uart
169  *
170  * @value:      Number to display
171  * @digits:     Number of digits to print (1 to 16)
172  */
173 static void octeon_wdt_write_hex(u64 value, int digits)
174 {
175 	int d;
176 	int v;
177 
178 	for (d = 0; d < digits; d++) {
179 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
180 		if (v >= 10)
181 			prom_putchar('a' + v - 10);
182 		else
183 			prom_putchar('0' + v);
184 	}
185 }
186 
187 static const char reg_name[][3] = {
188 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
189 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
190 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
191 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
192 };
193 
194 /**
195  * NMI stage 3 handler. NMIs are handled in the following manner:
196  * 1) The first NMI handler enables CVMSEG and transfers from
197  * the bootbus region into normal memory. It is careful to not
198  * destroy any registers.
199  * 2) The second stage handler uses CVMSEG to save the registers
200  * and create a stack for C code. It then calls the third level
201  * handler with one argument, a pointer to the register values.
202  * 3) The third, and final, level handler is the following C
203  * function that prints out some useful infomration.
204  *
205  * @reg:    Pointer to register state before the NMI
206  */
207 void octeon_wdt_nmi_stage3(u64 reg[32])
208 {
209 	u64 i;
210 
211 	unsigned int coreid = cvmx_get_core_num();
212 	/*
213 	 * Save status and cause early to get them before any changes
214 	 * might happen.
215 	 */
216 	u64 cp0_cause = read_c0_cause();
217 	u64 cp0_status = read_c0_status();
218 	u64 cp0_error_epc = read_c0_errorepc();
219 	u64 cp0_epc = read_c0_epc();
220 
221 	/* Delay so output from all cores output is not jumbled together. */
222 	udelay(85000 * coreid);
223 
224 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
225 	octeon_wdt_write_hex(coreid, 2);
226 	octeon_wdt_write_string(" ***\r\n");
227 	for (i = 0; i < 32; i++) {
228 		octeon_wdt_write_string("\t");
229 		octeon_wdt_write_string(reg_name[i]);
230 		octeon_wdt_write_string("\t0x");
231 		octeon_wdt_write_hex(reg[i], 16);
232 		if (i & 1)
233 			octeon_wdt_write_string("\r\n");
234 	}
235 	octeon_wdt_write_string("\terr_epc\t0x");
236 	octeon_wdt_write_hex(cp0_error_epc, 16);
237 
238 	octeon_wdt_write_string("\tepc\t0x");
239 	octeon_wdt_write_hex(cp0_epc, 16);
240 	octeon_wdt_write_string("\r\n");
241 
242 	octeon_wdt_write_string("\tstatus\t0x");
243 	octeon_wdt_write_hex(cp0_status, 16);
244 	octeon_wdt_write_string("\tcause\t0x");
245 	octeon_wdt_write_hex(cp0_cause, 16);
246 	octeon_wdt_write_string("\r\n");
247 
248 	/* The CIU register is different for each Octeon model. */
249 	if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
250 		octeon_wdt_write_string("\tsrc_wd\t0x");
251 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
252 		octeon_wdt_write_string("\ten_wd\t0x");
253 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
254 		octeon_wdt_write_string("\r\n");
255 		octeon_wdt_write_string("\tsrc_rml\t0x");
256 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
257 		octeon_wdt_write_string("\ten_rml\t0x");
258 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
259 		octeon_wdt_write_string("\r\n");
260 		octeon_wdt_write_string("\tsum\t0x");
261 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
262 		octeon_wdt_write_string("\r\n");
263 	} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
264 		octeon_wdt_write_string("\tsum0\t0x");
265 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
266 		octeon_wdt_write_string("\ten0\t0x");
267 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
268 		octeon_wdt_write_string("\r\n");
269 	}
270 
271 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
272 
273 	/*
274 	 * G-30204: We must trigger a soft reset before watchdog
275 	 * does an incomplete job of doing it.
276 	 */
277 	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
278 		u64 scr;
279 		unsigned int node = cvmx_get_node_num();
280 		unsigned int lcore = cvmx_get_local_core_num();
281 		union cvmx_ciu_wdogx ciu_wdog;
282 
283 		/*
284 		 * Wait for other cores to print out information, but
285 		 * not too long.  Do the soft reset before watchdog
286 		 * can trigger it.
287 		 */
288 		do {
289 			ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
290 		} while (ciu_wdog.s.cnt > 0x10000);
291 
292 		scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
293 		scr |= 1 << 11; /* Indicate watchdog in bit 11 */
294 		cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
295 		cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
296 	}
297 }
298 
299 static int octeon_wdt_cpu_to_irq(int cpu)
300 {
301 	unsigned int coreid;
302 	int node;
303 	int irq;
304 
305 	coreid = cpu2core(cpu);
306 	node = cpu_to_node(cpu);
307 
308 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
309 		struct irq_domain *domain;
310 		int hwirq;
311 
312 		domain = octeon_irq_get_block_domain(node,
313 						     WD_BLOCK_NUMBER);
314 		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
315 		irq = irq_find_mapping(domain, hwirq);
316 	} else {
317 		irq = OCTEON_IRQ_WDOG0 + coreid;
318 	}
319 	return irq;
320 }
321 
322 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
323 {
324 	unsigned int core;
325 	int node;
326 	union cvmx_ciu_wdogx ciu_wdog;
327 
328 	core = cpu2core(cpu);
329 
330 	node = cpu_to_node(cpu);
331 
332 	/* Poke the watchdog to clear out its state */
333 	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
334 
335 	/* Disable the hardware. */
336 	ciu_wdog.u64 = 0;
337 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
338 
339 	free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
340 	return 0;
341 }
342 
343 static int octeon_wdt_cpu_online(unsigned int cpu)
344 {
345 	unsigned int core;
346 	unsigned int irq;
347 	union cvmx_ciu_wdogx ciu_wdog;
348 	int node;
349 	struct irq_domain *domain;
350 	int hwirq;
351 
352 	core = cpu2core(cpu);
353 	node = cpu_to_node(cpu);
354 
355 	octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
356 
357 	/* Disable it before doing anything with the interrupts. */
358 	ciu_wdog.u64 = 0;
359 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
360 
361 	per_cpu_countdown[cpu] = countdown_reset;
362 
363 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
364 		/* Must get the domain for the watchdog block */
365 		domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
366 
367 		/* Get a irq for the wd intsn (hardware interrupt) */
368 		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
369 		irq = irq_create_mapping(domain, hwirq);
370 		irqd_set_trigger_type(irq_get_irq_data(irq),
371 				      IRQ_TYPE_EDGE_RISING);
372 	} else
373 		irq = OCTEON_IRQ_WDOG0 + core;
374 
375 	if (request_irq(irq, octeon_wdt_poke_irq,
376 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
377 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
378 
379 	/* Must set the irq affinity here */
380 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
381 		cpumask_t mask;
382 
383 		cpumask_clear(&mask);
384 		cpumask_set_cpu(cpu, &mask);
385 		irq_set_affinity(irq, &mask);
386 	}
387 
388 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
389 
390 	/* Poke the watchdog to clear out its state */
391 	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
392 
393 	/* Finally enable the watchdog now that all handlers are installed */
394 	ciu_wdog.u64 = 0;
395 	ciu_wdog.s.len = timeout_cnt;
396 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
397 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
398 
399 	return 0;
400 }
401 
402 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
403 {
404 	int cpu;
405 	int coreid;
406 	int node;
407 
408 	if (disable)
409 		return 0;
410 
411 	for_each_online_cpu(cpu) {
412 		coreid = cpu2core(cpu);
413 		node = cpu_to_node(cpu);
414 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
415 		per_cpu_countdown[cpu] = countdown_reset;
416 		if ((countdown_reset || !do_countdown) &&
417 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
418 			/* We have to enable the irq */
419 			enable_irq(octeon_wdt_cpu_to_irq(cpu));
420 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
421 		}
422 	}
423 	return 0;
424 }
425 
426 static void octeon_wdt_calc_parameters(int t)
427 {
428 	unsigned int periods;
429 
430 	timeout_sec = max_timeout_sec;
431 
432 
433 	/*
434 	 * Find the largest interrupt period, that can evenly divide
435 	 * the requested heartbeat time.
436 	 */
437 	while ((t % timeout_sec) != 0)
438 		timeout_sec--;
439 
440 	periods = t / timeout_sec;
441 
442 	/*
443 	 * The last two periods are after the irq is disabled, and
444 	 * then to the nmi, so we subtract them off.
445 	 */
446 
447 	countdown_reset = periods > 2 ? periods - 2 : 0;
448 	heartbeat = t;
449 	timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
450 }
451 
452 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
453 				  unsigned int t)
454 {
455 	int cpu;
456 	int coreid;
457 	union cvmx_ciu_wdogx ciu_wdog;
458 	int node;
459 
460 	if (t <= 0)
461 		return -1;
462 
463 	octeon_wdt_calc_parameters(t);
464 
465 	if (disable)
466 		return 0;
467 
468 	for_each_online_cpu(cpu) {
469 		coreid = cpu2core(cpu);
470 		node = cpu_to_node(cpu);
471 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
472 		ciu_wdog.u64 = 0;
473 		ciu_wdog.s.len = timeout_cnt;
474 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
475 		cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
476 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
477 	}
478 	octeon_wdt_ping(wdog); /* Get the irqs back on. */
479 	return 0;
480 }
481 
482 static int octeon_wdt_start(struct watchdog_device *wdog)
483 {
484 	octeon_wdt_ping(wdog);
485 	do_countdown = 1;
486 	return 0;
487 }
488 
489 static int octeon_wdt_stop(struct watchdog_device *wdog)
490 {
491 	do_countdown = 0;
492 	octeon_wdt_ping(wdog);
493 	return 0;
494 }
495 
496 static const struct watchdog_info octeon_wdt_info = {
497 	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
498 	.identity = "OCTEON",
499 };
500 
501 static const struct watchdog_ops octeon_wdt_ops = {
502 	.owner		= THIS_MODULE,
503 	.start		= octeon_wdt_start,
504 	.stop		= octeon_wdt_stop,
505 	.ping		= octeon_wdt_ping,
506 	.set_timeout	= octeon_wdt_set_timeout,
507 };
508 
509 static struct watchdog_device octeon_wdt = {
510 	.info	= &octeon_wdt_info,
511 	.ops	= &octeon_wdt_ops,
512 };
513 
514 static enum cpuhp_state octeon_wdt_online;
515 /**
516  * Module/ driver initialization.
517  *
518  * Returns Zero on success
519  */
520 static int __init octeon_wdt_init(void)
521 {
522 	int ret;
523 
524 	octeon_wdt_bootvector = cvmx_boot_vector_get();
525 	if (!octeon_wdt_bootvector) {
526 		pr_err("Error: Cannot allocate boot vector.\n");
527 		return -ENOMEM;
528 	}
529 
530 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
531 		divisor = 0x200;
532 	else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
533 		divisor = 0x400;
534 	else
535 		divisor = 0x100;
536 
537 	/*
538 	 * Watchdog time expiration length = The 16 bits of LEN
539 	 * represent the most significant bits of a 24 bit decrementer
540 	 * that decrements every divisor cycle.
541 	 *
542 	 * Try for a timeout of 5 sec, if that fails a smaller number
543 	 * of even seconds,
544 	 */
545 	max_timeout_sec = 6;
546 	do {
547 		max_timeout_sec--;
548 		timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
549 	} while (timeout_cnt > 65535);
550 
551 	BUG_ON(timeout_cnt == 0);
552 
553 	octeon_wdt_calc_parameters(heartbeat);
554 
555 	pr_info("Initial granularity %d Sec\n", timeout_sec);
556 
557 	octeon_wdt.timeout	= timeout_sec;
558 	octeon_wdt.max_timeout	= UINT_MAX;
559 
560 	watchdog_set_nowayout(&octeon_wdt, nowayout);
561 
562 	ret = watchdog_register_device(&octeon_wdt);
563 	if (ret) {
564 		pr_err("watchdog_register_device() failed: %d\n", ret);
565 		return ret;
566 	}
567 
568 	if (disable) {
569 		pr_notice("disabled\n");
570 		return 0;
571 	}
572 
573 	cpumask_clear(&irq_enabled_cpus);
574 
575 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
576 				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
577 	if (ret < 0)
578 		goto err;
579 	octeon_wdt_online = ret;
580 	return 0;
581 err:
582 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
583 	watchdog_unregister_device(&octeon_wdt);
584 	return ret;
585 }
586 
587 /**
588  * Module / driver shutdown
589  */
590 static void __exit octeon_wdt_cleanup(void)
591 {
592 	watchdog_unregister_device(&octeon_wdt);
593 
594 	if (disable)
595 		return;
596 
597 	cpuhp_remove_state(octeon_wdt_online);
598 
599 	/*
600 	 * Disable the boot-bus memory, the code it points to is soon
601 	 * to go missing.
602 	 */
603 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
604 }
605 
606 MODULE_LICENSE("GPL");
607 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
608 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
609 module_init(octeon_wdt_init);
610 module_exit(octeon_wdt_cleanup);
611