1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2010-2011 Picochip Ltd., Jamie Iles 4 * https://www.picochip.com 5 * 6 * This file implements a driver for the Synopsys DesignWare watchdog device 7 * in the many subsystems. The watchdog has 16 different timeout periods 8 * and these are a function of the input clock frequency. 9 * 10 * The DesignWare watchdog cannot be stopped once it has been started so we 11 * do not implement a stop function. The watchdog core will continue to send 12 * heartbeat requests after the watchdog device has been closed. 13 */ 14 15 #include <linux/bitops.h> 16 #include <linux/clk.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/err.h> 20 #include <linux/interrupt.h> 21 #include <linux/io.h> 22 #include <linux/kernel.h> 23 #include <linux/limits.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/of.h> 27 #include <linux/platform_device.h> 28 #include <linux/pm.h> 29 #include <linux/reset.h> 30 #include <linux/watchdog.h> 31 32 #define WDOG_CONTROL_REG_OFFSET 0x00 33 #define WDOG_CONTROL_REG_WDT_EN_MASK 0x01 34 #define WDOG_CONTROL_REG_RESP_MODE_MASK 0x02 35 #define WDOG_TIMEOUT_RANGE_REG_OFFSET 0x04 36 #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT 4 37 #define WDOG_CURRENT_COUNT_REG_OFFSET 0x08 38 #define WDOG_COUNTER_RESTART_REG_OFFSET 0x0c 39 #define WDOG_COUNTER_RESTART_KICK_VALUE 0x76 40 #define WDOG_INTERRUPT_STATUS_REG_OFFSET 0x10 41 #define WDOG_INTERRUPT_CLEAR_REG_OFFSET 0x14 42 #define WDOG_COMP_PARAMS_5_REG_OFFSET 0xe4 43 #define WDOG_COMP_PARAMS_4_REG_OFFSET 0xe8 44 #define WDOG_COMP_PARAMS_3_REG_OFFSET 0xec 45 #define WDOG_COMP_PARAMS_2_REG_OFFSET 0xf0 46 #define WDOG_COMP_PARAMS_1_REG_OFFSET 0xf4 47 #define WDOG_COMP_PARAMS_1_USE_FIX_TOP BIT(6) 48 #define WDOG_COMP_VERSION_REG_OFFSET 0xf8 49 #define WDOG_COMP_TYPE_REG_OFFSET 0xfc 50 51 /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */ 52 #define DW_WDT_NUM_TOPS 16 53 #define DW_WDT_FIX_TOP(_idx) (1U << (16 + _idx)) 54 55 #define DW_WDT_DEFAULT_SECONDS 30 56 57 static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = { 58 DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2), 59 DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5), 60 DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8), 61 DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11), 62 DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14), 63 DW_WDT_FIX_TOP(15) 64 }; 65 66 static bool nowayout = WATCHDOG_NOWAYOUT; 67 module_param(nowayout, bool, 0); 68 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started " 69 "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); 70 71 enum dw_wdt_rmod { 72 DW_WDT_RMOD_RESET = 1, 73 DW_WDT_RMOD_IRQ = 2 74 }; 75 76 struct dw_wdt_timeout { 77 u32 top_val; 78 unsigned int sec; 79 unsigned int msec; 80 }; 81 82 struct dw_wdt { 83 void __iomem *regs; 84 struct clk *clk; 85 struct clk *pclk; 86 unsigned long rate; 87 enum dw_wdt_rmod rmod; 88 struct dw_wdt_timeout timeouts[DW_WDT_NUM_TOPS]; 89 struct watchdog_device wdd; 90 struct reset_control *rst; 91 /* Save/restore */ 92 u32 control; 93 u32 timeout; 94 95 #ifdef CONFIG_DEBUG_FS 96 struct dentry *dbgfs_dir; 97 #endif 98 }; 99 100 #define to_dw_wdt(wdd) container_of(wdd, struct dw_wdt, wdd) 101 102 static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt) 103 { 104 return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) & 105 WDOG_CONTROL_REG_WDT_EN_MASK; 106 } 107 108 static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod) 109 { 110 u32 val; 111 112 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); 113 if (rmod == DW_WDT_RMOD_IRQ) 114 val |= WDOG_CONTROL_REG_RESP_MODE_MASK; 115 else 116 val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK; 117 writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); 118 119 dw_wdt->rmod = rmod; 120 } 121 122 static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt, 123 unsigned int timeout, u32 *top_val) 124 { 125 int idx; 126 127 /* 128 * Find a TOP with timeout greater or equal to the requested number. 129 * Note we'll select a TOP with maximum timeout if the requested 130 * timeout couldn't be reached. 131 */ 132 for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { 133 if (dw_wdt->timeouts[idx].sec >= timeout) 134 break; 135 } 136 137 if (idx == DW_WDT_NUM_TOPS) 138 --idx; 139 140 *top_val = dw_wdt->timeouts[idx].top_val; 141 142 return dw_wdt->timeouts[idx].sec; 143 } 144 145 static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt) 146 { 147 int idx; 148 149 /* 150 * We'll find a timeout greater or equal to one second anyway because 151 * the driver probe would have failed if there was none. 152 */ 153 for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { 154 if (dw_wdt->timeouts[idx].sec) 155 break; 156 } 157 158 return dw_wdt->timeouts[idx].sec; 159 } 160 161 static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt) 162 { 163 struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1]; 164 u64 msec; 165 166 msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec; 167 168 return msec < UINT_MAX ? msec : UINT_MAX; 169 } 170 171 static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt) 172 { 173 int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF; 174 int idx; 175 176 for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { 177 if (dw_wdt->timeouts[idx].top_val == top_val) 178 break; 179 } 180 181 /* 182 * In IRQ mode due to the two stages counter, the actual timeout is 183 * twice greater than the TOP setting. 184 */ 185 return dw_wdt->timeouts[idx].sec * dw_wdt->rmod; 186 } 187 188 static int dw_wdt_ping(struct watchdog_device *wdd) 189 { 190 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 191 192 writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs + 193 WDOG_COUNTER_RESTART_REG_OFFSET); 194 195 return 0; 196 } 197 198 static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s) 199 { 200 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 201 unsigned int timeout; 202 u32 top_val; 203 204 /* 205 * Note IRQ mode being enabled means having a non-zero pre-timeout 206 * setup. In this case we try to find a TOP as close to the half of the 207 * requested timeout as possible since DW Watchdog IRQ mode is designed 208 * in two stages way - first timeout rises the pre-timeout interrupt, 209 * second timeout performs the system reset. So basically the effective 210 * watchdog-caused reset happens after two watchdog TOPs elapsed. 211 */ 212 timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod), 213 &top_val); 214 if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) 215 wdd->pretimeout = timeout; 216 else 217 wdd->pretimeout = 0; 218 219 /* 220 * Set the new value in the watchdog. Some versions of dw_wdt 221 * have TOPINIT in the TIMEOUT_RANGE register (as per 222 * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1). On those we 223 * effectively get a pat of the watchdog right here. 224 */ 225 writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT, 226 dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); 227 228 /* Kick new TOP value into the watchdog counter if activated. */ 229 if (watchdog_active(wdd)) 230 dw_wdt_ping(wdd); 231 232 /* 233 * In case users set bigger timeout value than HW can support, 234 * kernel(watchdog_dev.c) helps to feed watchdog before 235 * wdd->max_hw_heartbeat_ms 236 */ 237 if (top_s * 1000 <= wdd->max_hw_heartbeat_ms) 238 wdd->timeout = timeout * dw_wdt->rmod; 239 else 240 wdd->timeout = top_s; 241 242 return 0; 243 } 244 245 static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req) 246 { 247 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 248 249 /* 250 * We ignore actual value of the timeout passed from user-space 251 * using it as a flag whether the pretimeout functionality is intended 252 * to be activated. 253 */ 254 dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET); 255 dw_wdt_set_timeout(wdd, wdd->timeout); 256 257 return 0; 258 } 259 260 static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt) 261 { 262 u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); 263 264 /* Disable/enable interrupt mode depending on the RMOD flag. */ 265 if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) 266 val |= WDOG_CONTROL_REG_RESP_MODE_MASK; 267 else 268 val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK; 269 /* Enable watchdog. */ 270 val |= WDOG_CONTROL_REG_WDT_EN_MASK; 271 writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); 272 } 273 274 static int dw_wdt_start(struct watchdog_device *wdd) 275 { 276 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 277 278 dw_wdt_set_timeout(wdd, wdd->timeout); 279 dw_wdt_ping(&dw_wdt->wdd); 280 dw_wdt_arm_system_reset(dw_wdt); 281 282 return 0; 283 } 284 285 static int dw_wdt_stop(struct watchdog_device *wdd) 286 { 287 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 288 289 if (!dw_wdt->rst) { 290 set_bit(WDOG_HW_RUNNING, &wdd->status); 291 return 0; 292 } 293 294 reset_control_assert(dw_wdt->rst); 295 reset_control_deassert(dw_wdt->rst); 296 297 return 0; 298 } 299 300 static int dw_wdt_restart(struct watchdog_device *wdd, 301 unsigned long action, void *data) 302 { 303 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 304 305 writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); 306 dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET); 307 if (dw_wdt_is_enabled(dw_wdt)) 308 writel(WDOG_COUNTER_RESTART_KICK_VALUE, 309 dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET); 310 else 311 dw_wdt_arm_system_reset(dw_wdt); 312 313 /* wait for reset to assert... */ 314 mdelay(500); 315 316 return 0; 317 } 318 319 static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd) 320 { 321 struct dw_wdt *dw_wdt = to_dw_wdt(wdd); 322 unsigned int sec; 323 u32 val; 324 325 val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET); 326 sec = val / dw_wdt->rate; 327 328 if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) { 329 val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET); 330 if (!val) 331 sec += wdd->pretimeout; 332 } 333 334 return sec; 335 } 336 337 static const struct watchdog_info dw_wdt_ident = { 338 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | 339 WDIOF_MAGICCLOSE, 340 .identity = "Synopsys DesignWare Watchdog", 341 }; 342 343 static const struct watchdog_info dw_wdt_pt_ident = { 344 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | 345 WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE, 346 .identity = "Synopsys DesignWare Watchdog", 347 }; 348 349 static const struct watchdog_ops dw_wdt_ops = { 350 .owner = THIS_MODULE, 351 .start = dw_wdt_start, 352 .stop = dw_wdt_stop, 353 .ping = dw_wdt_ping, 354 .set_timeout = dw_wdt_set_timeout, 355 .set_pretimeout = dw_wdt_set_pretimeout, 356 .get_timeleft = dw_wdt_get_timeleft, 357 .restart = dw_wdt_restart, 358 }; 359 360 static irqreturn_t dw_wdt_irq(int irq, void *devid) 361 { 362 struct dw_wdt *dw_wdt = devid; 363 u32 val; 364 365 /* 366 * We don't clear the IRQ status. It's supposed to be done by the 367 * following ping operations. 368 */ 369 val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET); 370 if (!val) 371 return IRQ_NONE; 372 373 watchdog_notify_pretimeout(&dw_wdt->wdd); 374 375 return IRQ_HANDLED; 376 } 377 378 static int dw_wdt_suspend(struct device *dev) 379 { 380 struct dw_wdt *dw_wdt = dev_get_drvdata(dev); 381 382 dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); 383 dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); 384 385 clk_disable_unprepare(dw_wdt->pclk); 386 clk_disable_unprepare(dw_wdt->clk); 387 388 return 0; 389 } 390 391 static int dw_wdt_resume(struct device *dev) 392 { 393 struct dw_wdt *dw_wdt = dev_get_drvdata(dev); 394 int err = clk_prepare_enable(dw_wdt->clk); 395 396 if (err) 397 return err; 398 399 err = clk_prepare_enable(dw_wdt->pclk); 400 if (err) { 401 clk_disable_unprepare(dw_wdt->clk); 402 return err; 403 } 404 405 writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); 406 writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); 407 408 dw_wdt_ping(&dw_wdt->wdd); 409 410 return 0; 411 } 412 413 static DEFINE_SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume); 414 415 /* 416 * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the 417 * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers 418 * depending on the system engineer imagination. The next method handles the 419 * passed TOPs array to pre-calculate the effective timeouts and to sort the 420 * TOP items out in the ascending order with respect to the timeouts. 421 */ 422 423 static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops) 424 { 425 struct dw_wdt_timeout tout, *dst; 426 int val, tidx; 427 u64 msec; 428 429 /* 430 * We walk over the passed TOPs array and calculate corresponding 431 * timeouts in seconds and milliseconds. The milliseconds granularity 432 * is needed to distinguish the TOPs with very close timeouts and to 433 * set the watchdog max heartbeat setting further. 434 */ 435 for (val = 0; val < DW_WDT_NUM_TOPS; ++val) { 436 tout.top_val = val; 437 tout.sec = tops[val] / dw_wdt->rate; 438 msec = (u64)tops[val] * MSEC_PER_SEC; 439 do_div(msec, dw_wdt->rate); 440 tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC); 441 442 /* 443 * Find a suitable place for the current TOP in the timeouts 444 * array so that the list is remained in the ascending order. 445 */ 446 for (tidx = 0; tidx < val; ++tidx) { 447 dst = &dw_wdt->timeouts[tidx]; 448 if (tout.sec > dst->sec || (tout.sec == dst->sec && 449 tout.msec >= dst->msec)) 450 continue; 451 else 452 swap(*dst, tout); 453 } 454 455 dw_wdt->timeouts[val] = tout; 456 } 457 } 458 459 static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev) 460 { 461 u32 data, of_tops[DW_WDT_NUM_TOPS]; 462 const u32 *tops; 463 int ret; 464 465 /* 466 * Retrieve custom or fixed counter values depending on the 467 * WDT_USE_FIX_TOP flag found in the component specific parameters 468 * #1 register. 469 */ 470 data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET); 471 if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) { 472 tops = dw_wdt_fix_tops; 473 } else { 474 ret = of_property_read_variable_u32_array(dev_of_node(dev), 475 "snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS, 476 DW_WDT_NUM_TOPS); 477 if (ret < 0) { 478 dev_warn(dev, "No valid TOPs array specified\n"); 479 tops = dw_wdt_fix_tops; 480 } else { 481 tops = of_tops; 482 } 483 } 484 485 /* Convert the specified TOPs into an array of watchdog timeouts. */ 486 dw_wdt_handle_tops(dw_wdt, tops); 487 if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) { 488 dev_err(dev, "No any valid TOP detected\n"); 489 return -EINVAL; 490 } 491 492 return 0; 493 } 494 495 #ifdef CONFIG_DEBUG_FS 496 497 #define DW_WDT_DBGFS_REG(_name, _off) \ 498 { \ 499 .name = _name, \ 500 .offset = _off \ 501 } 502 503 static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = { 504 DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET), 505 DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET), 506 DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET), 507 DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET), 508 DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET), 509 DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET), 510 DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET), 511 DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET), 512 DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET), 513 DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET), 514 DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET), 515 DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET) 516 }; 517 518 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) 519 { 520 struct device *dev = dw_wdt->wdd.parent; 521 struct debugfs_regset32 *regset; 522 523 regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); 524 if (!regset) 525 return; 526 527 regset->regs = dw_wdt_dbgfs_regs; 528 regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs); 529 regset->base = dw_wdt->regs; 530 531 dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL); 532 533 debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset); 534 } 535 536 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) 537 { 538 debugfs_remove_recursive(dw_wdt->dbgfs_dir); 539 } 540 541 #else /* !CONFIG_DEBUG_FS */ 542 543 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {} 544 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {} 545 546 #endif /* !CONFIG_DEBUG_FS */ 547 548 static int dw_wdt_drv_probe(struct platform_device *pdev) 549 { 550 struct device *dev = &pdev->dev; 551 struct watchdog_device *wdd; 552 struct dw_wdt *dw_wdt; 553 int ret; 554 555 dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL); 556 if (!dw_wdt) 557 return -ENOMEM; 558 559 dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0); 560 if (IS_ERR(dw_wdt->regs)) 561 return PTR_ERR(dw_wdt->regs); 562 563 /* 564 * Try to request the watchdog dedicated timer clock source. It must 565 * be supplied if asynchronous mode is enabled. Otherwise fallback 566 * to the common timer/bus clocks configuration, in which the very 567 * first found clock supply both timer and APB signals. 568 */ 569 dw_wdt->clk = devm_clk_get(dev, "tclk"); 570 if (IS_ERR(dw_wdt->clk)) { 571 dw_wdt->clk = devm_clk_get(dev, NULL); 572 if (IS_ERR(dw_wdt->clk)) 573 return PTR_ERR(dw_wdt->clk); 574 } 575 576 ret = clk_prepare_enable(dw_wdt->clk); 577 if (ret) 578 return ret; 579 580 dw_wdt->rate = clk_get_rate(dw_wdt->clk); 581 if (dw_wdt->rate == 0) { 582 ret = -EINVAL; 583 goto out_disable_clk; 584 } 585 586 /* 587 * Request APB clock if device is configured with async clocks mode. 588 * In this case both tclk and pclk clocks are supposed to be specified. 589 * Alas we can't know for sure whether async mode was really activated, 590 * so the pclk phandle reference is left optional. If it couldn't be 591 * found we consider the device configured in synchronous clocks mode. 592 */ 593 dw_wdt->pclk = devm_clk_get_optional(dev, "pclk"); 594 if (IS_ERR(dw_wdt->pclk)) { 595 ret = PTR_ERR(dw_wdt->pclk); 596 goto out_disable_clk; 597 } 598 599 ret = clk_prepare_enable(dw_wdt->pclk); 600 if (ret) 601 goto out_disable_clk; 602 603 dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); 604 if (IS_ERR(dw_wdt->rst)) { 605 ret = PTR_ERR(dw_wdt->rst); 606 goto out_disable_pclk; 607 } 608 609 /* Enable normal reset without pre-timeout by default. */ 610 dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET); 611 612 /* 613 * Pre-timeout IRQ is optional, since some hardware may lack support 614 * of it. Note we must request rising-edge IRQ, since the lane is left 615 * pending either until the next watchdog kick event or up to the 616 * system reset. 617 */ 618 ret = platform_get_irq_optional(pdev, 0); 619 if (ret > 0) { 620 ret = devm_request_irq(dev, ret, dw_wdt_irq, 621 IRQF_SHARED | IRQF_TRIGGER_RISING, 622 pdev->name, dw_wdt); 623 if (ret) 624 goto out_disable_pclk; 625 626 dw_wdt->wdd.info = &dw_wdt_pt_ident; 627 } else { 628 if (ret == -EPROBE_DEFER) 629 goto out_disable_pclk; 630 631 dw_wdt->wdd.info = &dw_wdt_ident; 632 } 633 634 reset_control_deassert(dw_wdt->rst); 635 636 ret = dw_wdt_init_timeouts(dw_wdt, dev); 637 if (ret) 638 goto out_disable_clk; 639 640 wdd = &dw_wdt->wdd; 641 wdd->ops = &dw_wdt_ops; 642 wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt); 643 wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt); 644 wdd->parent = dev; 645 646 watchdog_set_drvdata(wdd, dw_wdt); 647 watchdog_set_nowayout(wdd, nowayout); 648 watchdog_init_timeout(wdd, 0, dev); 649 650 /* 651 * If the watchdog is already running, use its already configured 652 * timeout. Otherwise use the default or the value provided through 653 * devicetree. 654 */ 655 if (dw_wdt_is_enabled(dw_wdt)) { 656 wdd->timeout = dw_wdt_get_timeout(dw_wdt); 657 set_bit(WDOG_HW_RUNNING, &wdd->status); 658 } else { 659 wdd->timeout = DW_WDT_DEFAULT_SECONDS; 660 watchdog_init_timeout(wdd, 0, dev); 661 } 662 663 platform_set_drvdata(pdev, dw_wdt); 664 665 watchdog_set_restart_priority(wdd, 128); 666 watchdog_stop_on_reboot(wdd); 667 668 ret = watchdog_register_device(wdd); 669 if (ret) 670 goto out_disable_pclk; 671 672 dw_wdt_dbgfs_init(dw_wdt); 673 674 return 0; 675 676 out_disable_pclk: 677 clk_disable_unprepare(dw_wdt->pclk); 678 679 out_disable_clk: 680 clk_disable_unprepare(dw_wdt->clk); 681 return ret; 682 } 683 684 static int dw_wdt_drv_remove(struct platform_device *pdev) 685 { 686 struct dw_wdt *dw_wdt = platform_get_drvdata(pdev); 687 688 dw_wdt_dbgfs_clear(dw_wdt); 689 690 watchdog_unregister_device(&dw_wdt->wdd); 691 reset_control_assert(dw_wdt->rst); 692 clk_disable_unprepare(dw_wdt->pclk); 693 clk_disable_unprepare(dw_wdt->clk); 694 695 return 0; 696 } 697 698 #ifdef CONFIG_OF 699 static const struct of_device_id dw_wdt_of_match[] = { 700 { .compatible = "snps,dw-wdt", }, 701 { /* sentinel */ } 702 }; 703 MODULE_DEVICE_TABLE(of, dw_wdt_of_match); 704 #endif 705 706 static struct platform_driver dw_wdt_driver = { 707 .probe = dw_wdt_drv_probe, 708 .remove = dw_wdt_drv_remove, 709 .driver = { 710 .name = "dw_wdt", 711 .of_match_table = of_match_ptr(dw_wdt_of_match), 712 .pm = pm_sleep_ptr(&dw_wdt_pm_ops), 713 }, 714 }; 715 716 module_platform_driver(dw_wdt_driver); 717 718 MODULE_AUTHOR("Jamie Iles"); 719 MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver"); 720 MODULE_LICENSE("GPL"); 721