xref: /openbmc/linux/drivers/watchdog/dw_wdt.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2010-2011 Picochip Ltd., Jamie Iles
4  * https://www.picochip.com
5  *
6  * This file implements a driver for the Synopsys DesignWare watchdog device
7  * in the many subsystems. The watchdog has 16 different timeout periods
8  * and these are a function of the input clock frequency.
9  *
10  * The DesignWare watchdog cannot be stopped once it has been started so we
11  * do not implement a stop function. The watchdog core will continue to send
12  * heartbeat requests after the watchdog device has been closed.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/limits.h>
17 #include <linux/kernel.h>
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/interrupt.h>
26 #include <linux/of.h>
27 #include <linux/pm.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset.h>
30 #include <linux/watchdog.h>
31 #include <linux/debugfs.h>
32 
33 #define WDOG_CONTROL_REG_OFFSET		    0x00
34 #define WDOG_CONTROL_REG_WDT_EN_MASK	    0x01
35 #define WDOG_CONTROL_REG_RESP_MODE_MASK	    0x02
36 #define WDOG_TIMEOUT_RANGE_REG_OFFSET	    0x04
37 #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT    4
38 #define WDOG_CURRENT_COUNT_REG_OFFSET	    0x08
39 #define WDOG_COUNTER_RESTART_REG_OFFSET     0x0c
40 #define WDOG_COUNTER_RESTART_KICK_VALUE	    0x76
41 #define WDOG_INTERRUPT_STATUS_REG_OFFSET    0x10
42 #define WDOG_INTERRUPT_CLEAR_REG_OFFSET     0x14
43 #define WDOG_COMP_PARAMS_5_REG_OFFSET       0xe4
44 #define WDOG_COMP_PARAMS_4_REG_OFFSET       0xe8
45 #define WDOG_COMP_PARAMS_3_REG_OFFSET       0xec
46 #define WDOG_COMP_PARAMS_2_REG_OFFSET       0xf0
47 #define WDOG_COMP_PARAMS_1_REG_OFFSET       0xf4
48 #define WDOG_COMP_PARAMS_1_USE_FIX_TOP      BIT(6)
49 #define WDOG_COMP_VERSION_REG_OFFSET        0xf8
50 #define WDOG_COMP_TYPE_REG_OFFSET           0xfc
51 
52 /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */
53 #define DW_WDT_NUM_TOPS		16
54 #define DW_WDT_FIX_TOP(_idx)	(1U << (16 + _idx))
55 
56 #define DW_WDT_DEFAULT_SECONDS	30
57 
58 static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = {
59 	DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2),
60 	DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5),
61 	DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8),
62 	DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11),
63 	DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14),
64 	DW_WDT_FIX_TOP(15)
65 };
66 
67 static bool nowayout = WATCHDOG_NOWAYOUT;
68 module_param(nowayout, bool, 0);
69 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started "
70 		 "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
71 
72 enum dw_wdt_rmod {
73 	DW_WDT_RMOD_RESET = 1,
74 	DW_WDT_RMOD_IRQ = 2
75 };
76 
77 struct dw_wdt_timeout {
78 	u32 top_val;
79 	unsigned int sec;
80 	unsigned int msec;
81 };
82 
83 struct dw_wdt {
84 	void __iomem		*regs;
85 	struct clk		*clk;
86 	struct clk		*pclk;
87 	unsigned long		rate;
88 	enum dw_wdt_rmod	rmod;
89 	struct dw_wdt_timeout	timeouts[DW_WDT_NUM_TOPS];
90 	struct watchdog_device	wdd;
91 	struct reset_control	*rst;
92 	/* Save/restore */
93 	u32			control;
94 	u32			timeout;
95 
96 #ifdef CONFIG_DEBUG_FS
97 	struct dentry		*dbgfs_dir;
98 #endif
99 };
100 
101 #define to_dw_wdt(wdd)	container_of(wdd, struct dw_wdt, wdd)
102 
103 static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt)
104 {
105 	return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) &
106 		WDOG_CONTROL_REG_WDT_EN_MASK;
107 }
108 
109 static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod)
110 {
111 	u32 val;
112 
113 	val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
114 	if (rmod == DW_WDT_RMOD_IRQ)
115 		val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
116 	else
117 		val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
118 	writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
119 
120 	dw_wdt->rmod = rmod;
121 }
122 
123 static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt,
124 					 unsigned int timeout, u32 *top_val)
125 {
126 	int idx;
127 
128 	/*
129 	 * Find a TOP with timeout greater or equal to the requested number.
130 	 * Note we'll select a TOP with maximum timeout if the requested
131 	 * timeout couldn't be reached.
132 	 */
133 	for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
134 		if (dw_wdt->timeouts[idx].sec >= timeout)
135 			break;
136 	}
137 
138 	if (idx == DW_WDT_NUM_TOPS)
139 		--idx;
140 
141 	*top_val = dw_wdt->timeouts[idx].top_val;
142 
143 	return dw_wdt->timeouts[idx].sec;
144 }
145 
146 static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt)
147 {
148 	int idx;
149 
150 	/*
151 	 * We'll find a timeout greater or equal to one second anyway because
152 	 * the driver probe would have failed if there was none.
153 	 */
154 	for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
155 		if (dw_wdt->timeouts[idx].sec)
156 			break;
157 	}
158 
159 	return dw_wdt->timeouts[idx].sec;
160 }
161 
162 static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt)
163 {
164 	struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1];
165 	u64 msec;
166 
167 	msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec;
168 
169 	return msec < UINT_MAX ? msec : UINT_MAX;
170 }
171 
172 static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt)
173 {
174 	int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF;
175 	int idx;
176 
177 	for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
178 		if (dw_wdt->timeouts[idx].top_val == top_val)
179 			break;
180 	}
181 
182 	/*
183 	 * In IRQ mode due to the two stages counter, the actual timeout is
184 	 * twice greater than the TOP setting.
185 	 */
186 	return dw_wdt->timeouts[idx].sec * dw_wdt->rmod;
187 }
188 
189 static int dw_wdt_ping(struct watchdog_device *wdd)
190 {
191 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
192 
193 	writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs +
194 	       WDOG_COUNTER_RESTART_REG_OFFSET);
195 
196 	return 0;
197 }
198 
199 static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s)
200 {
201 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
202 	unsigned int timeout;
203 	u32 top_val;
204 
205 	/*
206 	 * Note IRQ mode being enabled means having a non-zero pre-timeout
207 	 * setup. In this case we try to find a TOP as close to the half of the
208 	 * requested timeout as possible since DW Watchdog IRQ mode is designed
209 	 * in two stages way - first timeout rises the pre-timeout interrupt,
210 	 * second timeout performs the system reset. So basically the effective
211 	 * watchdog-caused reset happens after two watchdog TOPs elapsed.
212 	 */
213 	timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod),
214 				       &top_val);
215 	if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
216 		wdd->pretimeout = timeout;
217 	else
218 		wdd->pretimeout = 0;
219 
220 	/*
221 	 * Set the new value in the watchdog.  Some versions of dw_wdt
222 	 * have have TOPINIT in the TIMEOUT_RANGE register (as per
223 	 * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1).  On those we
224 	 * effectively get a pat of the watchdog right here.
225 	 */
226 	writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT,
227 	       dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
228 
229 	/* Kick new TOP value into the watchdog counter if activated. */
230 	if (watchdog_active(wdd))
231 		dw_wdt_ping(wdd);
232 
233 	/*
234 	 * In case users set bigger timeout value than HW can support,
235 	 * kernel(watchdog_dev.c) helps to feed watchdog before
236 	 * wdd->max_hw_heartbeat_ms
237 	 */
238 	if (top_s * 1000 <= wdd->max_hw_heartbeat_ms)
239 		wdd->timeout = timeout * dw_wdt->rmod;
240 	else
241 		wdd->timeout = top_s;
242 
243 	return 0;
244 }
245 
246 static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req)
247 {
248 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
249 
250 	/*
251 	 * We ignore actual value of the timeout passed from user-space
252 	 * using it as a flag whether the pretimeout functionality is intended
253 	 * to be activated.
254 	 */
255 	dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET);
256 	dw_wdt_set_timeout(wdd, wdd->timeout);
257 
258 	return 0;
259 }
260 
261 static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt)
262 {
263 	u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
264 
265 	/* Disable/enable interrupt mode depending on the RMOD flag. */
266 	if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
267 		val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
268 	else
269 		val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
270 	/* Enable watchdog. */
271 	val |= WDOG_CONTROL_REG_WDT_EN_MASK;
272 	writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
273 }
274 
275 static int dw_wdt_start(struct watchdog_device *wdd)
276 {
277 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
278 
279 	dw_wdt_set_timeout(wdd, wdd->timeout);
280 	dw_wdt_ping(&dw_wdt->wdd);
281 	dw_wdt_arm_system_reset(dw_wdt);
282 
283 	return 0;
284 }
285 
286 static int dw_wdt_stop(struct watchdog_device *wdd)
287 {
288 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
289 
290 	if (!dw_wdt->rst) {
291 		set_bit(WDOG_HW_RUNNING, &wdd->status);
292 		return 0;
293 	}
294 
295 	reset_control_assert(dw_wdt->rst);
296 	reset_control_deassert(dw_wdt->rst);
297 
298 	return 0;
299 }
300 
301 static int dw_wdt_restart(struct watchdog_device *wdd,
302 			  unsigned long action, void *data)
303 {
304 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
305 
306 	writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
307 	dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
308 	if (dw_wdt_is_enabled(dw_wdt))
309 		writel(WDOG_COUNTER_RESTART_KICK_VALUE,
310 		       dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET);
311 	else
312 		dw_wdt_arm_system_reset(dw_wdt);
313 
314 	/* wait for reset to assert... */
315 	mdelay(500);
316 
317 	return 0;
318 }
319 
320 static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd)
321 {
322 	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
323 	unsigned int sec;
324 	u32 val;
325 
326 	val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET);
327 	sec = val / dw_wdt->rate;
328 
329 	if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) {
330 		val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
331 		if (!val)
332 			sec += wdd->pretimeout;
333 	}
334 
335 	return sec;
336 }
337 
338 static const struct watchdog_info dw_wdt_ident = {
339 	.options	= WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
340 			  WDIOF_MAGICCLOSE,
341 	.identity	= "Synopsys DesignWare Watchdog",
342 };
343 
344 static const struct watchdog_info dw_wdt_pt_ident = {
345 	.options	= WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
346 			  WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE,
347 	.identity	= "Synopsys DesignWare Watchdog",
348 };
349 
350 static const struct watchdog_ops dw_wdt_ops = {
351 	.owner		= THIS_MODULE,
352 	.start		= dw_wdt_start,
353 	.stop		= dw_wdt_stop,
354 	.ping		= dw_wdt_ping,
355 	.set_timeout	= dw_wdt_set_timeout,
356 	.set_pretimeout	= dw_wdt_set_pretimeout,
357 	.get_timeleft	= dw_wdt_get_timeleft,
358 	.restart	= dw_wdt_restart,
359 };
360 
361 static irqreturn_t dw_wdt_irq(int irq, void *devid)
362 {
363 	struct dw_wdt *dw_wdt = devid;
364 	u32 val;
365 
366 	/*
367 	 * We don't clear the IRQ status. It's supposed to be done by the
368 	 * following ping operations.
369 	 */
370 	val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
371 	if (!val)
372 		return IRQ_NONE;
373 
374 	watchdog_notify_pretimeout(&dw_wdt->wdd);
375 
376 	return IRQ_HANDLED;
377 }
378 
379 #ifdef CONFIG_PM_SLEEP
380 static int dw_wdt_suspend(struct device *dev)
381 {
382 	struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
383 
384 	dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
385 	dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
386 
387 	clk_disable_unprepare(dw_wdt->pclk);
388 	clk_disable_unprepare(dw_wdt->clk);
389 
390 	return 0;
391 }
392 
393 static int dw_wdt_resume(struct device *dev)
394 {
395 	struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
396 	int err = clk_prepare_enable(dw_wdt->clk);
397 
398 	if (err)
399 		return err;
400 
401 	err = clk_prepare_enable(dw_wdt->pclk);
402 	if (err) {
403 		clk_disable_unprepare(dw_wdt->clk);
404 		return err;
405 	}
406 
407 	writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
408 	writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
409 
410 	dw_wdt_ping(&dw_wdt->wdd);
411 
412 	return 0;
413 }
414 #endif /* CONFIG_PM_SLEEP */
415 
416 static SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume);
417 
418 /*
419  * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the
420  * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers
421  * depending on the system engineer imagination. The next method handles the
422  * passed TOPs array to pre-calculate the effective timeouts and to sort the
423  * TOP items out in the ascending order with respect to the timeouts.
424  */
425 
426 static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops)
427 {
428 	struct dw_wdt_timeout tout, *dst;
429 	int val, tidx;
430 	u64 msec;
431 
432 	/*
433 	 * We walk over the passed TOPs array and calculate corresponding
434 	 * timeouts in seconds and milliseconds. The milliseconds granularity
435 	 * is needed to distinguish the TOPs with very close timeouts and to
436 	 * set the watchdog max heartbeat setting further.
437 	 */
438 	for (val = 0; val < DW_WDT_NUM_TOPS; ++val) {
439 		tout.top_val = val;
440 		tout.sec = tops[val] / dw_wdt->rate;
441 		msec = (u64)tops[val] * MSEC_PER_SEC;
442 		do_div(msec, dw_wdt->rate);
443 		tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC);
444 
445 		/*
446 		 * Find a suitable place for the current TOP in the timeouts
447 		 * array so that the list is remained in the ascending order.
448 		 */
449 		for (tidx = 0; tidx < val; ++tidx) {
450 			dst = &dw_wdt->timeouts[tidx];
451 			if (tout.sec > dst->sec || (tout.sec == dst->sec &&
452 			    tout.msec >= dst->msec))
453 				continue;
454 			else
455 				swap(*dst, tout);
456 		}
457 
458 		dw_wdt->timeouts[val] = tout;
459 	}
460 }
461 
462 static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev)
463 {
464 	u32 data, of_tops[DW_WDT_NUM_TOPS];
465 	const u32 *tops;
466 	int ret;
467 
468 	/*
469 	 * Retrieve custom or fixed counter values depending on the
470 	 * WDT_USE_FIX_TOP flag found in the component specific parameters
471 	 * #1 register.
472 	 */
473 	data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET);
474 	if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) {
475 		tops = dw_wdt_fix_tops;
476 	} else {
477 		ret = of_property_read_variable_u32_array(dev_of_node(dev),
478 			"snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS,
479 			DW_WDT_NUM_TOPS);
480 		if (ret < 0) {
481 			dev_warn(dev, "No valid TOPs array specified\n");
482 			tops = dw_wdt_fix_tops;
483 		} else {
484 			tops = of_tops;
485 		}
486 	}
487 
488 	/* Convert the specified TOPs into an array of watchdog timeouts. */
489 	dw_wdt_handle_tops(dw_wdt, tops);
490 	if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) {
491 		dev_err(dev, "No any valid TOP detected\n");
492 		return -EINVAL;
493 	}
494 
495 	return 0;
496 }
497 
498 #ifdef CONFIG_DEBUG_FS
499 
500 #define DW_WDT_DBGFS_REG(_name, _off) \
501 {				      \
502 	.name = _name,		      \
503 	.offset = _off		      \
504 }
505 
506 static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = {
507 	DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET),
508 	DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET),
509 	DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET),
510 	DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET),
511 	DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET),
512 	DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET),
513 	DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET),
514 	DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET),
515 	DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET),
516 	DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET),
517 	DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET),
518 	DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET)
519 };
520 
521 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt)
522 {
523 	struct device *dev = dw_wdt->wdd.parent;
524 	struct debugfs_regset32 *regset;
525 
526 	regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
527 	if (!regset)
528 		return;
529 
530 	regset->regs = dw_wdt_dbgfs_regs;
531 	regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs);
532 	regset->base = dw_wdt->regs;
533 
534 	dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
535 
536 	debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset);
537 }
538 
539 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt)
540 {
541 	debugfs_remove_recursive(dw_wdt->dbgfs_dir);
542 }
543 
544 #else /* !CONFIG_DEBUG_FS */
545 
546 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {}
547 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {}
548 
549 #endif /* !CONFIG_DEBUG_FS */
550 
551 static int dw_wdt_drv_probe(struct platform_device *pdev)
552 {
553 	struct device *dev = &pdev->dev;
554 	struct watchdog_device *wdd;
555 	struct dw_wdt *dw_wdt;
556 	int ret;
557 
558 	dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL);
559 	if (!dw_wdt)
560 		return -ENOMEM;
561 
562 	dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0);
563 	if (IS_ERR(dw_wdt->regs))
564 		return PTR_ERR(dw_wdt->regs);
565 
566 	/*
567 	 * Try to request the watchdog dedicated timer clock source. It must
568 	 * be supplied if asynchronous mode is enabled. Otherwise fallback
569 	 * to the common timer/bus clocks configuration, in which the very
570 	 * first found clock supply both timer and APB signals.
571 	 */
572 	dw_wdt->clk = devm_clk_get(dev, "tclk");
573 	if (IS_ERR(dw_wdt->clk)) {
574 		dw_wdt->clk = devm_clk_get(dev, NULL);
575 		if (IS_ERR(dw_wdt->clk))
576 			return PTR_ERR(dw_wdt->clk);
577 	}
578 
579 	ret = clk_prepare_enable(dw_wdt->clk);
580 	if (ret)
581 		return ret;
582 
583 	dw_wdt->rate = clk_get_rate(dw_wdt->clk);
584 	if (dw_wdt->rate == 0) {
585 		ret = -EINVAL;
586 		goto out_disable_clk;
587 	}
588 
589 	/*
590 	 * Request APB clock if device is configured with async clocks mode.
591 	 * In this case both tclk and pclk clocks are supposed to be specified.
592 	 * Alas we can't know for sure whether async mode was really activated,
593 	 * so the pclk phandle reference is left optional. If it couldn't be
594 	 * found we consider the device configured in synchronous clocks mode.
595 	 */
596 	dw_wdt->pclk = devm_clk_get_optional(dev, "pclk");
597 	if (IS_ERR(dw_wdt->pclk)) {
598 		ret = PTR_ERR(dw_wdt->pclk);
599 		goto out_disable_clk;
600 	}
601 
602 	ret = clk_prepare_enable(dw_wdt->pclk);
603 	if (ret)
604 		goto out_disable_clk;
605 
606 	dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
607 	if (IS_ERR(dw_wdt->rst)) {
608 		ret = PTR_ERR(dw_wdt->rst);
609 		goto out_disable_pclk;
610 	}
611 
612 	/* Enable normal reset without pre-timeout by default. */
613 	dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
614 
615 	/*
616 	 * Pre-timeout IRQ is optional, since some hardware may lack support
617 	 * of it. Note we must request rising-edge IRQ, since the lane is left
618 	 * pending either until the next watchdog kick event or up to the
619 	 * system reset.
620 	 */
621 	ret = platform_get_irq_optional(pdev, 0);
622 	if (ret > 0) {
623 		ret = devm_request_irq(dev, ret, dw_wdt_irq,
624 				       IRQF_SHARED | IRQF_TRIGGER_RISING,
625 				       pdev->name, dw_wdt);
626 		if (ret)
627 			goto out_disable_pclk;
628 
629 		dw_wdt->wdd.info = &dw_wdt_pt_ident;
630 	} else {
631 		if (ret == -EPROBE_DEFER)
632 			goto out_disable_pclk;
633 
634 		dw_wdt->wdd.info = &dw_wdt_ident;
635 	}
636 
637 	reset_control_deassert(dw_wdt->rst);
638 
639 	ret = dw_wdt_init_timeouts(dw_wdt, dev);
640 	if (ret)
641 		goto out_disable_clk;
642 
643 	wdd = &dw_wdt->wdd;
644 	wdd->ops = &dw_wdt_ops;
645 	wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt);
646 	wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt);
647 	wdd->parent = dev;
648 
649 	watchdog_set_drvdata(wdd, dw_wdt);
650 	watchdog_set_nowayout(wdd, nowayout);
651 	watchdog_init_timeout(wdd, 0, dev);
652 
653 	/*
654 	 * If the watchdog is already running, use its already configured
655 	 * timeout. Otherwise use the default or the value provided through
656 	 * devicetree.
657 	 */
658 	if (dw_wdt_is_enabled(dw_wdt)) {
659 		wdd->timeout = dw_wdt_get_timeout(dw_wdt);
660 		set_bit(WDOG_HW_RUNNING, &wdd->status);
661 	} else {
662 		wdd->timeout = DW_WDT_DEFAULT_SECONDS;
663 		watchdog_init_timeout(wdd, 0, dev);
664 	}
665 
666 	platform_set_drvdata(pdev, dw_wdt);
667 
668 	watchdog_set_restart_priority(wdd, 128);
669 
670 	ret = watchdog_register_device(wdd);
671 	if (ret)
672 		goto out_disable_pclk;
673 
674 	dw_wdt_dbgfs_init(dw_wdt);
675 
676 	return 0;
677 
678 out_disable_pclk:
679 	clk_disable_unprepare(dw_wdt->pclk);
680 
681 out_disable_clk:
682 	clk_disable_unprepare(dw_wdt->clk);
683 	return ret;
684 }
685 
686 static int dw_wdt_drv_remove(struct platform_device *pdev)
687 {
688 	struct dw_wdt *dw_wdt = platform_get_drvdata(pdev);
689 
690 	dw_wdt_dbgfs_clear(dw_wdt);
691 
692 	watchdog_unregister_device(&dw_wdt->wdd);
693 	reset_control_assert(dw_wdt->rst);
694 	clk_disable_unprepare(dw_wdt->pclk);
695 	clk_disable_unprepare(dw_wdt->clk);
696 
697 	return 0;
698 }
699 
700 #ifdef CONFIG_OF
701 static const struct of_device_id dw_wdt_of_match[] = {
702 	{ .compatible = "snps,dw-wdt", },
703 	{ /* sentinel */ }
704 };
705 MODULE_DEVICE_TABLE(of, dw_wdt_of_match);
706 #endif
707 
708 static struct platform_driver dw_wdt_driver = {
709 	.probe		= dw_wdt_drv_probe,
710 	.remove		= dw_wdt_drv_remove,
711 	.driver		= {
712 		.name	= "dw_wdt",
713 		.of_match_table = of_match_ptr(dw_wdt_of_match),
714 		.pm	= &dw_wdt_pm_ops,
715 	},
716 };
717 
718 module_platform_driver(dw_wdt_driver);
719 
720 MODULE_AUTHOR("Jamie Iles");
721 MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver");
722 MODULE_LICENSE("GPL");
723